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Abstract

The recent proliferation of engineered surfaces, including freefordh structured surfaces, is challenging current
metrology techniques. Measurement using multiple sensors has beesqutdo achieve enhanced benefits, mainly in
terms of spatial frequency bandwidth, which a single sensor tanomide. When using data from different sensors, a
process of data fusion is required and there is much active researchaire#hitn this paper, current data fusion methods
and applications are reviewed, with a focus on the mathematical foursdafitre subject. Common research questions
in the fusion of surface metrology data are raised and potential fusigithaigoare discussed.

Keywords: surface metrology, data fusion, multiple sensors
1. Introduction

Multi-sensor data fusion is currently one of the considered solutions for the measurement of freefogim and hi
dynamic range structured surfaces. A comprehensive review of the application of datadokniques in
dimensional metrology has been published elsewhere [1], but excluded some importach resdaon the
development of fusion algorithms for surface metrology. The review presented hete diencomplimentary

to the previous published work.

1.1.Background

Currently, structured and freeform surfaces, which are engineered for a vhfietgtional uses in different
disciplines, are under development for many applicatj@r$. Typical examples include diverse freeform
structures [5,6], and structured sudasuch as friction-resistant feature arrays, broad spectrum absorption
surfaces and self-cleaning surfaces, which are engineered with repetitive stroisttliesmicro-/nano-scale

[7]. Such surfaces need full 3D characterisation (often referred to as “holistic measurement” [1]) with
relatively large sensing areas and high resolutions, which challenges currentemeasuechniques. For
example, the 3D freeform sculpture surfaces presented in [8] cannot be @&dbured in any acceptable
amount of time using any of the instruments covered in current ISO specification standards [9].

1.2.The proposal and the objectives

All types of surface measuring instrumenvéadvantages and disadvantages [1]. For example, tactile co-
ordinate measuring machines (CMMs) are regarded as the most accurate instanrmeatro-scale 3D
measurement; however, they are expensive and it is time-consuming to obtain higtere8@ scanning
data even for a relatively simple object. Instruments designed to measure surfacs fextexample,
coherence scanning interferometers (CSlIs), have high axial resolution; howevargtioejyy suitable for the
measurement of topography on the micro- to nano-scales. A full measurementuctwedrsurface using
CSI can require thousands of individual measurements of different areas.cémgyuted tomography is
capable of measuring complex 3D structures; however, the measurement accuracy is normally low [10].

The combined use of different sensors can maximise the advantages of individubautaoloid some of the
disadvantages. Simple integration of multiple sensors in one system withalt@ohbination of data is an
initial step towards this objective. For example, the Leica DCM8 surface owtralystem integrates
interferometry and focus variation microscopy to increase the versatilitye dfysdtem [11]. WITec GmbH



integrates confocal Raman microscopy, atomic force microscopy and scanning near-feldnuiptioscopy
into a versatile system which is capable of increasing the speed of the measurement iddagmples [12].

Data fusion, which integrates multiple datasets from different sources folied unitput, is a further step to
the sensor integration techniques described above. The aim of data fusion ibittedbim advantages of the
data from different sensors so that the fused data has improved quality or usafafityhat from any
individual datasets. The benefits of data fusion usually include improved measuretieditity and
information completeness (for example, with larger measuring range coveraggher sample resolution)
[13]. In surface metrology, the potential benefits of data fusion specifically include any of dvarigtl

1. increased spatial coverage or measuring range;

2. increased sample density or resolution;

3. improved reliability or fidelity, i.e. improved accuracy with improved robustness to sensory and
algorithmic uncertainty;

4. reduced measuring duration; and

5. reduced data size.

1.3. Definitions

Data fusion has been used for data manipulation since the 1960s [14]. Data dasigad wide attention
from the US defence sector, where the definition of data fusion and related tegiemowere first
standardised [15] in 1991 by the Joint Directors of Laboratories of the dp&rfinent of Defence. In this
“Data Fusion Lexicon” [15], data fusion is defined as a “process dealing with the association, correlation and
combination of data and information from single or multiple sources to actoeve improved estimation or
assessmerits

The definition of data fusion in different disciplines varies [16]. Irfazgr or dimensional metrology, the
development of data fusion is still at an early stage. The data obtained in swefealegy is a type of spatial
data [17]. Fusion of spatial data has specific characteristics, in contrabetdypes of data, such as time-
series, colour and acoustic data. For example, different surface measurement datdbeemhverted to a
common format for combination, such as images with the same resolution,cfmids, statistical or
functional models. Therefore, data fusion in surface or dimensional metrology is defined as [1]

The process of combining data from several infoiomasources (sensors) into a common representdtiona
format in order that the metrological evaluatiom ceenefit from all available sensor information atada.

1.4.Fusion levels

The spatial data used in surface metrology can be fused at different leveldinmtiie signal level, feature
level and decision level [1,18]. The signal level is the elementary fusion level in whicipthelata are fused

in their original form. The feature level is an intermediate fusion lievelhich signal descriptors are fused.
The decision level is the highest fusion level in which the decisions (for exangdsification results) from
individual measurements are fused. Fusion on higher levels can be more efficient, betmmarg restrained
for a specialised purpose. In surface metrology, fusion at the signal lesabi/uhe most common situation.
For example, fusion of AFM and CSI range images is carried out at a pixel (sigrehl]18} However,
advanced fusion algorithms or solutions for surface metrology data could be developed at other @ision lev

1.5. Classifications
The sensor configuration determines the relationship between the individasdtdaDifferent relationships
determine the manner in which fusion is applied [20]. The following fasioh classifications are applied in

current surface measurement applications.

1) Fusion across sensors



The data comes effectively from multiple sensors or repeated meastgdwith a single sensor) measuring

the same attribute (for example, surface topography) of an object. Often redundancy in the data willbbe used t
reduce error. Data from different sources in this class of fusion are homogene@xsnipte, the datasets

have the same resolution, uncertainty and measuring ranges.

