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Abstract—Traditionally, models developed to estimate resting
energy expenditure (REE) in the bariatric population have been
limited to linear modelling based on data from ‘normal’ or
‘overweight’ individuals — not ‘obese’. This type of modelling
can be restrictive and yield functions which poorly estimate this
important physiological outcome.

Linear and nonlinear models of REE for individuals after
bariatric surgery are developed with linear regression and
symbolic regression via genetic programming. Features not tra-
ditionally used in REE modelling were also incorporated and
analyzed and genetic programming’s intrinsic feature selection
was used as a measure of feature importance.

A collection of effective new linear and nonlinear models
were generated. The linear models generated outperformed the
nonlinear on testing data, although the nonlinear models fit
the training data better. Ultimately, the newly developed linear
models showed an improvement over existing models and the
feature importance analysis suggested that the typically used
features (age, weight, and height) were the most important.

Index Terms—Bariatric Surgery; Genetic Programming; Rest-
ing Energy Expenditure; Regression Analysis

I. INTRODUCTION

Bariatric (weight loss) surgery is the most effective treat-
ment for severe obesity [3]. After surgery, patients must
follow a strict diet to promote optimal weight loss and
avoid regaining weight [11]. These dietary instructions are
based on an estimation of patient’s resting energy expenditure
(REE). Traditionally, models developed to estimate REE in
the bariatric population (see Equations 1 – 4) have been
limited to linear modelling [15]. This type of modelling may
be restrictive, and yield functions which poorly estimate this
important physiological outcome. Additionally, the original
models did not attempt to fit data from obese or post-bariatric
surgery individuals.

A more accurate energy prediction equation is required
to reduce the risk of weight regain following surgery. In
this study, we aim to apply linear regression and symbolic
regression to estimate both linear and nonlinear models that
will more accurately predict the REE of individuals after
bariatric surgery. Although the ultimate goal is to develop

new models to be used in a clinical setting, here we focus
on feature analysis, model interpretation, and a comparison of
the effectiveness of linear and nonlinear models.

In addition to ordinary least squares (OLS) for generating
linear models, Genetic Programming (GP), a type of computa-
tional intelligence, will be used to perform symbolic regression
to develop the nonlinear models.

A description of the data is presented in Section II and the
model development strategy is outlined in Section III. Multiple
sub-experiments are outlined, and their results are presented
in Section IV. A discussion of the results are also included
in Section IV. Section V contains the findings and outlines a
number of future directions the longer term project will take.

II. DATA

One-hundred and twenty-seven individuals who had pre-
viously undergone bariatric surgery (1 to 17 years prior to
this study’s assessments) were recruited by telephone. This
study was approved by the McGill University Medical Ethics
Review Board (A04-M35-11A). Written informed consent was
obtained from all participants.

All participants were examined in the morning (8 AM
– 11 AM) after an overnight fast. During the in-laboratory
assessment, participant height was measured to the nearest
centimeter (Seca 216 stadiometer) and weight was assessed
to the nearest tenth kilogram (Seca 635 bariatric scale) (Seca,
Hamburg, Germany). Body mass index was calculated as body
weight/height2 (kg/m2). Lightweight clothing and no footwear
were worn during all assessments.

Resting energy expenditure (REE) was measured by in-
direct calorimetry (mREE) using a ventilated hood system
(Vmax Encore; CareFusion, Yorba Linda, CA, USA) while
participants remained in a lying, resting position for 40
minutes. Oxygen uptake and carbon dioxide production were
collected every minute and data were converted to REE. The
resting respiratory quotient (RQ) was estimated as the ratio
of carbon dioxide production to oxygen uptake. Before each
measurement, the gas analyzer was calibrated with standard
gas concentration (95% O2 + 5% CO2).978-1-7281-9468-4/20/$31.00 c©2020 IEEE



TABLE I: Summary Statistics of Subjects. Sample standard
deviation is used. A confidence interval of 95% was used.

