340 research outputs found
Thoracic Gas Volume in Athletes and Non-Athletes
The purpose of this study was to analyze the predicted thoracic gas volume versus measured thoracic gas volume in college students, comparing NCAA collegiate athletes versus non-athletes using the Bod Pod. Forty-four college students, both males and females, athletes and non-athletes, completed a body composition test to obtain the predicted thoracic gas volume. The participants were then instructed by the Bod Pod software through the measured thoracic gas volume test. Due to low statistical power, athletes and non-athletes were unable to be compared, however, results of a two sample t-test showed that there was a statistically significant difference between measured thoracic gas volume and predicted thoracic gas volume within the population as a whole. The average predicted thoracic gas volume was 3.66 liters ± 0.103 while the measured thoracic gas volume was 4.02 liters ± 0.165. The significance level for the test was p ≤ 0.05 and the p-value obtained from the statistical analysis was p ≤ 0.001. It was concluded that within this study, there was a significant difference between the predicted and measured thoracic gas volumes of the population
Suppression of quantum oscillations and the dependence on site energies in electronic excitation transfer in the Fenna-Matthews-Olson trimer
Energy transfer in the photosynthetic complex of the Green Sulfur Bacteria
known as the Fenna-Matthews-Olson (FMO) complex is studied theoretically taking
all three subunits (monomers) of the FMO trimer and the recently found eighth
bacteriochlorophyll (BChl) molecule into account. We find that in all
considered cases there is very little transfer between the monomers. Since it
is believed that the eighth BChl is located near the main light harvesting
antenna we look at the differences in transfer between the situation when BChl
8 is initially excited and the usually considered case when BChl 1 or 6 is
initially excited. We find strong differences in the transfer dynamics, both
qualitatively and quantitatively. When the excited state dynamics is
initialized at site eight of the FMO complex, we see a slow exponential-like
decay of the excitation. This is in contrast to the oscillations and a
relatively fast transfer that occurs when only seven sites or initialization at
sites 1 and 6 is considered. Additionally we show that differences in the
values of the electronic transition energies found in the literature lead to a
large difference in the transfer dynamics
Unconventional Bose-Einstein condensations from spin-orbit coupling
According to the "no-node" theorem, many-body ground state wavefunctions of
conventional Bose-Einstein condensations (BEC) are positive-definite, thus
time-reversal symmetry cannot be spontaneously broken. We find that
multi-component bosons with spin-orbit coupling provide an unconventional type
of BECs beyond this paradigm. We focus on the subtle case of isotropic Rashba
spin-orbit coupling and the spin-independent interaction. In the limit of the
weak confining potential, the condensate wavefunctions are frustrated at the
Hartree-Fock level due to the degeneracy of the Rashba ring. Quantum zero-point
energy selects the spin-spiral type condensate through the
"order-from-disorder" mechanism. In a strong harmonic confining trap, the
condensate spontaneously generates a half-quantum vortex combined with the
skyrmion type of spin texture. In both cases, time-reversal symmetry is
spontaneously broken. These phenomena can be realized in both cold atom systems
with artificial spin-orbit couplings generated from atom-laser interactions and
exciton condensates in semi-conductor systems
Aerogels Based on Graphene Oxide with Addition of Carbon Nanotubes: Synthesis and Properties
Nowadays numerous sorbents based on graphene and other carbon nanomaterials have been synthesized for the removal or collecting of oil remains due to its unique physico-chemical properties. Obtaining of aerogels based on graphene oxide and carbon nanotubes with addition of chitosan solution as a binder component is shown in this paper. Aerogels were synthesized by reduction of aqueous dispersion of graphene oxide using the reducing agents, followed by ultrasonic and thermal treatment. Ultrasound destroys the graphene layers, decreasing them in size, thereby exposing new layers to form edges that already have no stabilizing carboxyl groups, which are located at the edges, and participate in the formation of bonds. The surface morphology of obtained aerogels was studied by SEM. The study of the sorption capacity showed that graphene/CNTs aerogel is characterized by short absorption time and high sorption ability that depend on densities of the used solvents. All experimental results show the possibility of using the aerogels based on graphene and CNTs as sorbents for collection of oil residues
The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth
HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel
Pre-ribosomal particles evolve in the nucleus through transient interaction with biogenesis factors, before export to the cytoplasm. Here, we report the architecture of the late pre-60S particle purified from Saccharomyces cerevisiae through Arx1, a nuclear export factor with structural homology to methionine aminopeptidases, or its binding partner Alb1. Cryo-electron microscopy reconstruction of the Arx1-particle at 11.9 Å resolution reveals regions of extra densities on the pre-60S particle attributed to associated biogenesis factors, confirming the immature state of the nascent subunit. One of these densities could be unambiguously assigned to Arx1. Immuno-electron microscopy and UV cross-linking localize Arx1 close to the ribosomal exit tunnel in direct contact with ES27, a highly dynamic eukaryotic rRNA expansion segment. The binding of Arx1 at the exit tunnel may position this export factor to prevent premature recruitment of ribosome-associated factors active during translation
Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors
Type 2 internal ribosomal entry sites (IRESs) of encephalomyocarditis virus (EMCV), foot-and-mouth disease virus (FMDV) and other picornaviruses comprise five major domains H-L. Initiation of translation on these IRESs begins with specific binding of the central domain of initiation factor, eIF4G to the J-K domains, which is stimulated by eIF4A. eIF4G/eIF4A then restructure the region of ribosomal attachment on the IRES and promote recruitment of ribosomal 43S pre-initiation complexes. In addition to canonical translation factors, type 2 IRESs also require IRES trans-acting factors (ITAFs) that are hypothesized to stabilize the optimal IRES conformation that supports efficient ribosomal recruitment: the EMCV IRES is stimulated by pyrimidine tract binding protein (PTB), whereas the FMDV IRES requires PTB and ITAF45. To test this hypothesis, we assessed the effect of ITAFs on the conformations of EMCV and FMDV IRESs by comparing their influence on hydroxyl radical cleavage of these IRESs from the central domain of eIF4G. The observed changes in cleavage patterns suggest that cognate ITAFs promote similar conformational changes that are consistent with adoption by the IRESs of comparable, more compact structures, in which domain J undergoes local conformational changes and is brought into closer proximity to the base of domain I
Recommended from our members
Detecting and Quantifying Lewisite Degradation Products in Environmental Samples Using Arsenic Speciation
This report describes a unique method for identifying and quantifying lewisite degradation products using arsenic (III) and arsenic (IV) speciation in solids and in solutions. Gas chromatographic methods, as well as high-performance liquid chromatographic methods are described for separation of arsenic species. Inductively coupled plasma-mass spectrographic methods are presented for the detection of arsenic
- …