35 research outputs found

    Intravaginal Practices, Vaginal Infections and HIV Acquisition: Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Intravaginal practices are commonly used by women to manage their vaginal health and sexual life. These practices could, however, affect intravaginal mucosal integrity. The objectives of this study were to examine evidence for associations between: intravaginal practices and acquisition of HIV infection; intravaginal practices and vaginal infections; and vaginal infections and HIV acquisition. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a systematic review of prospective longitudinal studies, searching 15 electronic databases of journals and abstracts from two international conferences to 31(st) January 2008. Relevant articles were selected and data extracted in duplicate. Results were examined visually in forest plots and combined using random effects meta-analysis where appropriate. Of 2120 unique references we included 22 publications from 15 different studies in sub-Saharan Africa and the USA. Seven publications from five studies examined a range of intravaginal practices and HIV infection. No specific vaginal practices showed a protective effect against HIV or vaginal infections. Insertion of products for sex was associated with HIV in unadjusted analyses; only one study gave an adjusted estimate, which showed no association (hazard ratio 1.09, 95% confidence interval, CI 0.71, 1.67). HIV incidence was higher in women reporting intravaginal cleansing but confidence intervals were wide and heterogeneity high (adjusted hazard ratio 1.88, 95%CI 0.53, 6.69, I(2) 83.2%). HIV incidence was higher in women with bacterial vaginosis (adjusted effect 1.57, 95%CI 1.26, 1.94, I(2) 19.0%) and Trichomonas vaginalis (adjusted effect 1.64, 95%CI 1.28, 2.09, I(2) 0.0%). CONCLUSIONS/SIGNIFICANCE: A pathway linking intravaginal cleaning practices with vaginal infections that increase susceptibility to HIV infection is plausible but conclusive evidence is lacking. Intravaginal practices do not appear to protect women from vaginal infections or HIV and some might be harmful

    Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.

    Get PDF
    BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario

    Cancer data quality and harmonization in Europe: the experience of the BENCHISTA Project – international benchmarking of childhood cancer survival by stage

    Get PDF
    IntroductionVariation in stage at diagnosis of childhood cancers (CC) may explain differences in survival rates observed across geographical regions. The BENCHISTA project aims to understand these differences and to encourage the application of the Toronto Staging Guidelines (TG) by Population-Based Cancer Registries (PBCRs) to the most common solid paediatric cancers.MethodsPBCRs within and outside Europe were invited to participate and identify all cases of Neuroblastoma, Wilms Tumour, Medulloblastoma, Ewing Sarcoma, Rhabdomyosarcoma and Osteosarcoma diagnosed in a consecutive three-year period (2014-2017) and apply TG at diagnosis. Other non-stage prognostic factors, treatment, progression/recurrence, and cause of death information were collected as optional variables. A minimum of three-year follow-up was required. To standardise TG application by PBCRs, on-line workshops led by six tumour-specific clinical experts were held. To understand the role of data availability and quality, a survey focused on data collection/sharing processes and a quality assurance exercise were generated. To support data harmonization and query resolution a dedicated email and a question-and-answers bank were created.Results67 PBCRs from 28 countries participated and provided a maximally de-personalized, patient-level dataset. For 26 PBCRs, data format and ethical approval obtained by the two sponsoring institutions (UCL and INT) was sufficient for data sharing. 41 participating PBCRs required a Data Transfer Agreement (DTA) to comply with data protection regulations. Due to heterogeneity found in legal aspects, 18 months were spent on finalizing the DTA. The data collection survey was answered by 68 respondents from 63 PBCRs; 44% of them confirmed the ability to re-consult a clinician in cases where stage ascertainment was difficult/uncertain. Of the total participating PBCRs, 75% completed the staging quality assurance exercise, with a median correct answer proportion of 92% [range: 70% (rhabdomyosarcoma) to 100% (Wilms tumour)].ConclusionDifferences in interpretation and processes required to harmonize general data protection regulations across countries were encountered causing delays in data transfer. Despite challenges, the BENCHISTA Project has established a large collaboration between PBCRs and clinicians to collect detailed and standardised TG at a population-level enhancing the understanding of the reasons for variation in overall survival rates for CC, stimulate research and improve national/regional child health plans

    Worldwide trends in population-based survival for children, adolescents, and young adults diagnosed with leukaemia, by subtype, during 2000–14 (CONCORD-3) : analysis of individual data from 258 cancer registries in 61 countries