Male Female Combined
n 29 90 119
Age mean 52.76 50.91 51.36
Age st.dev. 11.80 9.36 9.99
Age CI ± 2.12 ± 1.68 ± 1.79
Weight (kg) mean 109.10 91.12 95.50
Weight (kg) st.dev. 22.66 27.41 27.46
Weight (kg) CI ± 4.07 ± 4.92 ± 4.92
Height (cm) mean 172.35 164.19 166.18
Height (cm) st.dev. 6.99 8.63 8.95
Height (cm) CI ± 1.26 ± 1.55 ± 1.61
REE (kcal d−1) mean 1594.14 1339.90 1401.86
REE (kcal d−1) st.dev. 330.24 372.50 377.56
REE (kcal d−1) CI ± 59.33 ± 66.93 ± 67.84

TABLE II: Feature/variable labels.

Resting Energy Expenditure REE
Age A
Sex S
Weight/Current Weight W/W(C)
Before Surgery Weight W(B)
Height H
Respiration Quotient RQ
Years Since Surgery Y

Table I provides a summary of the main features used in
this work. Although additional features are used later, their
summary statistics are not presented here.

At various points throughout this paper we refer to features
with abbreviations, which are summarized in Table II.

III. METHODS

To find the models, multiple forms of regression analysis
are performed. The focus of this work is to compare linear
and nonlinear models and to investigate their effectiveness.

Models are designed to predict the measured REE (y)
based on a number of independent variables, namely, age,
weight, and height (X). Additional independent variables (sex,
respiration quotient, years since surgery, and weight before
surgery) are investigated in Section IV-E. The goal of the
regression analysis is to generate some symbolic mathematical
equation that describes the relationship between the dependent
and independent variables.

A. Linear Regression

Ordinary least squares regression is used for linear regres-
sion. This simple form of statistical learning determines the
optimal parameters, β, for the independent variables X to
predict y; ultimately, it determines ŷ = βX , where ŷ is the
predicted REE value.

Least absolute shrinkage and selection operator (LASSO)
regression is used in Section IV-E as a mechanism to determine
feature importance. The effectiveness of the resulting LASSO
models are not included in the results comparison as initial

tests showed little to no difference between the LASSO
generated models and those developed with OLS.

Given the small number of data points, leave-one-out (LOO)
cross validation is used.

B. Nonlinear Regression

Nonlinear regression was performed with symbolic regres-
sion (SR) via GP. GP is a form of evolutionary computation
that searches for programs to solve a given problem. These
programs are evolved with an algorithm based on the natural
process of evolution [9]. For SR, the programs being evolved
are mathematical expressions. In this study, SR is evolving ex-
pressions to predict REE, and their effectiveness is calculated
by comparing the predicted values to the actual measured REE
values for each patient.

SR searches for some function of the independent variables
X to predict y; ŷ = f(X), where ŷ is the predicted REE value.
Unlike linear regression, SR is less constrained and requires
fewer assumptions. The resulting functions may be nonlinear,
require no a priori model structure, and can include other
basic functions. Ultimately, SR searches for model structure
in addition to some parameter values.

1) Genetic Programming System: The GP system used for
this work is a specialized system for SR [5]. The system
was originally based on Schmidt et al.’s work [14] and
has since been used in multiple application areas, including
finding nonlinear relationships with fMRI data [7], predicting
intracranial pressure [8], and modelling Parkinson’s Disease
patient gait [6].

The system incorporates many improvements, including
fitness predictors to address overfitting and reduce the compu-
tation required for fitness evaluation [13]. Fitness predictors
also provide a pseudo model validation throughout the evo-
lutionary search since at any given time, the search is only
fitting to a relatively small subset of data points. The system
also uses an acyclic graph representation, which reduces
bloat, overfitting, increases search effectiveness, and allows the
search to reuse subexpressions [12]. For more information on
these improvements, please see their original sources. Table III
provides a summary of the GP system settings. These values
were determined empirically.

Given the stochastic nature of SR, 100 nonlinear models
were generated for each set of data to give the algorithm a
better chance of producing effective results. Further, having
more models allows for better statistical comparisons.

Each nonlinear model took roughly 1min to generate on a
desktop computer.

Given the computational cost of generating the nonlinear
models compared to the linear models, no validation or
sophisticated model selection strategy was implemented for
the nonlinear models. Simply, the best performing nonlinear
model on the training data would be selected for testing where
applicable. Note that this strategy will select biased models
overfit to the training data, especially considering the small
number of data points; however, it is sufficient given a major
focus of this work is on the model analysis and the constraints,



TABLE III: Genetic Programming system parameters.

