4,396 research outputs found

    Monomer diffusion rates in photopolymer material: Part I. Low spatial frequency holographic gratings: reply

    Get PDF
    In [1,2] an error (by a factor of 1000) in the diffusion rate of monomer in a photopolymer material used by the authors of [3], is presented. In [3] no errors are identified in our analysis and our physical evidence is not addressed. It is implied that our model and our results are disproven by the results in the papers referenced in [3]. In fact these papers do not provide any such quantitative evidence. The observations made regarding the significance of the authors’ contributions, in particular the validity of their model and the practical importance of their material are also discussed. © 2012 Optical Society of Americ

    Dispersion relations for circular single and double dusty plasma chains

    Full text link
    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring) we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branches of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration) the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.Comment: 10 pages, 8 fugure

    Immediate replacement of fishing with dairying by the earliest farmers of the NE Atlantic archipelagos

    Get PDF
    The appearance of farming, from its inception in the Near East around 12 000 years ago, finally reached the northwestern extremes of Europe by the fourth millennium BC or shortly thereafter. Various models have been invoked to explain the Neolithization of northern Europe; however, resolving these different scenarios has proved problematic due to poor faunal preservation and the lack of specificity achievable for commonly applied proxies. Here, we present new multi-proxy evidence, which qualitatively and quantitatively maps subsistence change in the northeast Atlantic archipelagos from the Late Mesolithic into the Neolithic and beyond. A model involving significant retention of hunter–gatherer–fisher influences was tested against one of the dominant adoptions of farming using a novel suite of lipid biomarkers, including dihydroxy fatty acids, ω-(o-alkylphenyl)alkanoic acids and stable carbon isotope signatures of individual fatty acids preserved in cooking vessels. These new findings, together with archaeozoological and human skeletal collagen bulk stable carbon isotope proxies, unequivocally confirm rejection of marine resources by early farmers coinciding with the adoption of intensive dairy farming. This pattern of Neolithization contrasts markedly to that occurring contemporaneously in the Baltic, suggesting that geographically distinct ecological and cultural influences dictated the evolution of subsistence practices at this critical phase of European prehistory

    Using Genetic Programming to Investigate a Novel Model of Resting Energy Expenditure for Bariatric Surgery Patients

    Get PDF
    Traditionally, models developed to estimate resting energy expenditure (REE) in the bariatric population have been limited to linear modelling based on data from `normal' or `overweight' individuals - not `obese'. This type of modelling can be restrictive and yield functions which poorly estimate this important physiological outcome.Linear and nonlinear models of REE for individuals after bariatric surgery are developed with linear regression and symbolic regression via genetic programming. Features not traditionally used in REE modelling were also incorporated and analyzed and genetic programming's intrinsic feature selection was used as a measure of feature importance.A collection of effective new linear and nonlinear models were generated. The linear models generated outperformed the nonlinear on testing data, although the nonlinear models fit the training data better. Ultimately, the newly developed linear models showed an improvement over existing models and the feature importance analysis suggested that the typically used features (age, weight, and height) were the most important

    Statoconia Formation in Molluscan Statocysts

    Get PDF
    The gravity sensors of all molluscs phylogenetically below the cephalopods are spherical organs called statocysts. The wall of the sphere contains mechanosensory cells whose sensory cilia project into the lumen of the cyst. The lumen is filled with fluid and dense stones , the statoconia or statoliths, which sink under the influence of gravity to load, and stimulate, those receptor cells which are at the bottom. The statuconia of Aplysia californica are shown to be calcified about a lamellar arrangement of membranes. Similar lamellar membrane arrangements are seen within the receptor cells, and their possible role in the formation of the statoconia is discussed. SEM of unfixed statoconia reveals plate-like crystallization on their surface. Elemental analysis shows a relatively high Sr content, which is of interest, since others have recently reported that Sr is required in the culture medium of several laboratory-reared molluscs in order for the statoconia to develop

    Do ultrafast exciton-polaron decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells?