2) Fusion across attributes

The input data corresponds to different attributes of the same object andohawdused according to a
relational model, taking into account the physical nature of the attributeajrniag complete a picture as
possible of the object from its component attributes. For example, given diffdtrdsutes of a surface, such
as surface roughness, hardness and heat transfer coefficients, a multiaraigsis [21] of the information
may find relational models between the attributes which can guide the control of the attributes in #seproce
of design and manufacture.

3) Fusion across domains

Data acquired at different scales, ranges or domains are fused to give a egicplee of the same object.
Measurement results in different domains may include the measured range imagesbgct at different
measuring scales, ranges, viewpoints and exposure conditions. Sometimes, the informatidonmaiimef

light intensity or colour is fused with the spatial information of an obfaasion across domains is the most
common case of data fusion used when measuring surface geometry, includied)-th@wn “sub-aperture
stitching” for large area surfaces [22]. The source data used for fusion can be homogeneous (for example,
same-resolution range images captured at different positions), or inhomogefoeaaiple, data from a

CSl and a tactile system, computed tomography, or even non-geometry measurement tools).

4) Fusion across time

In this class of fusion, the data obtained from the same single or multiglerset different times are fused
using a Kalman filter [23]. For example, a sensor detects a series of observatibassame surface at
different times, and then a recursive fusion of the observation results eaangaweraged estimation of the
“real” surface geometry.

Among these classes of fusion, fusion across domains is the most generahsituatirface metrology but
the algorithms for this class of fusion have not been well developed.

In the following sections, the existing applications of data fusion in surface mgtanedriefly reviewed.
Then the common issues in general fusion activities for surface metrologysemssaid. Finally, the fusion
algorithms themselves are reviewed.

2. Existing data (sensor) fusion applications
2.1.Image fusion for dimensional information

Image fusion has been used for many years in signal processing and is acgguaail data fusion. In surface
metrology, fusion of grey-scale or full colour images, such as fringe imagyesed with the majority of
instruments for measuring surface topography. For example, most topography instrurseatsrbaptical
methods [24] use a single sensor to successively capture individual images and dbetnine present the
dimensional information for an object. Other applications of image fusiodifhensional metrology include
shape from shading, photogrammetry, fringe (structured light) projection systehteflectometry [1]. Due
to the difference in sensing principles and sensor configurations, the flgionthms applied to each
measuring systems differ. It is, therefore, not possible to describe thesediatgorithms in a common
framework. In other words, research on image fusion algorithms for diffee@stng approaches cannot be
inductively used to develop new fusion algorithms.

3



This section gives three typical examples of image fusion to give dimensidoahation in surface
metrology. More examples of image fusion for surface and dimensional metrology caméelgewhere [1].

1) Focus variation systems

Focus variation systems [24-26] were developed to achieve topography measurememipo$uhfaces of an

object by searching for the best focus position at each point on a sample. AsisHéigure 1, a series of
images related to different depths are firstly obtained. Focus seaishimgn performed to find the focus
depth for each pixel position and then a 3D rendering of the surface geometry is exlclite core

algorithm in this image fusion case searches for the focus positi@ttapeel positiorin the image stack,

which has the highest contrast ratio when compared to its neighbouring pixels.

array detector
lenses
white light source
beam splitter
objective
specimen
vertical scan
focus curve
. light beam
el 10. analyser

11. polarizer

12. ring light

©CeNoO~wNE

Figure 1.Schematic diagram of a typical focus variation system [26].

2) Coherence scanning interferometry

Another application of image fusion can be found in CSI systems [24,2Fig8fe 2a presents how the
fringe images differ at different scanning positions onztagis for a typical CSI system. At a specific pixel
position in the image, the irradiance received by the camera varies as an emalepdepending on the
scanning positions on theaxis (see Figure 2b). Usually, tkescanning position which corresponds to the
strongest irradiance can be inferred as the surface height or depth. Theitaageofusion for CSl is to find
the peak or centre position of the irradiance signal received at each pixelnpagiten a stack of fringe
images acquired at differeatpositions. Different peak/centre searching methods (fusion algorithme) ha
been developed (for example, [29,30]) for the CSI image fusion process.



OO

Pixels in a row X

Axial translation

(b)
Figure 2. The CSI working principle. (a) Fringe images observedcarnvad surface. (b) Irradiance signal observed for each pixel
position against the scanning positions onzthgis [28].

3) Computed tomography

X-ray computed tomography (XCT) is increasingly being applied for non-desgu@D surface
measurement in engineering with an uncertainty down to micrometres [31,32]. Arsys§&m radiates X-
rays in a cone or parallel form through the object and detects the attenuagetigramages (radiographs).
By exposing the object from different directions, a stack of 2D imagesbémted which are then fused to
reconstruct [33] the volumetric information about the object (see Figure 3)u3iba flgorithms for XCT are
often based on Radon backprojection, but see elsewhere for a short review rehtdiféeonstruction

algorithms [32].

Tomographic reconstruction

[1«-;}{( -

Reconstructed CT Slice

X-Ray Detector

CT Workpiece on Rotary Table

X-Ray Source

Figure 3. The working mechanism of a XCT system (courtesy of [RPj.
2.2.Computed visual fusion

Computed visual fusion is a process of applying visual sensors (such as vidsas)aamd geometrical
measurement sensors to achieve automated measurement with the assistance of conspalefgsidh
provides the potential for automated manufacture and measurement in engineering. Fog, exanggn
system based on video cameras can provide a preview or approximate contour knowledge alject and
then intelligent sampling using CMMs or other sensors for features of intarebe conducted in an efficient

manner. Much researclasibeen conducted for automated CMM metrology [34-37]. AFM systems have also

recently been integrated with vision systems to achieve automatic, fast and large area repts[8&/89].

It should be nad that the data from vision systems and geometrical measurement systems areaused
temporal sequence. The final output of such fusion systems is generated fismtelyhe geometrical
measurement sensors. In other words, it is an elementary sensor fusion rather thasioathat occurs in
visual fusion cases.