Elitism 1 (Single top candidate solution)
Population 101
Subpopulations 7
Generations 100,000 (1,000/migration)
Migrations 100
Crossover 80%
Mutation 10% (x2 chances)
Fitness Metric Mean Squared Error: 1

n

∑n
i=1(ŷi − yi)

2

Language +, − ,∗ , /, exp, sin, cos, tan
Max # Graph Nodes 24
Predictors 10
Predictor Pop. Size 25% of data
Trainers 8

such as the small sample size. Once more data is available, a
more rigorous model selection strategy will be employed for
a more robust comparison.

IV. RESULTS AND DISCUSSION

A. Existing Models

The popular existing models within the literature are Harris-
Benedict [4] and Mifflin St. Jeor [10]. These are shown as
Equations 1 and 2 for male and female subjects respectively
(Harris-Benedict), and Equations 3 and 4 for male and female
respectively (Mifflin St. Jeor).

f(A,W,H) = −6.755 ∗A+ 13.75 ∗W + 5.003 ∗H + 66.50
(1)

f(A,W,H) = −4.676 ∗A+ 9.563 ∗W + 1.850 ∗H + 655.1
(2)

f(A,W,H) = −5 ∗A+ 10 ∗W + 6.25 ∗H + 5 (3)

f(A,W,H) = −5 ∗A+ 10 ∗W + 6.25 ∗H − 161 (4)

The mean absolute error (MAE) values obtained by these
equations when applied to the data recorded from the post
bariatric surgery patients are found in Table IV. Within this
paper we make no attempt for a rigorous comparison of
the new models to the existing ones as this work focuses
on the generation of linear and nonlinear models fit to post
bariatric surgery patients and their comparison to one another.
Further, the summary results in Table IV clearly show the
new models (discussed below) outperforming the existing ones
on this post bariatric surgery data. A more thorough analysis
and comparison of the new models to the existing will be
performed in future work.

B. Fitting All Data

The first experiment was performed by simply fitting models
to all the data available. This is not ideal since one would want
to validate and test the results, however these results will serve
as a baseline for further experiments. Moreover, the amount
of data currently available is minimal.

TABLE IV: Mean Absolute Error (MAE) values obtained
from the two existing resting energy expenditure models when
applied to post bariatric surgery and MAE values obtained by
two newly generated models for the same data — linear model
(Ordinary Least Squares) and a nonlinear model (Symbolic
Regression).

Model MAE Male MAE Female MAE Combined
Harris-Benedict 495.95 289.46 339.78
Mifflin-St.Jeor 349.50 234.39 262.44

Ordinary Least Squares 169.93 167.00 167.71
Symbolic Regression 135.21 151.06 147.20

The linear model obtained with OLS for the male patients is
presented in Equation 5 and the model for the female patients
is presented in Equation 6.

f(A,W,H) = −13.527 ∗A+ 5.998 ∗W + 10.385 ∗H − 136.31
(5)

f(A,W,H) = −6.16 ∗A+ 9.695 ∗W + 5.27 ∗H − 95.25 (6)

Although 100 nonlinear models were generated for both the
male and female data, only the single top model based on error
was selected. The nonlinear models are not presented here
as they are complex. It should be emphasized that although
the nonlinear models generated with SR are mathematical
expressions and interpretable, especially compared to other
forms of sophisticated computational intelligence techniques,
they are still much more difficult to interpret in comparison
to the simpler linear models.

In addition to the existing models’ results, Table IV shows
the MAE values obtained by the linear and nonlinear models.
The error value in the combined column is the error regardless
of sex. Immediately one can see that the nonlinear models are
more effective at fitting the data, however these results are
likely to be overfit.

Figure 1’s left plot presents a visualization of the error
between the linear model’s predicted REE values and the
measured REE values for each subject. The predicted REE
value is plotted against the measured value. If the predictive
model was perfect, each point would be on the y = x line.

One can visually see that the predictive model is reasonably
accurate, even for the patients with high REE values. The data
points/error values are well distributed above and below the
line, indicating a normal distribution of errors. It does appear
that the patients with very high measured REE values are the
outliers, which is reasonable since there were fewer data points
to fit to with these high values.