    Get PDF
    Background Leukaemias comprise a heterogenous group of haematological malignancies. In CONCORD-3, we analysed data for children (aged 0–14 years) and adults (aged 15–99 years) diagnosed with a haematological malignancy during 2000–14 in 61 countries. Here, we aimed to examine worldwide trends in survival from leukaemia, by age and morphology, in young patients (aged 0–24 years). Methods We analysed data from 258 population-based cancer registries in 61 countries participating in CONCORD-3 that submitted data on patients diagnosed with leukaemia. We grouped patients by age as children (0–14 years), adolescents (15–19 years), and young adults (20–24 years). We categorised leukaemia subtypes according to the International Classification of Childhood Cancer (ICCC-3), updated with International Classification of Diseases for Oncology, third edition (ICD-O-3) codes. We estimated 5-year net survival by age and morphology, with 95% CIs, using the non-parametric Pohar-Perme estimator. To control for background mortality, we used life tables by country or region, single year of age, single calendar year and sex, and, where possible, by race or ethnicity. All-age survival estimates were standardised to the marginal distribution of young people with leukaemia included in the analysis. Findings 164563 young people were included in this analysis: 121328 (73·7%) children, 22963 (14·0%) adolescents, and 20272 (12·3%) young adults. In 2010–14, the most common subtypes were lymphoid leukaemia (28205 [68·2%] patients) and acute myeloid leukaemia (7863 [19·0%] patients). Age-standardised 5-year net survival in children, adolescents, and young adults for all leukaemias combined during 2010–14 varied widely, ranging from 46% in Mexico to more than 85% in Canada, Cyprus, Belgium, Denmark, Finland, and Australia. Individuals with lymphoid leukaemia had better age-standardised survival (from 43% in Ecuador to ≥80% in parts of Europe, North America, Oceania, and Asia) than those with acute myeloid leukaemia (from 32% in Peru to ≥70% in most high-income countries in Europe, North America, and Oceania). Throughout 2000–14, survival from all leukaemias combined remained consistently higher for children than adolescents and young adults, and minimal improvement was seen for adolescents and young adults in most countries. Interpretation This study offers the first worldwide picture of population-based survival from leukaemia in children, adolescents, and young adults. Adolescents and young adults diagnosed with leukaemia continue to have lower survival than children. Trends in survival from leukaemia for adolescents and young adults are important indicators of the quality of cancer management in this age group.peer-reviewe

    Cohort study of trials submitted to ethics committee identified discrepant reporting of outcomes in publications

    No full text
    OBJECTIVES To identify factors associated with discrepant outcome reporting in randomized drug trials. STUDY DESIGN AND SETTING Cohort study of protocols submitted to a Swiss ethics committee 1988-1998: 227 protocols and amendments were compared with 333 matching articles published during 1990-2008. Discrepant reporting was defined as addition, omission, or reclassification of outcomes. RESULTS Overall, 870 of 2,966 unique outcomes were reported discrepantly (29.3%). Among protocol-defined primary outcomes, 6.9% were not reported (19 of 274), whereas 10.4% of reported outcomes (30 of 288) were not defined in the protocol. Corresponding percentages for secondary outcomes were 19.0% (284 of 1,495) and 14.1% (334 of 2,375). Discrepant reporting was more likely if P values were <0.05 compared with P ≥ 0.05 [adjusted odds ratio (aOR): 1.38; 95% confidence interval (CI): 1.07, 1.78], more likely for efficacy compared with harm outcomes (aOR: 2.99; 95% CI: 2.08, 4.30) and more likely for composite than for single outcomes (aOR: 1.48; 95% CI: 1.00, 2.20). Cardiology (aOR: 2.34; 95% CI: 1.44, 3.79) and infectious diseases (aOR: 1.77; 95% CI: 1.01, 3.13) had more discrepancies compared with all specialties combined. CONCLUSION Discrepant reporting was associated with statistical significance of results, type of outcome, and specialty area. Trial protocols should be made freely available, and the publications should describe and justify any changes made to protocol-defined outcomes

    Temporal trends in incidence of childhood cancer in Switzerland, 1985-2014.

    Get PDF
    BACKGROUND Incidence of childhood cancer increased in most countries worldwide, but reasons are unclear. This study investigates trends of childhood cancer incidence in Switzerland from 1985 to 2014. METHODS We extracted data on all childhood cancer cases diagnosed at ages 0-14 years in Switzerland from the Swiss Childhood Cancer Registry. We included ICCC-3 main groups I-XII and calculated age-standardised, cumulative, and age-specific incidence for different diagnostic groups. We analysed trends of annual age-standardised incidence using JoinPoint regression models. RESULTS Over the study period from 1985 to 2014, 5104 of 5486 cancer diagnoses (93%) were microscopically verified. The proportion of children treated in paediatric cancer centres increased from 84% during 1985-1994 to 93% in 1995-2004 and 98% in 2005-2014 (p < 0.001). Using the World standard population, age-standardised incidence was 143 in 1985-1994, 154 in 1995-2004, and 162 per million in 2005-2014. Incidence increased by 0.7% (95% confidence interval (CI) 0.5; 1.0) per year for all cancers from 1985 to 2014, 0.8% (95% CI 0.2%-1.4%) for leukaemias over the same period, 3.0% (95% CI 0.2%-1.4%) for CNS tumours during 1985-2002, and 3.8% (95% CI 1.7%-6.0%) for epithelial neoplasms and melanomas over the period 1985-2014. CONCLUSION Trends in incidence were driven mostly by increases among leukaemias and CNS tumours. For CNS tumours, observed trends may be explained at least partially by diagnostic changes and improved registration. For leukaemias, rising incidence may be real and due to risk factors that experience similar increases in trends
    corecore