2.3. Spatial data fusion
1) Repeated measurements

Using repeated measurements is well-known as a statistical method to reduoacéhniinty of a
measurement. In surface or dimensional metrology, repeated measurements are widely used. For example, in
CSl, a sequence of measurement data from the same sensor can be obtained and averaged tisimggithe ari
mean (or weighted mean). If each individual data set has random noise or oefacesd by uncertain
environmental conditions, for example temperature, air flow, illumination, wloraind electromagnetic
disturbances, the mean output can be provided with higher reliability (loveertainty) [40]. Figure 4 shows

the effect of a simple mean-based fusion for two noisy datasets acquired from a step signal.

In some fusion situations, the measuring environment can be manually altered to obtain differentinagult
can compensate each other. For example, by altering the lighting conditions, a sspfame can have
different measurement results under the same CSI system [41]. Figure 5 pfeseatsiltant measurement
data under different light settings. The lower light level result bd data acquired at the flat regiom. the
sphere top and the base, but has missing data at theethddigions. The higher light level result presents
complementary data. An appropriate combination of the datasets can produce a ttesulanger number of
valid sample pointg,e. higher information completeness. Figure 5c¢ presentsasfuged result by combining
the two image datasets in a point-wise manner using the maximum sample value.
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Figure 5. Individual measurement data of a sphere surface unée(®5and 35 % (b) light intensity settings, and the fused result (c)
[41].

2) Stitching

Stitching of surface measurement data has been used in interferometry since the 1990s [22,42};mcal is a t
case of data fusion. A large area surface can often not be measured by it&rfgl@gram. Therefore,
stitching of sub-aperture imagesgive a larger measuring area is an obvious solution. Figure 6 is a schema of
a typical stitching interferometer. Stitching can be applied to most existing sugalce topography
instruments [9], such as AFM, confocal microscopy or focus variation microscopy.

Stitching relies on a calibrated high-accuracy translation stage which is able to centatdthl movement of

the sample at an accuracy level far below the pixel width. If the transttiga lacks control accuracy, the
stitching is inexact and extra pre-stitching processes [43] (for example, steatémn on the lateral plane or
resampling) are needed, which increases the operational complexity. Aftegthsitan of a sequence of

sub-aperture measurements at different regions, stitching is implemented.

Interferometer

y Translation stage

|

Figure 6. Sketch ad simple sub-aperture stitching interferometer.

A typical stitching algorithm includes registration in three degrees-of-freedomeln tip, tilt and piston [22]
followed by a point-wise fusion process. The registration process superimposes fegtsatofeach dataset
on lower or higher orders [44], so that every individual spatial dataset ciEst@bed in the same coordinate
system following the assumption:

Zrer (x,7) = 2(x,y) + Py B + &, 1)

wherez(x, y) is the vector of original sample values of an individual samplezsg{x, y) is the vector of
sample values of the same sample set but linearly transformed into theceefaverdinate systend,,, is the

stitching error modelling matrix anflis the stitching parameter vecterN(0,02I). The main task of
stitching algorithms is to estimafefor each individual sub-aperture measurement. Therefore, fiven
{1,2, ..., K} sub-aperture images.x, by setting one as the reference, for examglg, estimation of the
stitching parameteBy.k r«n becomes the following minimisation problem

7



B= argminz Z”Zm/’ + PiniBi — Zjni — *D,-nilfjll; (2

ieK jeK

wherey = 0, ®;n; = P;,; andz;,; denotes the vector afdata of thei™ image corresponding to thH8
image. Once the registration process ends, fusion is implemented by simply hakarghtmetic mean of the
sample values from each individual dataset at each overlapping position.

100
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0 0
(a) Nine independent sub-aperture measurements (randomly colouvestiéd discrimination) (unit: pm).
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(b) The stitching result.
Figure 7. Stitching of nine sub-aperture measurements for anlagtipgunit: pm).

In Figure 7, an example of stitching for nine sub-aperture measurements is presetiedexample, an
initial sub-aperture measurement in nine local regioastaken on an optical chip surface [45]. By using the
near-origin local measurement in Figure 7a as the reference, the remainingatéglets are registered and
the fused result presents a usable measurement.



3) Range image fusion

Range image fusion, which deals with the fusion of resolution-inhomogeneous insagasextension of
general stitching. In range image fusion, the images to be fused can beéh&asame instrument with
different (or the same) sensors, or from different instruments. Because ish€ro natural point-pair
correspondence between overlapping datasets, a cross-resolution image registratidm adgnati fusion
algorithm need to be developed.

Research into range image fusion is limited, but see recent work by Ranetsain$9,46] In Ramasamy’s
framework, the inhomogeneous images are first resampled under the same sampling cortuitigrastwo-
stage registration process is carried out: an initial coarse matchied) dmashe sum of absolute differences or
normalised cross-correlation [47], and a fine registration based on an iterativ ptmwse algorithm [48]. In
the fusion process, because input datasets usually have different uncertaintprmation richness
(measurement bandwidths), a weighted mean is normally taken. Ramasamy introducedesyghtiagw
methods from image processing techniques, including the regional energy [49], regigaahtensity [50]
and the combination of wavelet coefficients and local gradients [51]. However, untggrtapagation based
on these weighting methods is currently unclear.

Theoretically, the choice of proper weights relies on the measurement uniesrtafreach instrument. For
example, given multiple images to be fused, afmd liave standard measurement uncertaiotjes,, ..., g,
an optimal design of weights= [a,, a,, ..., a,]” should minimise the standard uncertainty of the fusion
result,i.e.

argmin, o = a’Va, ubjected td|al|; = 1, a € [0,1],,, (3)

where,V = diag(o?, 0%, ..., 52). Therefore, the optimised weights for individual images can be calculated as

G'iz ZL' (4)

Under optimal weighting, the fusion result can always provide reduced uncertainty as

. 2 1
minorg = 1. (5)

™M
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In practice, the measurement uncertainty of individual images is usually unknawacourate, especially
when resampling is implemented in pre-processes [19,46], therefore, the theorefbaldegign may not be
optimal.

