19 research outputs found

    Viral Entry Properties Required for Fitness in Humans Are Lost through Rapid Genomic Change during Viral Isolation

    Get PDF
    Human parainfluenza viruses cause a large burden of human respiratory illness. While much research relies upon viruses grown in cultured immortalized cells, human parainfluenza virus 3 (HPIV-3) evolves in culture. Cultured viruses differ in their properties compared to clinical strains. We present a genome-wide survey of HPIV-3 adaptations to culture using metagenomic next-generation sequencing of matched pairs of clinical samples and primary culture isolates (zero passage virus). Nonsynonymous changes arose during primary viral isolation, almost entirely in the genes encoding the two surface glycoproteins—the receptor binding protein hemagglutinin-neuraminidase (HN) or the fusion protein (F). We recovered genomes from 95 HPIV-3 primary culture isolates and 23 HPIV-3 strains directly from clinical samples. HN mutations arising during primary viral isolation resulted in substitutions at HN’s dimerization/F-interaction site, a site critical for activation of viral fusion. Alterations in HN dimer interface residues known to favor infection in culture occurred within 4 days (H552 and N556). A novel cluster of residues at a different face of the HN dimer interface emerged (P241 and R242) and imply a role in HPIV-3-mediated fusion. Functional characterization of these culture-associated HN mutations in a clinical isolate background revealed acquisition of the fusogenic phenotype associated with cultured HPIV-3; the HN-F complex showed enhanced fusion and decreased receptor-cleaving activity. These results utilize a method for identifying genome-wide changes associated with brief adaptation to culture to highlight the notion that even brief exposure to immortalized cells may affect key viral properties and underscore the balance of features of the HN-F complex required for fitness by circulating viruses. IMPORTANCE Human parainfluenza virus 3 is an important cause of morbidity and mortality among infants, the immunocompromised, and the elderly. Using deep genomic sequencing of HPIV-3-positive clinical material and its subsequent viral isolate, we discover a number of known and novel coding mutations in the main HPIV-3 attachment protein HN during brief exposure to immortalized cells. These mutations significantly alter function of the fusion complex, increasing fusion promotion by HN as well as generally decreasing neuraminidase activity and increasing HN-receptor engagement. These results show that viruses may evolve rapidly in culture even during primary isolation of the virus and before the first passage and reveal features of fitness for humans that are obscured by rapid adaptation to laboratory conditions

    NCBI's Virus Discovery Hackathon:Engaging Research Communities to Identify Cloud Infrastructure Requirements

    Get PDF
    A wealth of viral data sits untapped in publicly available metagenomic data sets when it might be extracted to create a usable index for the virological research community. We hypothesized that work of this complexity and scale could be done in a hackathon setting. Ten teams comprised of over 40 participants from six countries, assembled to create a crowd-sourced set of analysis and processing pipelines for a complex biological data set in a three-day event on the San Diego State University campus starting 9 January 2019. Prior to the hackathon, 141,676 metagenomic data sets from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) were pre-assembled into contiguous assemblies (contigs) by NCBI staff. During the hackathon, a subset consisting of 2953 SRA data sets (approximately 55 million contigs) was selected, which were further filtered for a minimal length of 1 kb. This resulted in 4.2 million (Mio) contigs, which were aligned using BLAST against all known virus genomes, phylogenetically clustered and assigned metadata. Out of the 4.2 Mio contigs, 360,000 contigs were labeled with domains and an additional subset containing 4400 contigs was screened for virus or virus-like genes. The work yielded valuable insights into both SRA data and the cloud infrastructure required to support such efforts, revealing analysis bottlenecks and possible workarounds thereof. Mainly: (i) Conservative assemblies of SRA data improves initial analysis steps; (ii) existing bioinformatic software with weak multithreading/multicore support can be elevated by wrapper scripts to use all cores within a computing node; (iii) redesigning existing bioinformatic algorithms for a cloud infrastructure to facilitate its use for a wider audience; and (iv) a cloud infrastructure allows a diverse group of researchers to collaborate effectively. The scientific findings will be extended during a follow-up event. Here, we present the applied workflows, initial results, and lessons learned from the hackathon

