54 research outputs found

    A developmental study of regeneration in Dugesia tigrina

    Get PDF
    This study was undertaken to determine the source of cells used to regenerate lost body parts in Duqesia tiqrina. Decapitated flatworms were treated with colchicine to arrest cell division after the worms had regenerated for 24, 48, 72, 96, and 120 hours. Histological study and counts of mitotic cells revealed that the cells dividing to rebuild the lost head were cells of the fixed parenchyma and not neoblasts, embryonic free cells of the mesenchyme, as had been assumed by other researchers

    Using scientific evidence to link private and public sectors in the planning process: observations from coffee sector engagement in Nariño, Colombia.

    Get PDF
    Coffee farming is an important source of income for an estimated 40,000 farming families in the Department of Nariño in southwestern Colombia. Nariño is widely recognized as one of the world’s leading origins of fine coffee, as measured by both the subjective preferences of leading specialty coffee companies and the objective standards of Nariño’s Denomination of Origin. Despite the commercial success of Nariño’s coffee in the marketplace, household-level data collected by CRS and CIAT suggest that most of Nariño’s coffee farmers likely live in poverty, and recent investments of public resources to help growers create and capture additional value have not achieved their poverty reduction goals. This policy brief describes how a participatory multi-stakeholder planning process in Nariño’s coffee sector in 2012–2013, facilitated by credible third parties, succeeded in both introducing result-based evidence into the decision-making process and aligning the interests of the public and private sectors and civil society around a shared strategy to increase the sector’s competitiveness. That strategy formed the basis of significant public investment in the coffee sector that involves key actors from the public, private, and non-profit sectors. The process documented here is worthy of careful consideration by policymakers and private-sector firms interested in channeling scarce public resources toward market-responsive poverty reduction investments, development agencies seeking to contribute to lasting impact in the field, and research institutes seeking high-leverage applications of scientific evidence

    Presencia de Glifosato y AMPA en suelos de chacras y aguas en el Alto Valle de Río Negro y Neuquén

    Get PDF
    El Alto Valle Río Negro y Neuquén es la región más importante de Argentina para la producción de peras y manzanas. El clima local es árido, con precipitaciones de 240 mm anuales, déficits de agua disponible para las plantas de 1.200 mm por año y suelos clasificados como Entisoles y Aridisoles. El riego por inundación proporciona aproximadamente 2.500 mm anuales. El control de malezas en el Alto Valle en general consiste en la aplicación de glifosato a lo largo de la hilera de plantación de 0,5 m a ambos lados de la fila de árboles frutales. De esta manera, los suelos aplicados suelen quedar expuestos a las altas temperaturas y a la salinización. El glifosato (N-(fosfonometil) glicina, C3H8NO5P) es un herbicida sistémico que actúa en post emergencia, es no selectivo, de amplio espectro, usado para eliminar malezas que pueden ser gramíneas anuales o perennes, de hoja ancha y especies leñosas. Actúa inhibiendo la síntesis de los aminoácidos aromáticos, interfiriendo así en la ruta metabólica de varias moléculas de importancia para el funcionamiento de las plantas. Es absorbido a través de las hojas y transportado al resto de la planta. El glifosato en el suelo es degradado principalmente por microorganismos a AMPA (ácido aminometilfosfónico, de toxicidad comparable al glifosato) y sarcosina, los metabolitos resultantes de tal biodegradación, y finalmente a agua y dióxido de carbono. El Glifosato (Gly) aplicado es interceptado por las malezas, pero una parte del mismo llega directamente al suelo. Allí permanece retenido por las arcillas y la materia orgánica del suelo, ocupando sitios específicos del fósforo. Los suelos tienen la capacidad de adsorberlo y desorberlo, intercambiando con la solución del suelo las moléculas del herbicida y su metabolito, por lo que una parte del mismo se pierde con el agua de riego llegando al circuito de desagües hasta su destino final. El objetivo de este trabajo de exploración fue detectar la presencia de glifosato y AMPA remanentes en el suelo y el agua.Fil: Holzmann, Rosa de Lima. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; ArgentinaFil: Sheridan, Miguel Mariano. Instituto Nacional Tecnología Agropecuaria (INTA). Centro Regional Patagonia Norte; ArgentinaFil: De Geronimo, Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Aparicio, Virginia Carolina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Costa, José Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentin

    Presencia de Glifosato en suelos y aguas del Alto Valle de Río Negro y Neuquén

    Get PDF
    El Alto Valle de Río Negro y Neuquén es la región más importante de Argentina para la producción de pera y manzana. El clima local es árido, con déficits de agua disponible para los frutales de 1.200 mm por año con suelos clasificados como Entisoles y Aridisoles. El riego generalizado por inundación proporciona aproximadamente 2.000 mm anuales. El control de las malezas consiste en la aplicación de glifosato a lo largo de la hilera de plantación de 0,5 m a ambos lados de los árboles. El objetivo de este trabajo fue detectar la presencia de glifosato y su metabolito, el ácido aminometilfosfónico (AMPA), en agua y suelo. Algunas chacras fueron monitoreadas un año después de la aplicación del herbicida. Se tomaron muestras compuestas de suelo a una profundidad de 0 a 10 cm y también de la banquina del canal principal. El agua de percolación se extrajo de los canales de drenaje hasta su destino final. También se tomaron muestras del agua de riego del canal. La presencia de glifosato y AMPA se corroboró en todas las muestras: en el suelo de la banquina del canal principal, en la franja de aplicación de herbicida en el monte frutal, un año después de la aplicación; y en los sedimentos en canales y desagües. En cuanto a las aguas, y de acuerdo con la Suma de Moléculas Totales de agroquímicos y su nivel permitido por la UE de 0,5 ppm, se encontró que la fuente de agua contenía 0,56 ppm, mientras que en las aguas de drenaje encontramos concentraciones entre 1,5 y 12,21 ppm inmediatamente después de la filtración del suelo y entre 0,49 y 5,0 ppm en canales de drenaje secundarios y finalmente entre 0,5 y 1,4 ppm hacia el destino final. Glifosato y AMPA juntos reunieron entre el 73% y el 99,9% de la Suma de las Moléculas Totales para todos los casos.EEA Alto ValleFil: Holzmann, Rosa de Lima. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; ArgentinaFil: Sheridan, Miguel Mariano. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación y Desarrollo Tecnológico para la Agricultura Familiar Región Patagonia; ArgentinaFil: De Gerónimo, Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina; Argentina.Fil: Aparicio, Virginia Carolina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentin

    Mesozooplankton responses to oceanographic conditions across different scales in Salinas Bay, Northern Pacific coast of Costa Rica during 2011-2013