4) Point cloud fusion

Point cloud fusion includes the fusion of spatial data in point cloud formghvdain be widely found in
statistical analysis [52]. Because any other spatial data forms can besméguleis point cloud forms, point
cloud fusion is becomingn important research topic in surface metrology, especially in dimensional
metrology [1]. Surface measurement data in point cloud forms can normally be found orsy3tévhs or
other dimensional metrological systems. Unlike images, which have regidadaja forms and can be
efficiently modelled by tensor-product models, point cloud data usually needs rglatioeiplex
mathematical representation and analysis. For example, radial basis functiom{&EBH)ng has the typical
computational complexity of the order @mn?) [53], compared t®(2mn) with efficient tensor-product
methods, wheren andn are the number of data points and number of RBF centres respectively.

Registration of point cloud data into a common coordinate system is usuafiyst task before the fusion of
data. Many algorithms for point cloud registration have been developed, such itegdtive closest point
algorithms for fine registration [48,54,55] and diverse signature-based rougtratgn algorithms [56-58].



Registration guarantees the individual datasets are represented in ¢heosadinate system so that they can
be fused.

After registration, fusion is carried out to combine the datasets in each overleggiom so that an enhanced
output is produced. Currently, most point cloud fusion algorithms convert 3Deprshhto 1D problems, by
projectinga 3D point cloud onto a reference surface so that the 3D geometry can be dedsgréhathce
heightz as a functiorof x andy coordinatesi.e.z = f(x,y). Thus, fusion ok, y andz data can be reduced
down to fusion ofz data only. Typical point cloud fusion algorithms include hierarchical Gaussiarsgroce
fusion and its derivatives [59-63]. These Gaussian process-based fusion methods approxiresigudis r
between two reliability-differentiated datasets using Gaussian process modelsiCEniinty propagation
for such fusion solutions is still not clear.

There are other fusion algorithms available for point cloud data, such as Kalimaméthods based on
parametric approximation [64All these algorithms for point cloud fusion rely on different approximation
techniques, such as B-splines and Gaussian process approximation [53,65,66]. A retiese afetailed
algorithms is given in section 4.

3. Common issuesin fusion processes for spatial data

Among the applications of spatial data fusion, the complexity of input dates fimcreases, from repeated
measurements, to stitching, range image fusion and point cloud fusion (see Fifusd).of simpler forms
of input data can, therefore, usually be implemented using the algorithms fplegoforms of data. For
example, repeated measurement fusion does not require registration. A stitcbiithpralgan hence be
applied to repeated measurements but with the registration process omitted. Table 1hshowant
registration and fusion methods used for different spatial data fusion ajgplé;dti which it can be observed
that the complexity of algorithms increases, as shown in Figure 8.

Point cloud fusion

Range image fusion

Stitching
Repeated
measurements
< >
Simple Complex

Figure 8. Scopes of spatial data fusion methods.

Table 1. Different methods of spatial data fusion and their corresporagjisgration and fusion methods.

Fusion Simple mean Weighted Approximated
(min/max) average fusion
| Registration
NA Repeated
measurements
3DoF Stitching
registration
5~6DoF Range image Point cloud
registration fusion fusion

In spite of the differences, there are some common processes among the fusion methosissituations,
the sequence of complete fusion processes for spatial data includes [1,19]:
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pre-processes (denoising, downsamplatg),

registration,

fusion, and

post-processes (data reduction, rendering, spatial database managerhent,

In this section, some common issues in the above list of processes for surface measurementsatk discus
3.1.Data forms

Diverse forms or formats of data can be found in surface metrology. THémend forms of data can
represent different types of geometry and have different levels of computatiomglexity. Table 2
summarises the typical forms of data found with surface measuring instrumbetgxi® implies that a
dataset has fult degrees-of-freedom in thedimension;x.5D implies that a dataset hag- 1 dimensions in
total, with one dimensionf data being a function of the othedimensions data. For example, 2.5D means
that a dataset has three dimensions in total, but one dimangiformation is a dependent variable of the
other two dimensional variables.

Fusion algorithms for different forms of data are different. For exantipé sum of absolute difference-based
registration [47] is only applicable to images. Iterative closest poiidtraigon is only applicable to point
cloud data [67]. In the fusion of mixed forms of data, there should be a@orform of data which is
computationally convenient in the processes of registration and fusion, and can beoceasifyedto other
forms of data.

The convertibility between these data forms is presented in Figurevdhich, the data processing speed
increases for the data forms from left to right. In Figure 9, the greensamolicate a direct conversion is
available with a small number of, or zero, operations; the red arrows indicatihgéheonversion needs

algorithms, such as projection [68], interpolation [65,69-71] or iso-suréxtraction [72,73]. Among the

different forms of data, point clouds can be seen as the most popular fatmctoother forms of data can

conveniently be converted. Therefore, point clouds are recommended as a common fornoothafadion

of mixed forms of spatial data.

Table 2. Different data forms found in surface measurement.

Level Name Data storage Instrument Surface function models ~ Complexity in linear
applications modelling

CSI, AFM, SL  z; = f (e, 7)),
(AP S— scanner, FV, k=1,..K, < 0(P(m?N))
confocal, stylus [ =1,..,L.

2.5D

0 .
range image

Note:P(-) denotes the algorithm complexity of matrix multiplicationis the number of modelling parameteXsis the data size.
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Faster processing speed

3.5 3D 2.5D

o

35D 3D - 2.5D 2.5D 2.5D
: 3D grid scattere : profile - range

volume point
data ‘
data cloud d data

Convertible
Convertible but complex

Figure 9. The convertibility between different forms of data.

set image

3.2.Pre-processes
1) Levelling rotation

For the fusion of point clouds, levelling rotation [74] is an optional stégréeegistration. The coordinate
system of a dataset is rotated so that the surface points lie approximatetytiadlyizIn this way, surface
samples can be modelled explicitly by= f(x;,y;);=1,.n. Surface data with re-entrant features needs
complex fusion algorithms, which are beyond the scope of many of the existingdakitians introduced in
section 4.