    Advances and Challenges in Wearable Glaucoma Diagnostics and Therapeutics

    No full text
    Glaucoma is a leading cause of irreversible blindness, and early detection and treatment are crucial for preventing vision loss. This review aims to provide an overview of current diagnostic and treatment standards, recent medical and technological advances, and current challenges and future outlook for wearable glaucoma diagnostics and therapeutics. Conventional diagnostic techniques, including the rebound tonometer and Goldmann Applanation Tonometer, provide reliable intraocular pressure (IOP) measurement data at single-interval visits. The Sensimed Triggerfish and other emerging contact lenses provide continuous IOP tracking, which can improve diagnostic IOP monitoring for glaucoma. Conventional therapeutic techniques include eye drops and laser therapies, while emerging drug-eluting contact lenses can solve patient noncompliance with eye medications. Theranostic platforms combine diagnostic and therapeutic capabilities into a single device. Advantages of these platforms include real-time monitoring and personalized medication dosing. While there are many challenges to the development of wearable glaucoma diagnostics and therapeutics, wearable technologies hold great potential for enhancing glaucoma management by providing continuous monitoring, improving medication adherence, and reducing the disease burden on patients and healthcare systems. Further research and development of these technologies will be essential to optimizing patient outcomes

    Human parainfluenza virus evolution during lung infection of immunocompromised humans promotes viral persistence

    No full text
    The capacity of respiratory viruses to undergo evolution within the respiratory tract raises the possibility of evolution under the selective pressure of the host environment or drug treatment. Long-term infections in immunocompromised hosts are potential drivers of viral evolution and development of infectious variants. We show that intra-host evolution in chronic human parainfluenza virus 3 (HPIV3) infection in immunocompromised individuals elicited mutations that favor viral entry and persistence, suggesting that similar processes may operate across enveloped respiratory viruses. We profiled longitudinal HPIV3 infections from two immunocompromised individuals that persisted for 278 and 98 days. Mutations accrued in the HPIV3 attachment protein hemagglutinin-neuraminidase (HN), including the first in vivo mutation in HN's receptor binding site responsible for activating the viral fusion process. Fixation of this mutation was associated with exposure to a drug that cleaves host cell sialic acid moieties. Longitudinal adaptation of HN was associated with features that promote viral entry and persistence in cells, including greater avidity for sialic acid and more active fusion activity in vitro, but not with antibody escape. Long term infection thus led to mutations promoting viral persistence, suggesting that host-directed therapeutics may support the evolution of viruses that alter their biophysical characteristics to persist in the face of these agents in vivo

    A Systematic Review of Dietary Supplements and Alternative Therapies for Weight Loss.

    No full text
    OBJECTIVE: Dietary supplements and alternative therapies are commercialized as a panacea for obesity/weight gain as a result of the minimal regulatory requirements in demonstrating efficacy. These products may indirectly undermine the value of guideline-driven obesity treatments. We systematically reviewed the literature of purported dietary supplements and alternative therapies for weight loss. METHODS: A systematic review evaluated the efficacy of dietary supplements and alternative therapies for weight loss aged ≥18 years. We searched Medline (Pubmed), Cochrane, Web of Science, CINAHL, EMBASE (Ovid), and PsychINFO (EBSCO). Risk of bias and results were summarized qualitatively. RESULTS: Of 20,504 citations, we reviewed 1,743 full-text articles, of which 315 were randomized controlled trials evaluating the efficacy of 14 purported dietary supplements, therapies or a combination thereof. Risk of bias and sufficiency of data varied widely. Few studies (n=52 [16.5%]) were classified low risk and sufficient to support efficacy. Of these, only 16 (31%) noted significant pre/post inter-group differences in weight (range: 0.3,4.93 kg). CONCLUSIONS: Dietary supplements and alternative therapies for weight loss have a limited, high-quality evidence-base of efficacy. Practitioners and patients should be aware of the scientific evidence of claims before recommending use
    corecore