Similarly, the right plot in Figure 1 shows the error between
the nonlinear model’s predicted REE value and the measured
REE values for each subject. Similar observations can be made
here as before with the linear models, however the nonlinear
model does appear to be better able to handle the outliers
(patients with high REE values).
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Fig. 1: Scatter plots showing the newly generated OLS model
predicted REE (left) and SR nonlinear model predicted REE
(right) compared to measured REE of post bariatric surgery
patients. Data is separated into male and female.

1) Feature Relationships: In addition to the normally dis-
tributed errors, it is important to ensure that the assumptions
for ordinary least squares are true. Namely, one must that
(a) there are linear relationships between the dependent and
independent variables, and (b) the independent variables are
not linearly related.

Figure 2 shows relationships between the variables for the
male and female patients. Visually, one can see that the
relationships between the independent variables (left plots)
do not seem to be linear. There could be an argument made
for a linear relationship between weight and height, which is
reasonable to assume, however the line is nearly horizontal as
there was minimal variability in height of the patients when
compared to their weights. When investigating the correlation
matrices (right plots), the Pearson correlation between the
weight and height is still low for male (0.02) and medium
for female (0.55).

2) Cross Validation: A simple leave-one-out (LOO) strat-
egy was used to test OLS. The mean training MAE, the mean
validation MAE (LOO), and 95% confidence intervals for the
linear models generated with OLS are presented in Table V.
Column Best Train presents the mean absolute error of the
model with the lowest training error applied to the left out
data, and the column Best LOO is the smallest validation error.

The rows labeled All contain values corresponding to mod-
els generated for patients, regardless of sex (a single model
was made for both sexes, discussed in further detail below).

Given the computational cost of generating the nonlinear
models with symbolic regression, no explicit validation was
performed for the nonlinear models. As outlined in Section
III-B1, the GP system does contain a pseudo validation built
into evolution through the use of fitness predictors. Further,
unlike OLS, symbolic regression does not need LOO for the
purpose of generating a set of potential models since the
algorithm is stochastic.

When investigating the results, one can see that the results
for the linear and nonlinear models are similar, however
conclusions cannot be made after this simple analysis and
proper testing is required.

C. Train, Validate, and Test

Although there are minimal data points, it is important to
perform proper training and testing to better understand the
effectiveness of the new models. For both male and female, the
data was shuffled and 60% of the data was used for training
and the remaining 40% was kept for testing purposes. This
resulted in 17 male patients for training and 12 for testing,
and 54 female patients for training and 36 for testing.

Linear models generated with OLS for the male and female
subjects are presented in Equations 7 and 8 respectively.
Note the similarity in the parameters for the measured patient
weight.

f(A,W,H) = −8.266 ∗A+ 8.527 ∗W + 20.043 ∗H − 2315.633
(7)

f(A,W,H) = −4.121 ∗A+ 8.472 ∗W + 7.584 ∗H − 466.239
(8)

Figure 3 present the model predicted REE and the measured
REE for the linear and nonlinear models. These plots separate
the training data and testing data. By chance, the outlier data
happened to be in the testing data. Unlike before, the non-
linear models did not seem to perform better on the outliers.
Further, one can visually see that the nonlinear model for the
male patients performed poorly on the testing data, which is
understandable given the very few data points available to fit.

Similar to before, Table VI presents summary statistics
of the linear and nonlinear models. The models were fit to
all training data points and then applied to the testing data.
Again, 100 nonlinear models were generated, but the single
top model based on training error was selected. Unsurprisingly,
the nonlinear models fit the training data better than the linear,
but performed poorly on the testing data, which indicates
overfitting. Note however that a large difference between the
training and testing results can be seen with the linear models,
which emphasizes the importance for a more robust model
selection strategy.

1) Cross Validation: For the linear models, LOO validation
was done with the training data. This provides a set of linear
models to choose from, and then we can simply select the top
validated model to apply to the withheld testing data. Table
VII contains summary statistics for the results. The Train and
Val. columns are the average MAE values for all models. Like
the results in Table V, there are no validation results for the
nonlinear models. Again, the model selection strategy was to
select the top performing nonlinear model based on training
data. This simple strategy is expected to overfit the training
data. The Actual Min column is the actual best error obtained
on the testing data by all generated models.