2) Filling missing data

In range image fusion, missing data should be replaced by neighbouring sample valhes meaningful
values [75], for example, zero, or min/max values, to avoid later computatioregaildowever, not all
existing algorithms fail for images with missing data. Filling missing satherefore, an optional procedure
which is not recommended when there are concerns about the reliability of fusion

3) Removing outliers

Due to effects of the measurement environment, outliers can exist and they vary a lot idegesuoing on
different sensing methods. Registration of outlier-contaminated datasets produseaticeg errors. The
registration-induced errors can be magnified in the final fusion results. Theitdre;s must be identified,
and removed or corrected [76].

4) Denoising

Noise, such as white noise and pink noise, can be found in any measurements. There are some mature
algorithms developed for computational efficiency with range images, such asdeasts spline methods,

total variation-minimisations [77,78] and algorithms for higher dimensidatd [75]. Currently, advanced
algorithms, such as L1 spline methods, are under development, which can avoid oscillations fahabggp

signals and are insensitive to outliers [79,80].

Denoising as a pre-proceasoptional because many registration [48] and fusion [62] processes are insensitive

to noise. In some fusion methods, denoising is included in the fusion process, suchaassian process
fusion [63].
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3.3. Registration

All fusion methods for spatial data, except repeated measurementsa negidtration process to linearly
transform different datasets the same coordinate system before fusion (see Figure 10). Practical registration
processes usually proceed in an initial course registration and are tbligwaefine registration. The former
process globally searches for a rough registration position which speeds laftethéine registration and
avoids the whole registration failing by being trapped at a local optimisation point.

1) Coarse registration

Coarse registrationaims to initially place a dataset in the same coordinateisyas a design (template)
model or another dataset. Many methods have been developed for thieporpsisof which efficiently
conduct the task by simply matching a set of fiducial marks or amgtead of using all the sample
points [56-58,81,82]. For course registration of range imagbes, sum of absolute differences and
normalised cross-correlation [47] are usually efficient solutjdik

2) Fine registration

Fine registration usually applies to all the sample points to deterfimak registration parameters by
minimising the distance between two sets of data. Fine registration providessiXx parameters
[tx, ty, tsq, ﬁ,y] for output, which respectively denote the relative translations and rotationsuowl/ éinex-,

y- andz-axes

Iterative closest point (ICP) algorithms [48,54,55] are a set of widelyrpedfenethods for fine registration.
ICP algorithms search for the corresponding closest points from a datasath sample point of a template
(or another dataset), and then calculate registration parameters for the establishechdemespelationshjp
iteratively until a condition is achieved. The selection of an appropriagest] point searching algorithm
usually determines the registration accuracy. Typical closest point seambthgds include brute-force
search, Delaunay triangulation and kD-tree methods [83]. For surface measurememtitianumbers of
sample points that is usually in the thousands, kDitre®rmally the recommended method due to its high
computational efficiency. Once a point-correspondence relationship is esdblisdiculation of the
registration parameters can be implemented in a least-squaresrnifanexample, based on singular value
decomposition [68] or quaternions [84]. Further details on ICP algorithms can be found etd@rher

For very dense input datasets, downsampling is usually implemented to speed up oegisiratiutations
[67]. The selected densampling methods influence the accuracy of registration and hence the accubhacy of
final fusion. Simple random downsampling [85] has been shown to be unbiased to the opreaficti
registration parameters. Other intelligent sampl8& methods are expected to improve the convergence rate
[87] by densely reserving sample points at the feature-rich regions. The fezdurdésclude peaks, pits,
saddle points and feature edges. For example, intelligent sampling by adapting samtsld¢opsurface
curvatures [67] has been demonstrated to improve the registration accuracy and speed.

3.4.Fusion
1) Preparation of data for fusion

As described in section 3.1, fusion of mixed forms of data is expected to be carugdl@ud common data
form, for example, point clouds. For the data in point cloud forms, a further conversion to scattered data form
is needed to simify 3D fusion problems to fusion afdata only.

Data fusion should be carried out on the data points within the overlapping amgasrbét/o or multiple

datasets. The peripheral points outside the overlapping areas should be removegdtatzoral efficiency.
In-hull indexing algorithms [88] can be employed for this purpose by reselycipplying one dataset as the
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template hull and searching for the data points of other datasets within the hull. Figure 4 thshmle ofn-
hull indexing.

. . 1 . 1
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Figure10. Schema of the effects of registration and in-hull indexing.

2) Fusion of data

For simple data fusion solutions, such as repeated measurements, stitching and gad@esiorg fusion of
data is implemented by averaging (simple mean or weighted mean) each paiespawdent points in a
point wise manner from individual sets of data. For point clouds or swhttiata, different datasets usually
have varied sampling conditions, which indicate that there is usually no naterddted point-
correspondence relationship. Therefore, fusion of point clouds or scattered data needs advanced.algorithm

Currently, most fusion solutions for point clouds relyagpropriate surface fitting techniques. For example,
in references [60,62,63], Gaussian process-based surface fitting techniques are usedximaa@pthe
residuals between each pair of input datasets. Other fitting techrégabsas B-spline wavelets-based [89,90]
surface approximation techniques, may also provide good fusion results.

Another classical fusion technique for point clouds is weighted least-squares fusion basedhetrigdinear
fitting [91]. Linear fitting ensures the fusion is simplified for unagity control and fast for numerical
computation. However, flexible and robust fitting models are difficult to construcpramtical signals,
especially signals with abrupt changes. Therefore, there has only been liniked dimensional metrology
on linear fitting. Despite the difficulty of fitting, weighted least-squdteson can be applied for smooth
surfaces, which can be efficiently approximated using many common fitting models [53].

In section 4, detailed mathematical descriptiofishe two methodsi.e. residual fitting-based fusion and
weighted least-squares fusion, are given.

3.5.Post-processes

There are normally three post-processes for data fusion, includingedatdion, storage and rendering, with
the assistance of a spatial database management system.

