651 research outputs found

    Racial Bias and Interstate Highway Planning: A Mixed Methods Approach

    Get PDF
    This paper is an analysis of highway alignments based on the census tracts that surround them. First, I perform a quantitative analysis of the tracts with highways and the percentage of non-white and African-Americans in these tracts as opposed to in the state and region in general. In areas where the T-Tests noted a significant difference, a case study approach was employed to conjecture as to the reasoning for these suspect alignments

    Improving NRM Investment through a policy performance lens

    Get PDF
    Choosing a mechanism to encourage landholders to change their land management in order to deliver environmental outcomes is a complicated process. Careful instrument selection may count for little if uptake and adoption are insufficient to meet performance targets. Similarly, investors may require assurance that the proposed investment will deliver the stated goals. In order to reduce the uptake uncertainty facing policy makers we evaluate and describe several possible methods to guide and frame adoption targets. We conclude that referring to past adoption experience of a wide range of mechanisms offers the best approach to setting feasible adoption targets for future mechanisms. We call this adoption points of reference. This approach is tested by application to mechanisms focusing on delivering water quality improvements in GBR catchments. We conclude that the points of reference approach is appropriate and useful but should be supported by processes designed to incorporate the impact of heterogeneity and local knowledge and an emphasis on improving the accuracy of future data.adoption targets, NRM investment, reasonable assurance, water quality,

    Investigation of the processes involved during the photoinhibition of Zea mays L. seedlings.

    Get PDF
    Thesis (M.Sc.)-University of Natal, Durban, 1990.It has been proposed that the protective systems (photorespiration, the anti-oxidant system and non-radiative energy dissipation) alleviate or reduce photoinhibitory damage under high light conditions. To investigate the role of these mechanisms in C4 photosynthetic species, nine day old Zea mays seedlings were photoinhibited (30 minutes of 2500 J,Lmol m-2 s-1 PPFD) in the presence of various concentrations of 02 or CO2; or by photoinhibiting leaves in N2 after they had been fed glycolate or phosphoglycerate via the transpiration stream. The extent of the photoinhibition and the subsequent recovery from the photoinhibitory treatments was monitored with both CO2 gas exchange and chlorophyll fluorometry. Photoinhibitory treatments resulted in both a decrease in the rate of CO2 fixation and an interruption of PSII electron transport. CO2 response curves were used to monitor the efficiency of the carboxylation processes and the level of carbon metabolism substrate cycling during recovery following photoinhibitory treatments. Both were decreased by the treatment and recovered once leaves were returned to normal conditions. Low concentrations of 02 (2%) markedly reduced the extent of the photoinhibition. This protection could not be accounted for by photorespiration, which would be inoperative at such a low 02 concentration. Leaves fed glycolate exhibited enhanced photoinhibtion. It is also unlikely that the anti-oxidant system (Mehler reaction and associated glutathione and ascorbate reactions) could utilize sufficient reductant at such low 02 concentrations to produce the observed protection. Leaves inhibited in the presence of 02 had decreased maximum fluorescence yields (Fm) and little altered initial fluorescence yields (F0)' resulting in decreased PSlI efficiency (Fv/Fm)' Photoinhibition resulted in a small increase in the slow relaxing component (60 minute) of non-radiative energy dissipation. This component became more predominant as the 02 concentration was increased. The rate constant for photochemistry was also decreased by the inhibitory treatment. Leaves supplied with CO2 at a concentration above 50 J,Lmol mol-1 exhibited little photoinihibition suggesting that the protection was not due to a quantitative utilization of energy. PGA, fed via the transpiration strea~ enhanced the photoinhibition, suggesting that more than just the Benson-Calvin cycle is required to protect C4 plants from photoinhibition. At CO2 concentrations below this, the Fv/FID ratio was decreased due to large increases in the F0 values. Fm was little altered. These changes are characteristic of a decrease in the rate constant for photochemistry. The rate constant for non-radiative energy dissipation was little altered by the photoinhibition. The protection observed in the presence of either CO2 or 02 was not due to a quantitative utilization of energy and the different responses of F0' Fm and the rate constants KD and Kp, suggest that different mechanisms were operative in the presence or absence of oxygen

    Investigating How Calcium Diffusion Affects Metabolic Oscillations and Synchronization of Pancreatic Beta Cells

    Get PDF
    Diabetes is a disease characterized by improper concentrations of blood glucose due to irregular insulin production or sensitivity. Coupled in islets of Langerhans within the pancreas, Ī²-cells are responsible for the production and regulation of insulin based on changes in glucose levels. Using the Dual Oscillator Model (DOM), we will examine how calcium handling between individual pancreatic Ī²-cells affects the synchronization of metabolic oscillations within electrically coupled islets. Calcium permeability was implemented into the DOM, and numerical solutions of the system were obtained via MATLAB using a modified ordinary differential equation solver for stiff systems and the Automatic Differentiation for MATLAB software. We developed a synchronization index to quantitatively describe the synchronization of variables between nearest neighboring cells and throughout the islet as a whole. We considered how calcium permeability between heterogeneous cells affects the behavior of metabolic oscillations and their synchronization. In particular, we examined fructose-1, 6-bisphosphate. In our study metabolic oscillations were always maintained. We also showed that, for low to moderate levels of electrical coupling, calcium permeability increased the synchronization index, but increasing calcium permeability had little effect on synchronization when cells were already strongly synchronized with strong electrical coupling. Heterogeneity due to glucose influx or initial state of the cells had similar synchronization results

