943 research outputs found

    75 Years of India's Independence and 80 Years of CSIR

    Get PDF
    38-44The 75th year of Indian independence is even more special to CSIR because CSIR enters its 80 years of gloriously serving the Indian society through S&T interventions

    Berry curvature induced anomalous Hall conductivity in the magnetic topological oxide double perovskite Sr<sub>2</sub>FeMoO<sub>6</sub>

    Get PDF
    Oxide materials exhibit several structural, magnetic, and electronic properties. Their stability under ambient conditions, easy synthesis, and high transition temperatures provide such systems with an ideal ground for realizing topological properties and real-life technological applications. However, experimental evidence of topological states in oxide materials is rare. In this paper, we have synthesized single crystals of oxide double perovskite Sr2FeMoO6 and revealed its topological nature by investigating its structural, magnetic, and electronic properties. We observed that the system crystallized in the cubic space group Fm3¯m, which is a half-metallic ferromagnet. Transport measurements show an anomalous Hall effect (AHE), and it is evident that the Hall contribution originates from the Berry curvature. Assuming a shift of the Fermi energy toward the conduction band, the contribution of the AHE is enhanced owing to the presence of a gapped nodal line. This paper can be used to explore and realize the topological properties of bulk oxide systems. © 2022 authors. Published by the American Physical Society

    Hypergraph model of social tagging networks

    Full text link
    The past few years have witnessed the great success of a new family of paradigms, so-called folksonomy, which allows users to freely associate tags to resources and efficiently manage them. In order to uncover the underlying structures and user behaviors in folksonomy, in this paper, we propose an evolutionary hypergrah model to explain the emerging statistical properties. The present model introduces a novel mechanism that one can not only assign tags to resources, but also retrieve resources via collaborative tags. We then compare the model with a real-world dataset: \emph{Del.icio.us}. Indeed, the present model shows considerable agreement with the empirical data in following aspects: power-law hyperdegree distributions, negtive correlation between clustering coefficients and hyperdegrees, and small average distances. Furthermore, the model indicates that most tagging behaviors are motivated by labeling tags to resources, and tags play a significant role in effectively retrieving interesting resources and making acquaintance with congenial friends. The proposed model may shed some light on the in-depth understanding of the structure and function of folksonomy.Comment: 7 pages,7 figures, 32 reference

    Project development teams: a novel mechanism for accelerating translational research

    Get PDF
    The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators.Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds

    Review of the mathematical foundations of data fusion techniques in surface metrology

    Get PDF
    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed

    Origin of entropy convergence in hydrophobic hydration and protein folding

    Get PDF
    An information theory model is used to construct a molecular explanation why hydrophobic solvation entropies measured in calorimetry of protein unfolding converge at a common temperature. The entropy convergence follows from the weak temperature dependence of occupancy fluctuations for molecular-scale volumes in water. The macroscopic expression of the contrasting entropic behavior between water and common organic solvents is the relative temperature insensitivity of the water isothermal compressibility. The information theory model provides a quantitative description of small molecule hydration and predicts a negative entropy at convergence. Interpretations of entropic contributions to protein folding should account for this result.Comment: Phys. Rev. Letts. (in press 1996), 3 pages, 3 figure
    • …
    corecore