Once a fusion result is obtained, the original datasets become redundant and can be abamdened. H
from the concern of traceability, the redundant data points may need to be reseffuethér validation of
the fusion reliability. Also, fusion results are usually in the form of a patrésyor non-parametric model that
can be directly saved as a set of model parameters (encoding) or a egigoéd samples drawn from the
fused model. Storage in the form of model paramesarsually efficient (small in memory size), but requires
a variety of model-predicating algorithms (decoditmy)ender the fusion results in a Cartesiarcep8torage

in a set of extracted samples may be larger in size, but has the corisisteat expression as the unfused
data in the peripheral areas (as in Figure 10). Such homogeneous outputs simplify theatmoraput
requirement for the tools of data communication and rendering. In summaoy fasults can be saved as a
slimmed-down version with the model parameters, or a medium-sized version wisigaedesample set
extracted from the fused model, or a full version with all the origina gatserved. The medium-sized
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version, with appropriate sample design, can be set as a default output tdumedts on storage space and
management.

Rendering of fusion outputs relies on the development of a fast and useryfifgediace. In this interface,
rendering of all fused datasets in a specific field of view is not necessarto ahe limitations of the
computation speed. An indexing prosés needed instead to select the relevant datasets for a given field of
view. The indexed datasets for a field of view should only include the datasets skoplélde top surface

for a specific field of view. When rendering fused results in the form of 3Bt ptuds, the indexing needs
more complicated solutions than range images in which the indexing proceeds ar#{piplane. Meshing
[92,93] of point clouds is another requirement for rendering. A meshing process, foplex@elaunay
triangulation [69], finds the neighbouring points for any point in a cloud, by which af sidcrete spatial
points can be rendered as closely connected small facets. Meshing-based rendezimessnreal-world
entities in a visually friendly manner.

With the exception of the main post-processes described above, there are otheseprasers may need
such as measurement (for example, measuring the distance between two spatiakeddings{for example,

adding or removing a data point or other types of geometry) and analysis [O#jes&lpost-processes are
carried out based on a specialised spatial database management tool. Diffeneanyf existing database
management systems in surface or dimensional metrology, this spatial data nesmtagehshould be able to
effectively process large data. For example, an automated measurement of selmrgaface by stitching
hundreds to thousands of sub-aperture range images may produce a file of gigahgtes btanipulation of

such large file may easily suffer from slow processing and large memory requirements.

4. Spatial data fusion algorithms

Repeated measurements, stitching or range images use simple or weighted means [1¥jias guodutions
Fusion of point clouds needs advanced fusion solutions. Some existing fusion solutions fothastarin of
point clouds rely on advanced surface fitting techniques, by either fittingotlree surface signal or the
residuals between two independent datasets with some common models. Intibis seme promising
fusion algorithms for spatial data in point cloud forms are discussed.

4.1.Weighted least-squares fusion

Weighted least-squares fusion is a classical fusion technique relying on pardnesrifitting [91] of source
surface signals. Given a linear measuring system,

z=Hx+ ¢, (6)

wherex is an-vector comprised of the model parameters to be meaddrisdamxn (m > n) model basis
function matrix (or measurement matrix),is a m-vector of the measurement resulisis a normal and
independent and identically-distributed noise vector @iV (0, 52I). Such linear systems can approximate
most practical surfaces, with an appropriate design of the measurement Widkrimultiple and independent
measurement results from different instruments for the same Obje{il,kSﬁmek}keK, with the noise levels

ek~N(0, a,?l), the model parameter vectoof the object can be estimated by minimising the cost function
Ykek Willzi — Hex||?, (7

wherewy, is a designed weight for each dataset. By setting the Wea'@hft-soiﬁ, the best linear unbiased

estimation (BLUE) of the model parameters can be achieved, which has the mivamance [91]i.e. the
minimum evaluation uncertainty in this case.
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The minimisation can be achieved by forcing the partial differentialeofuthction (equation (7)) t@ equal
to 0. Hence, the weighted least-squares fusion for the estimation of the model paxamastére form

%= (HTWH) 'H Wz, (8)
Hy Z

VA
whereH = sz W = diag(Wy, Wy, ..., W) with W, = diag(wy, wy, ..., Wi )m,., andz =
HK ZK
The prediction output and its variance of the fused model vary at diffelesgtrvation positions [53].
However, a typical prediction of the model output can usually be obtatried observation positions, which
are the same as all the individual measurement datasets,
Z=HX=HH"WH) H"Wz. )

The following shows that suchtypical prediction haa minimum variance compared to the predictions based
on any individual dataset only.

Since the prediction errédr= Z — Hx has the covariance
V(#) = HH"WH) T HT = W™V2Q,,,Qy, " W™/2, (10)
whereV = W1 = W~1/2w~1/2 andW/2H has the QR factorisaticasW'/2H = Q,,R,, = Q,,1R,,1. The

squared standard prediction uncertaimntgy, the mean squared error of the prediction in equation (9), can be
expressed as

u?(z) = MSE(2) = tr(V())

Dkek My

Zs:l,...,kms n
e SN D MY
" Ykex My Li=1,..x \ WE i (11)

i=14+¥s=1, k-1Ms j=1

n

my
ZkEK O_,?

whereg; ; are the entries dj,,;. By substituting< by 1 in the equation (11), the squared standard prediction
uncertainty of the least-squares fitting of each individual dataset withoaoih fcah be obtained as

u?(z) = %O_iz- (12)
Therefore, it can be easily shown tha(2) < u?(Z,), i.e. the fused result always has a smaller prediction
uncertainty than that without fusion.

The weighted least-squares fusion described above is well known for its advanfage égomputation.
However, if new sets of sample data are dynamically addethe fusion result has to be updated by
involving all previous dataseté& Kalman filter [23, 64] provides an alternative execution algoritbrthe
weighted least-squares fusion, by successively integrating new dataseteewibugly fused residt without
reference to every previous set of data [64].