Within Table VII, the linear models did, on average, fit the
training data minimally better than the 100 nonlinear models,
however the best nonlinear models were much better than the
best linear. When looking at the test error, the linear models
performed much better (again, a better selection strategy was
used for the linear models). Lastly, note that there were



age weight height REE

a
g
e

w
e
ig

h
t

h
e
ig

h
t

R
E
E

Pearson Correlation Male

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pe
a
rs

o
n
 C

o
rr

e
la

ti
o
n

40 60 80 100 120 140 160

80

100

120

140

160

180

Age vs. Weight
Age vs. Height
Weight vs. Height

1200 1400 1600 1800 2000 2200 2400
REE

40

60

80

100

120

140

160

180

Male

REE vs. Age
REE vs. Weight
REE vs. Height

age weight height REE

a
g
e

w
e
ig

h
t

h
e
ig

h
t

R
E
E

Pearson Correlation Female

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pe
a
rs

o
n
 C

o
rr

e
la

ti
o
n

25 50 75 100 125 150 175 200 225

50

75

100

125

150

175

200

225
Female

Age vs. Weight
Age vs. Height
Weight vs. Height

1000 1500 2000 2500 3000
REE

25

50

75

100

125

150

175

200

225
Female

REE vs. Age
REE vs. Weight
REE vs. Height

Fig. 2: Visualizations of the linear relationships between the features in the male data (top row) and female data (bottom row).
Left plots each feature against each feature and the axes for each point correspond do the legend (eg. Age vs. Weight (blue)
has Age on the x-axis and Weight y-axie). Middle plot shows the relationship between each feature and measured REE and
y-axis units correspond to the point’s legend (eg. REE vs. Age (blue) has age on the y-axis). Right plot presents the correlation
matrix comparing each feature against each other feature.

TABLE V: Summary statistics of Bootstrapped results (leave one out) for OLS models and summary statistics for SR models.

Model Sex MAE Train 95% CI MAE LOO 95% CI Best Train Best LOO
Ordinary Least Squares Male 169.00 166.91 – 171.10 197.01 146.35 – 247.66 156.82 33.99

Female 166.97 166.63 – 167.32 176.57 145.90 – 207.25 159.94 1.10
All 170.26 170.03 – 170.49 177.16 150.82 – 203.52 165.06 1.42

Symbolic Regression Male 168.67 164.93 – 172.40 125.09
Female 167.03 165.65 – 168.42 148.89

All 172.76 171.43 – 174.09 160.95
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Fig. 3: Scatter plots showing the newly generated OLS model
predicted REE (left) and SR nonlinear model predicted REE
(right) compared to measured REE of post bariatric surgery
patients. Models were fit to training data and applied to
training data and testing data. Data is separated into male and
female for the right plot.

nonlinear models generated that were able to obtain better
errors on the testing data, and perhaps these models could have
been found with a more rigorous model selection strategy for
the nonlinear models.

Applying all 100 nonlinear models generated to the testing
data, the errors obtained were 310.69 with a 95% confidence
interval of 289.25 – 332.13 for the male data and 262.56 with
a 95% confidence interval of 241.236 – 283.88 for the female
data. Models fit to all data, regardless of sex (All row within
Tables V and VII), are discussed in Section IV-D.

D. Combined

Train, validation, and test results are presented in Tables
V and VII for models fit to all the data, regardless of the



TABLE VI: Mean Absolute Error (MAE) values obtained from the two newly generated models for resting energy expenditure
models when applied to post bariatric surgery data.

Male Female Combined
Model Train MAE Test MAE Train MAE Test MAE Train MAE Test MAE

Ordinary Least Squares 162.90 215.83 144.24 197.99 148.701 202.45
Symbolic Regression 108.55 348.02 130.37 216.72 125.15 249.55

TABLE VII: Summary statistics for training, validation, and tested results for the OLS models and training and testing summary
statistics for the SR models.

Model Sex MAE Train 95% CI MAE Val. 95% CI Best Train Error Test Error Actual Min
Ordinary Least Squares Male 161.77 156.63 – 166.92 211.29 133.64 – 288.95 141.02 216.13 177.02

Female 144.08 143.47 – 144.68 155.41 122.47 – 188.35 136.77 198.00 196.21
All 160.94 160.43 – 161.45 173.28 138.49 – 208.07 153.33 196.42 192.51

All M. Feat. 173.29 172.73 – 173.85 200.61 159.36 – 241.88 163.62 166.94 159.13
Symbolic Regression Male 165.26 161.17 – 169.36 108.55 348.02 147.39

Female 142.34 140.97 – 143.71 130.37 216.72 183.03
All 158.95 157.35 – 160.54 140.64 213.25 179.87

All M. Feat. 176.48 174.73 – 178.23 152.96 264.72 159.66

patients’ sex (row All)1. Although the literature has different
models for male and female subjects [1], this experiment was
done to test if it is necessary to have separate models for
post bariatric surgery male and female patients. Note that
although there were 60/40 train/test for both males and females
in the combined data, the results will be biased towards
female patients as there is more data available for them. This
difference is representative of the population, as typically 80%
of individuals who undergo bariatric surgery are female [2].