    Get PDF
    All-organic-based photovoltaic solar cells have attracted considerable attention because of their low-cost processing and short energy payback time. In such systems the primary dissociation of an optical excitation into a pair of photocarriers has been recently shown to be extremely rapid and efficient, but the physical reason for this remains unclear. Here, two-dimensional photocurrent excitation spectroscopy, a novel non-linear optical spectroscopy, is used to probe the ultrafast coherent decay of photoexcitations into charge-producing states in a polymer:fullerene based solar cell. The two-dimensional photocurrent spectra are interpreted by introducing a theoretical model for the description of the coupling of the electronic states of the system to an external environment and to the applied laser fields. The experimental data show no cross-peaks in the two-dimensional photocurrent spectra, as predicted by the model for coherence times between the exciton and the photocurrent producing states of 20\,fs or less

    Derivation and validation of a simple, accurate and robust prediction rule for risk of mortality in patients with Clostridium difficile infection.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: Clostridium difficile infection poses a significant healthcare burden. However, the derivation of a simple, evidence based prediction rule to assist patient management has not yet been described. METHOD: Univariate, multivariate and decision tree procedures were used to deduce a prediction rule from over 186 variables; retrospectively collated from clinical data for 213 patients. The resulting prediction rule was validated on independent data from a cohort of 158 patients described by Bhangu et al. (Colorectal Disease, 12(3):241-246, 2010). RESULTS: Serum albumin levels (g/L) (P = 0.001), respiratory rate (resps /min) (P = 0.002), C-reactive protein (mg/L) (P = 0.034) and white cell count (mcL) (P = 0.049) were predictors of all-cause mortality. Threshold levels of serum albumin ≤ 24.5 g/L, C- reactive protein >228 mg/L, respiratory rate >17 resps/min and white cell count >12 × 10(3) mcL were associated with an increased risk of all-cause mortality. A simple four variable prediction rule was devised based on these threshold levels and when tested on the initial data, yield an area under the curve score of 0.754 (P < 0.001) using receiver operating characteristics. The prediction rule was then evaluated using independent data, and yield an area under the curve score of 0.653 (P = 0.001). CONCLUSIONS: Four easily measurable clinical variables can be used to assess the risk of mortality of patients with Clostridium difficile infection and remains robust with respect to independent data.This work was funded by University of Exeter, Systems Biology Initiative, a small grants fund from the RD&E NHS Trust and The National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula (PenCLAHRC). This article presents independent research funded by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health in England

    Eulerian simulation of the fluid dynamics of helicopter brownout

    Get PDF
    A computational model is presented that can be used to simulate the development of the dust cloud that can be entrained into the air when a helicopter is operated close to the ground in desert or dusty conditions. The physics of this problem, and the associated pathological condition known as ‘brownout’ where the pilot loses situational awareness as a result of his vision being occluded by dust suspended in the flow around the helicopter, is acknowledged to be very complex. The approach advocated here involves an approximation to the full dynamics of the coupled particulate-air system. Away from the ground, the model assumes that the suspended particles remain in near equilibrium under the action of aerodynamic forces. Close to the ground, this model is replaced by an algebraic sublayer model for the saltation and entrainment process. The origin of the model in the statistical mechanics of a distribution of particles governed by aerodynamic forces allows the validity of the method to be evaluated in context by comparing the physical properties of the suspended particulates to the local properties of the flow field surrounding the helicopter. The model applies in the Eulerian frame of reference of most conventional Computational Fluid Dynamics codes and has been coupled with Brown’s Vorticity Transport Model. Verification of the predictions of the coupled model against experimental data for particulate entrainment and transport in the flow around a model rotor are encouraging. An application of the coupled model to analyzing the differences in the geometry and extent of the dust clouds that are produced by single main rotor and tandem-rotor configurations as they decelerate to land has shown that the location of the ground vortex and the size of any regions of recirculatory flow, should they exist, play a primary role in governing the extent of the dust cloud that is created by the helicopter
    corecore