The difficulty of weighted least-squares fusion is that it requires a desijn or measurement model to
approximate the source surface. For surfaces with an unknown design model, or if thectaangferror is
large, some common models wilhnigh degree of flexibility can be used for general fusion purposes. Typical
common models include diverse B-spline models with different knot settings [65,89,98[88h, can
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approximate general smooth signals well. For signals with abrupt changes in geometry, weighted teast-squa
fusion may not be recommesd because the fitting solutions for such complex geometries are usually not
available.

To the authors’ knowledge, there is a lack of experimental research on weighted least-squares fusion for
surface measurement. As an inspiring example, Figure 11 presents the fusion resuttsuntertainty-
distinct datasets from a cubic B-spline curve, with the knots $etOe, —0.4,0,0.4,0.6], with 2000 random
simulations. Within every simulation, the measurement noise is randomly generated. Tls®inshows a
steady reduction of the estimation error by approximately 1/10 from that iofdikielual set with the smaller
edimation error.

The moadel
+  Sample Set! with noise livel 0.20
¥ Sample Set? with noise livel 0.10
A LS rec. of Setl. Error mean is 0.1303 (2000 expts)
ALSrec. of Set?. Error mean is 0.0649 (2000 expts)
Aweighted fusion result. Error mean is 0.0582 (2000 expts)
A non~weighting fusion result. Error mean is 0.0730 (2000 expts)
I o0 confidence interval of Setf rec
I -: confidence interval of Set2 rec
B - 35% confidence interval of the fusion result

Figurell Simulation of the effect of the weighted least-squares fusion.

Another application difficulty of weighted least-squares fusion is derived the calculation of the weights.
Because the optimised weights are the reciprocal of the standard measureméaintynoéeach individual
dataset, the reliability of the knowledge about the individual measurement deteitime accuracy of fusion.
However, the information about each individual measurement is usually fuzzy duéatdevanvironmental
conditions. Therefore, the feasibility of weighted least-squares fusionastiqal situations has not dre
satisfactorily demonstrated.

4.2.Residual approximation-based fusion

Residual approximation (RA)-based fusioraifsision solution which applies approximation to the systematic
offset (residuals) between two individual datasets from different sen&ar analytical expression of the
uncertainty propagation of the RA-based fusion methods is currently unavailalvevét, many existing
simulations have shown that such methods can provide uncertainty-reduced fusionwesuiltsompared
with those from any individual set. As a competitive solution to weightet-dgasres method®A-based
fusion can be applied effectively for both smooth and non-smooth signals.
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Figure12. Schema of two-sensor data fusion for multi-sensor data fusion.

RA-based multi-sensor data fusion proceeds in an ordered sequence with a commondassmfor every

two sets of data; a process known as two-sensor data fusion [96]. As showuaren B, individual datasets
are first ordered according to their reliability level ranking. Thesmfthe dataset with the lowest reliability,
RA-based fusion is carried out for each dataset with the previously fused(oesldtaset), until all the input
data are integrated. If there is no differemtehe uncertainty for input datasets or the datasets are ranked
inappropriately [60], the performance RA-based fusiolis uncertain.

1) Gaussian process fusion

A typical RA-based fusion method is Gaussian process (GP) fusion, which links two datasets by
approximating thie residuals as a GP function [59,61,62]. GP approximation is a non-parametric fitting
method [66]. Given a set of residual datay), with x € R%, a GP model, which is determined &yyper-
parameter seff, can be trained by maximising the marginal likelihood function (usually expréasse
logarithmic form):

L = logP(y|x,8) = —>loglVs| — > (y — 1) "V " (y — g) — Slog(2m), (13)

whereVy is the covariance matrix defined by the sample poirdsd the hyper-parameté?s anduy is the
mean vector defined . The optimisation problem in equation (13) can be solved by using many well-
known algorithms, such as diverse interior-point methods [97] and trust-regiectrefl methods, using
MATLAB [98]. Another effective minimisation algorithm can be found in the GPtglilbox [99]. Once the
hyper-parameters are optimised, the fitting prediction vajyesan be calculated based on the posterior
Gaussian model

Vly~ N + V'V (y — ), V.. — VIV, (14)

whereV is the covariance matrix defined between the sample positions of the tiddtasgt and themselves,
V. is the covariance matrix defined between the sample positions of the trainiegt datd the prediction
positions,, is the covariance matrix defined between the prediction positions and themgeineg:, are
respectively the mean value (usually the predictions from previously fused result or anothémndtatésser
reliability, in GP fusion) vectors on the sample positions of the trabtategetand the prediction positions. In
short, the prediction and prediction variances can be efficiently computed by theslistamin equation
(14).

Given two sets of input data, with one as the high reliability (HR¥;sahd the other as the low reliability

(LR) setz,, GP fusion links the two datasets by approximating the residuals of the two datase®Pas
function. For example, a typical fusion model [60] has the form of
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2%, y0) = B y) 2, (xi, yi) + 8(xy, i) + €1, 6,~N(0,09),
2,(x, 1) = 2,(x;, ¥1) + €2, 6,~N(0,0%),
B(xi,yi) = Bo + Brxi + B2y,
5~GP(m, k; ,2),

(15)

wherez, is a fitted (or denoised) version of the LR sgtwith Z, = z,, §, defined by the mean function,

and the covariance functidn _,z, is the GP linkage function which describes the systematic offset between
the two input datasetg, is a rescaling function which reduces the scale offset between the two inpatgjatas
ande; ande, are white noisef can be substituted by other polynomial functions. However, it has been
claimed [8] that a simple*1degree polynomial rescaling is flexible enough for most practical gases
simply be set as unity if there is no scale bias betweemdz,. Based on the linkage modeal equation
Error! Reference source not found., the fusion result can be expressed by a composition of the denoised LR
dataand the GP linkage function:

zp = B(xi, ¥i)Z,(x;, y:) + 8 (x;, ¥i). (16)

The fitting method for the LR set in equation (15) is free to be defineter&ift constructions of the LR
model Z, influence the reliability of the later GP fusion. For exampjesan be another GP model willas
the meani.e.