In Table VII, which contains the properly trained, validated,
and tested results, one can see that these models fit to all data
obtained the best testing error values by a small amount.

The linear Equation 9 is obtained when performing no
validation, and it obtains a training MAE of 161.06 and a
testing MAE of 196.44. An interesting observation here is
the difference in the parameters and intercept in this single
equation when compared to the separate male and female
train test Equations 7 and 8. The weight parameter is not too
dissimilar, however the age becomes more negative, height
becomes smaller, and the intercept is positive.

The top performing nonlinear model on the training data
(not shown) achieved a 140.64 training MAE and 213.25 for
testing. If one were to take all 100 nonlinear models generated
and apply them to the testing data, an average MAE of 214.85
with a 95% confidence interval of 204.93 – 224.77 is obtained.

f(A,W,H) = −10.117 ∗A+ 9.117 ∗W + 4.259 ∗H + 345.364
(9)

Figure 4 presents the linear and nonlinear models’ predicted
REE values against the measured REE values.

Although these models did obtain the best results, it is
expected that this is a consequence of the models being fit
to more data.

1Do note that the data in Tables IV and VI under the Combined column is
different; data under this column is overall average MAE from the male and
female patients combined.
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Fig. 4: Scatter plots showing the newly generated OLS model
predicted REE (left) and SR nonlinear model predicted REE
(right) compared to measured REE of post bariatric surgery
patients. In this experiment, male and female data were
combined and models were fit to training data and applied
to training data and testing data. Data is separated into male
and female for the right plot.

E. Combined With More Features

The reason only age, weight and height were selected was
because these are the features used by the existing models.
Given the success of the models fit to all subjects, and since
more features were included with our data, models fit to all
subjects with more features were created. All features included
in these models were sex, respiration quotient, age, height,
years since surgery, before surgery weight, and current weight.

The linear Equation 10 contains the model obtained when
fit to all training data with no validation. Refer to Table II for
the abbreviations of variables. This model results in a MAE
of 173.38 for the training data and 166.93 on the testing data.

f(S,RQ, Y,A,H,W (B),W (C)) =

−108.0 ∗ S − 234.193 ∗RQ− 5.023 ∗ Y
−9.807 ∗A+ 6.327 ∗H − 0.733 ∗W (B)

+9.032 ∗W (C) + 428.636

(10)

The top performing nonlinear model on the training data
(not shown here) obtained a MAE of 152.96 on the training
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Fig. 5: Scatter plots showing the newly generated OLS model
predicted REE (left) and SR nonlinear model predicted REE
(right) compared to measured REE of post bariatric surgery
patients. In this experiment, male and female data were
combined, more features were included, and models were fit
to training data and applied to training data and testing data.

data and 256.72 on the testing data. The average MAE of the
100 nonlinear models on the testing data is 200.98 with a 95%
confidence interval of 195.69 – 206.27.

Figure 5 presents the models’ predicted REE against the
actual measured REE.

Table VII presents the training, validation, and testing
results in rows All M. Feat. These validated linear models
achieved the best testing results of all models generated. The
nonlinear models performed poorly, which is likely a result of
overfitting the few data points with many features.

1) Feature Analysis: Given the success of the models with
more features, an investigation into the new features was
performed.

When comparing the features’ Pearson correlation, all val-
ues are low and suggest no real linear relationship, except for
weight before surgery and current weight, which had a Pearson
correlation of 0.74.

Figure 6 presents the percentage of the total nonlinear
models generated that contained a given feature. Given that SR
performs feature selection throughout the evolutionary search,
these percentages may provide a proxy for how important a
given feature is in explaining the underlying system. When
investigating these percentages, it is overwhelmingly clear that
age, current weight, and height appear much more often than
the newly included features, which were almost nonexistent.
This observation aligns with the previous models which only
use age, current weight, and height [1].