    Get PDF
    Introducción: El Pacífico Norte de Costa Rica se caracteriza por presentar una variación de la temperatura subsuperficial del mar (TSSM) modulada por vientos superficiales de componente este, con variaciones estacionales e intra-estacional. La TSSM es fundamental para las interacciones de la interfase océano-atmósfera y de gran influencia en los procesos biológicos marinos. Los estudios de zooplancton en el Pacífico Norte son escasos y se han enfocado en la composición, abundancia y biomasa de macro y mesozooplanctonen en Bahía Culebra. No se han realizado trabajos sobre zooplancton al norte del Golfo de Papagayo. Objetivo: Analizar la variación del zooplancton de Bahía Salinas a diferentes escalas como respuesta a condiciones oceanográficas-atmosféricas. Métodos: durante algunos meses de los años 2011, 2012 y 2013, el mesozooplancton fue muestreado en siete estaciones siguiendo un gradiente costero-oceánico para determinar su abundancia, biomasa y composición de la comunidad. Se realizaron lances de CTD en cada estación, y se recopilaron datos horarios de la TSSM desde junio de 2003 a diciembre de 2017. Resultados: La temperatura superficial anual en Bahía Salinas es menor en diciembre-abril con un mínimo secundario en julio y mayor en mayo-junio, y agosto-octubre. Los eventos fríos, neutros y cálidos determinados por anomalías en la TSSM, presentaron una distribución de la temperatura en la columna de agua con estratificación horizontal, de mezcla vertical y homogénea, respectivamente. La distribución espacial del zooplancton no presentó diferencias significativas y la variación del promedio total de abundancia y biomasa mostró un comportamiento similar durante el período de estudio, con menor variación en el primer año en comparación con el segundo, siendo los copépodos la categoría predominante para todas las fechas. A escala estacional no se observó un patrón general de variación entre estación seca y lluviosa y, copépodos y otros grupos del zooplancton fueron las categorías que presentaron diferencias. A escala intra-estacional la abundancia y biomasa presentaron una relación inversa con la TSSM y se vieron afectadas de manera diferencial. Los copépodos y zooplancton gelatinoso se diferenciaron en todos los eventos. Conclusiones: El zooplancton de Bahía de Salinas responde de manera diferencial en las diferentes escalas a las condiciones climáticas que afectan la TSSM de la región. La clasificación de las fechas de muestreo en eventos permite caracterizar diferentes perfiles en la columna de agua, así como permite definer patrones de variación para el mesozooplancton, que refleja la adaptación a corto plazo en función de la variación de las condiciones ambientales. El conocimiento generado ayuda a comprender mejor los fenómenos oceanográficos y su efecto sobre las poblaciones de plancton y la biota en general, especialmente en el escenario de cambio climático y las manifestaciones modernas de su impacto, p. e. la acidificación oceánica y pérdida de biodiversidad marina.Introduction: The North Pacific of Costa Rica is characterized by presenting a variation of the subsurface temperature of the sea (SSST) modulated by surface winds with east component, with seasonal and intra-seasonal variations. The SSST is fundamental for the interactions of the ocean-atmosphere interface and influence marine biological processes. Zooplankton studies in the North Pacific are scarce and have been focused on the composition, abundance and biomass of macro and mesozooplankton in Culebra Bay. No works on zooplankton has been carried out northward of Papagayo Gulf. Objective: To analyze the variation of the zooplankton in Bahía Salinas at different scales in response to oceanographic-atmospheric conditions. Methods: during 2011, 2012 and 2013, mesozooplankton was collected in seven stations following a coastalocean gradient to determine abundance, biomass, and community composition. CTD casts were also carried out in each station. Hourly data of the Sea Subsurface Temperature (SSST) were obtained from June 2003 to December 2017. Results: The annual surface temperature in Bahía Salinas was lower in December-April with a secondary minimum in July and higher in May-June and August-November. The cold, neutral and warm events determined by anomalies in the SSST, presented a distribution of the temperature in the water column with horizontal stratification, vertical mixture and homogeneous, respectively. The spatial distribution of zooplankton did not show significant differences and the variation of the total average abundance and biomass showed a similar behavior during the study period, with less variation in the first year compared to the second one, being the copepods the predominant category for all the dates. On a seasonal scale, a general pattern of variation between dry and rainy seasons was not observed, and copepods and others zooplankton groups were the categories that presented differences. On an intra-seasonal scale, abundance and biomass showed an inverse relationship with SST. Copepods and gelatinous zooplankton (GZ) were differentiated in all events. Conclusions: The zooplankton of Bahía Salinas respond differentially at different scales to the climatic conditions that affect the SSST of the region. The classification of the sampling dates into events allows characterizing different profiles in the water column it also allows to define the variation patterns for mesozooplankton that reflects short-term adaptation as a function of variation in environmental conditions. These findings help to understand how oceanographic processes determine plankton community composition and biota in general. This is relevant in times of climate change and the manifestation of its impact through processes such as ocean acidification and loss of marine biodiversity.Universidad de Costa Rica/[808-B1-194]/UCR/Costa RicaUniversidad de Costa Rica/[805-B9-454]/UCR/Costa RicaUniversidad de Costa Rica/[217-C0-404]/UCR/Costa RicaUniversidad de Costa Rica/[805-C0-610]/UCR/Costa RicaUniversidad de Costa Rica/[EC-497]/UCR/Costa RicaUniversidad de Costa Rica/[805-C0-074]/UCR/Costa RicaUniversidad de Costa Rica/[808-A5-037]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de BiologíaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic

    An integrative identification guide to the Hydrozoa (Cnidaria) of Bocas del Toro, Panama

    Get PDF
    This work is the first attempt to assess the biodiversity of the Hydrozoa in the Archipiélago de Bocas del Toro (Panamá, Caribbean Sea) using morphology and molecular taxonomy, and to produce field identification tools to help future identification and monitoring efforts in the area. We sampled, identified, vouchered, and barcoded 112 specimens of Hydrozoa from shallow coastal waters (0–22 m depth) in the Archipiélago de Bocas del Toro. The specimens belong to 70 taxa, of which 53 were identified at the species level, and 17 were identified at the genus or family level. We produced 64 sequences of the large ribosomal subunit of the mitochondrial RNA (mt lsu-rRNA, 16S), the genetic marker generally used for barcoding Hydrozoa. We updated the local checklist that now comprises 118 species, and produced 87 detailed taxon identification tables that display species descriptions augmented with pictures, geographic distribution (worldwide and in Bocas del Toro), GenBank accession numbers for the 16S mitochondrial gene, and a synopsis of the families they belong to
    corecore