2206, y)~GP(0,ky, 52 )- (17)

The 0-mean GP model can provide a flexible approximation for smooth signals [66]. Byroogithe fitting
models in equations (15) and (17), a hierarchical GP model is constructed, wdilieh ¢slled the Bayesian
hierarchical Gaussian process [60,G2]can also be approximated by using some linear madels,

Z,(x;,y) = Ca, (18)

whereC is adesign matrix ane are the modelling control parameters. Many mature linear interpolation and
smoothing algorithms can be applicable to linear fitting, including diverseespiethods and Delaunay
triangulation-based interpolation methods [65,69-71,89,100]. In simplified cases, for examvpielhiz, and

z, have the same sample positions or the sample noise is relativelyZsroalh, simply be substituted by the
source data,. The linear approximation given by equation (18) and the simple replacement by tte sour
data are computationally efficient when the data size is too large.

2) Other fusion models

Approximation of the residuals between any two sets of data can also be implebyeuséty other models,
either, parametric or non-parametric. Because the input datasets usually have dilfeserd flexible and
efficient approximation method must be found, for which the fusion accisaogensitive to data size. A
typical such approximation method is multilevel B-spline approximation (MBA). [BBA predicts at a

location far from the available input data points as 0 in default and works siitblgny size ofa dataset.

Such stability means that MBA is a promising fusion solution.

MBA provides an approximation of a source surface with a sum of multiple model suatadégerent
resolution levelsi.e.

z=2zy+ 2z, + -+ zg, (29)

wherez,, € S, and{S,} is a nested sequence of subspacesSyith S; c :-- c Si. For example, given a set
of sample points within a square domdin= [0,m] X [0,n]. A hierarchy of control lattice@P;}r-01..x

can be designed overlaid on the donfaiwith (2* + 3) x (2¥ + 3) control points, based on cubic B-splines
[95].
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By assigning the maximum approximation lekeIMBA proceeds by iteratively estimating the parameters of
each level of control lattice in a weighted and least-squares sense.viehan, appropriate reconstruction
algorithm, for example, knot refinement [95], the original surface can be sifitidg (smoothed or
interpolated) and predicted through a linear system at any desired position.

Other approximation models include regular grid or non-regular grid B-splimey finodels [65,95], radial
basis function models, Fourier series models and wavelet models [53]. Howevemdueds do not have
such stable characteristics as the MBA method. Therefore, the feasibiliyes# alternative models for
practical fusion is unclear and needs validation.

3) Discussion

RA-based fusion methods, especially GP fusion, are well-behaved fusion methods which have been
demonstrated with experiments and simulations [60,62,63]. GP fusion, which uses one datesatezs

and approximates the residuals between the dataset and another using a GP moded]yeéfecids
miscellaneous design of the parametric modelsa tmmplex surface.

From a statistical standpoint, a prediction based on a HR set solely caddystood as a posterior estimation
with null prior; GP fusion can be understood as a posterior estimation vatigh prior estimate based on a
LR set. Therefore, with a prior estimaiA-based fusion may have a high probability to provide improved
fusion results with reduced uncertainty. For smooth (with small maximum locadtare) signalsa rough
prior estimate may contribute insignificgntBut for non-smooth (with abrupt changes) signateugh prior
estimate influences the fusion result with a kigheight than the HR dataset, especially when predicting at
the observation positions near abrupt change areas. In addition, for tHerstudten a HR dataset is dense,
a rough prior estimate is insignificant. But, if a HR dataset is sparseigh prior estimate, based on a high
density LR sample set, may contribute effectively for the fusion output, eBpeshen predicting at the
observation positions with sparse HR sample points.

Figure 13 presentsRA-based fusion example for a set of typical freeform surface measurement data from
tactile CMM and structured light (SL) scanner [63]. The CMM measurementvistalt highly accurate and
100 CMM sample points are used as the HR set. The SL measurement is fash larg@isystematic error
and 4695 SL sample points are used as the LR set. Reconstruction of each indetidwéh natural-
neighbour interpolation produces large root-mean-square-error (RMSE), eithertdeehtgh measurement
uncertainty of the SL set, or low sample density of the CMM set (see Higorand c). Fusion of the two
datasets with GP approximation or MBA successfully produces better reconstmastidts with reduced
errors.
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(a) The reference surface with the CMI  (b) The errormap of the natural-neighbour  (c) The errormap of the natural neighbour
(red) and SL (blue) sample sets [63].  interpolation reconstruction of the SL set, interpolation reconstruction of the CMM se
RMSE = 0.30. RMSE = 0.69.
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Figurel13. The performance of some residual approximation-based fusithods (courtesy of [68]

5. Summary and outlook

Holistic measurement of a workpiece is becoming the necessity in modern enginéésikpieces with full
3D geometry or re-entrant features, or comprised of high-dynamic ranggusts, which need to be
measured with multiple local measurements, are the driving force for the deeatopm(multi-sensor)
spatial data fusion techniques in surface and dimensional metrology. Some existifigsid@ methods can
be found in many non-tactile instruments based on image processing. However, fusionabfdatmatis
relatively new in surface metrology and only a small number of industrial applications havempksnented,
in particular for the fusion of point cloud data.

Most spatial data fusion solutions under development follow a similar process franemgokised of pre-
processes, registration, fusion and post-processes. The registration process haddheémvestigated and

some high quality algorithms are available. The fusion process is at an early stigéteddlgorithms are

in development. Among the existing fusion methods, residual approximation-based dokitans, in
particular GP fusion, can be effective for both smooth and non-smooth surfacethe buhcertainty
propagation has not been analytfigalnalysed. Weighted least-squares fusion based on linear systems can be
efficient, but only applicable for surfaces with smooth geometry. The advantagelsaddantages, and
versatility of these fusion solutions need to be further investigated.

Some post-processes have not been well resolved for spatial data fusion, suchresudatam, storage,
rendering and other manipulations, with the assistance of a specialiseddatatialse management system.
Therefore, the development of such spatial database management systems should forntheneextf
development phases for multi-sensor measurement techniques.
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