Although the linear models including the new features
performed well, based on these results from the nonlinear
models, further investigation into the feature importance in
the linear models was performed. LASSO regression was
performed as it attempts to only select a subset of features
to include in the final model.

Figure 7 presents the percentage of the total linear models
generated with LASSO regression when run with an alpha2

value of 500. With an alpha of 1, respiration quotient is the

2The alpha value is a LASSO parameter one can set. By increasing the alpha
value, the regression will become more aggressive in reducing the number of
independent variables in the final model.
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Fig. 6: Percentage of times each feature appeared at least once
within each of the 100 nonlinear models generated with SR.
Note that REE was required to be within the models as it was
the dependent variable.
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Fig. 7: Percentage of times each feature appeared within each
of the LASSO models generated when alpha was set to 500.
Note that REE was required to be within the models as it was
the dependent variable.

only feature that is removed, but as one increases the alpha
value, all of the new features are eliminated and only the
original age, weight, and height are included. This corresponds
to the observations made with the nonlinear models and the
current literature. If one were to increase the alpha value
further, only the current weight remains, which also aligns
with the nonlinear models’ observation of weight being the
most commonly used feature.

Although these LASSO results do not necessarily indicate
that the new features are not important, it is interesting that
they align well with the existing models only containing age,
weight, and height.

V. CONCLUSIONS AND FUTURE WORK

Given the need for new models of REE for post bariatric
surgery patients, a collection of new linear and nonlinear
models were generated. Although no rigorous comparison of
the new models to the existing ones was performed, it was
clear that the new models obtained much smaller error values



for the post bariatric surgery patients. A deeper comparison
of the new models to the existing ones is being prepared for
future work.

The linear models generated outperformed the nonlinear
models on testing data, although the nonlinear models fit
the training data better. This is likely a consequence of
overfitting, the naı̈ve model selection strategy for the nonlinear
models, and the fact that the relationships between the features
appeared to be linear.

A single model for both male and female subjects was
developed to investigate if the post surgery patients require
separate models for the sexes. These models obtained high-
quality results; however, the authors are cautious to make a
case for a single model at this stage as there were very few
data points and the models fit to the data from both sexes had
an unfair advantage as they were fit to more data.

Additional features were incorporated into the models,
namely, sex, respiration quotient, years since surgery, and
weight before surgery. This was done in an attempt to develop
higher quality models and to investigate if the new features
were meaningful for post surgery patients. Ultimately the
models developed with the additional features obtained the
best results. The authors are again cautious to make a case
for the inclusion of these features as there is a current lack
of data points and the proxy measures of feature importance
suggested that the original age, weight, and height features
were the most important.

Although many new models were generated and they all
performed well, the best performing validated and tested
models are presented in Equations 11 and 12 for male and
female patients respectively.

f(A,W,H) = −8.287 ∗A+ 8.537 ∗W + 20.187 ∗H − 2341.120
(11)

f(A,W,H) = −4.128 ∗A+ 8.471 ∗W + 7.584 ∗H − 465.705
(12)

The authors aim to develop more accurate models going for-
ward. The presented results are an improvement over existing
models (Harris-Benedict (Equation 1 and 2) & Mifflin-St. Jeor
(Equation 3 and 4)); however, we are confident that our models
can be improved with additional data. Participants of this study
were at least one year post-surgery. New data should include
data from both pre- and post-bariatric surgery patients. This
would allow for an investigation into the effectiveness of REE
models during the initial weight loss period following surgery
where physiologic adaptations in REE may be occurring.

A deeper comparison between the newly generated and
existing models must be done and a more robust statistical
analysis will be performed in a future investigation. Further,
a comparison between the model parameters may provide
insight into the underlying system. For example, how does
age affect REE in healthy individuals versus individuals pre-
and post-surgery?

This analysis has established that population-specific mod-
els for REE can out-perform traditionally used models, and

that linear modelling techniques using relatively easy to obtain
measures/features can be sufficient for explaining this physi-
ologic phenomenon (REE).

These newly developed REE models require input from
members of a bariatric care team, further analysis of clinically
relevant features (i.e. body composition), and longitudinal
clinical testing before their impact can be fully understood.
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