    The Interaction of Calcium and Metabolic Oscillations in Pancreatic Ī²-cells

    Get PDF
    Diabetes is a disease characterized by an excessive level of glucose in the bloodstream, which may be a result of improper insulin secretion. Insulin is secreted in a bursting behavior of pancreatic Ī²\beta-cells in islets, which is affected by oscillations of cytosolic calcium concentration. We used the Dual Oscillator Model to explore the role of calcium in calcium oscillation independent and calcium oscillation dependent modes and the synchronization of metabolic oscillations in electrically coupled Ī²\beta-cells. We implemented a synchronization index in order to better measure the synchronization of the Ī²\beta-cells within an islet and we studied heterogeneous modes of coupled Ī²\beta-cells. We saw that increasing calcium coupling or voltage coupling in heterogeneous cases increases synchronization; however, in certain cases increasing both voltage and calcium coupling causes desynchronization. To better represent an islet, we altered previous code to allow for a greater number of cells to be simulated

    The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia

    Get PDF
    Emissions from flooded land represent a direct source of anthropogenic greenhouse gas (GHG) emissions. Methane emissions from large, artificial water bodies have previously been considered, with numerous studies assessing emission rates and relatively simple procedures available to determine their surface area and generate upscaled emissions estimates. In contrast, the role of small artificial water bodies (ponds) is very poorly quantified, and estimation of emissions is constrained both by a lack of data on their spatial extent and a scarcity of direct flux measurements. In this study, we quantified the total surface area of water bodies <105m2 across Queensland, Australia, and emission rates from a variety of water body types and size classes. We found that the omission of small ponds from current official land use data has led to an underestimate of total flooded land area by 24%, of small artificial water body surface area by 57% and of the total number of artificial water bodies by 1 order of magnitude. All studied ponds were significant hotspots of methane production, dominated by ebullition (bubble) emissions. Two scaling approaches were developed with one based on pond primary use (stock watering, irrigation and urban lakes) and the other using size class. Both approaches indicated that ponds in Queensland alone emit over 1.6 Mt CO2ā€†eq.ā€‰yrāˆ’1, equivalent to 10% of the state's entire land use, land use change and forestry sector emissions. With limited data from other regions suggesting similarly large numbers of ponds, high emissions per unit area and under-reporting of spatial extent, we conclude that small artificial water bodies may be a globally important missing source of anthropogenic greenhouse gas emissions

    Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: Localization of the CDC11 gene product and the timing of events at the budding site

    Full text link
    The Saccharomyces cerevisiae CDC3 , CDC10 , CDC11 , and CDC12 genes encode a family of homologous proteins that are not closely related to other known proteins [Haarer BK, Ketcham SR, Ford SK, Ashcroft DJ, and Pringle JR (submitted)]. Temperature-sensitive mutants defective in any of these four genes display essentially identical pleiotropic phenotypes that include abnormal cell-wall deposition and bud growth, an inability to complete cytokinesis, and a failure to form the ring of 10 nm filaments that normally lies directly subjacent to the plasma membrane in the neck region of budding cells. We showed previously that the CDC3 and CDC12 gene products localize to the region of the mother-bud neck and are probably constituents of the ring of 10 nm filaments. We now report the generation of polyclonal antibodies specific for the CDC11 product (Cdc11p) and the use of these antibodies in immunofluorescence experiments with wild-type and mutant cells. The results suggest that Cdc11p is also a constituent of the filament ring, and thus support the hypothesis that the S. cerevisiae 10 nm filaments represent a novel type of eukaryotic cytoskeletal element. Cdc11p and actin both localize to the budding site well in advance of bud emergence and at approximately the same time, and both proteins also remain localized at the old budding site for some time after cytokinesis. Cdc11p also localizes to regions of cell-wall reorganization in mating cells and in cells responding to purified mating pheromone. Surprisingly, most preparations of affinity purified Cdc11p-specific antibodies also stained the nuclear and cytoplasmic microtubules. Although this staining probably reflects the existence of an epitope shared by Cdc11p and some microtubule-associated protein, the possibility that a fraction of the Cdc11 p is associated with the microtubules could not be eliminated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50177/1/1020120405_ftp.pd

    Elongator function in tRNA wobble uridine modification is conserved between yeast and plants

    Get PDF
    Based on studies in yeast and mammalian cells the Elongator complex has been implicated in functions as diverse as histone acetylation, polarized protein trafficking and tRNA modification. Here we show that Arabidopsis mutants lacking the Elongator subunit AtELP3/ELO3 have a defect in tRNA wobble uridine modification. Moreover, we demonstrate that yeast elp3 and elp1 mutants expressing the respective Arabidopsis Elongator homologues AtELP3/ELO3 and AtELP1/ELO2 assemble integer Elongator complexes indicating a high degree of structural conservation. Surprisingly, in vivo complementation studies based on Elongator-dependent tRNA nonsense suppression and zymocin tRNase toxin assays indicated that while AtELP1 rescued defects of a yeast elp1 mutant, the most conserved Elongator gene AtELP3, failed to complement an elp3 mutant. This lack of complementation is due to incompatibility with yeast ELP1 as coexpression of both plant genes in an elp1 elp3 yeast mutant restored Elongator's tRNA modification function in vivo. Similarly, AtELP1, not ScELP1 also supported partial complementation by yeastā€“plant Elp3 hybrids suggesting that AtElp1 has less stringent sequence requirements for Elp3 than ScElp1. We conclude that yeast and plant Elongator share tRNA modification roles and propose that this function might be conserved in Elongator from all eukaryotic kingdoms of life
    • ā€¦
    corecore