237 research outputs found

    Higher education and unemployment in Europe : an analysis of the academic subject and national effects

    Get PDF
    This paper examines the impact of an academic degree and field of study on short and long-term unemployment across Europe (EU15). Labour Force Survey (LFS) data on over half a million individuals are utilised for that purpose. The harmonized LFS classification of level of education and field of study overcomes past problems of comparability across Europe. The study analyses (i) the effect of an academic degree at a European level, (ii) the specific effect of 14 academic subjects and (iii) country specific effects. The results indicate that an academic degree is more effective on reducing the likelihood of short-term than long-term unemployment. This general pattern even though it is observed for most of the academic subjects its levels show significant variation across disciplines and countries

    Preparedness and Response to Pediatric COVID-19 in European Emergency Departments : A Survey of the REPEM and PERUKI Networks

    Get PDF
    Publisher Copyright: © 2020 American College of Emergency Physicians Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Study objective: We aim to describe the variability and identify gaps in preparedness and response to the coronavirus disease 2019 pandemic in European emergency departments (EDs) caring for children. Methods: A cross-sectional point-prevalence survey was developed and disseminated through the pediatric emergency medicine research networks for Europe (Research in European Pediatric Emergency Medicine) and the United Kingdom and Ireland (Paediatric Emergency Research in the United Kingdom and Ireland). We aimed to include 10 EDs for countries with greater than 20 million inhabitants and 5 EDs for less populated countries, unless the number of eligible EDs was less than 5. ED directors or their delegates completed the survey between March 20 and 21 to report practice at that time. We used descriptive statistics to analyze data. Results: Overall, 102 centers from 18 countries (86% response rate) completed the survey: 34% did not have an ED contingency plan for pandemics and 36% had never had simulations for such events. Wide variation on personal protective equipment (PPE) items was shown for recommended PPE use at pretriage and for patient assessment, with 62% of centers experiencing shortage in one or more PPE items, most frequently FFP2 and N95 masks. Only 17% of EDs had negative-pressure isolation rooms. Coronavirus disease 2019–positive ED staff was reported in 25% of centers. Conclusion: We found variation and identified gaps in preparedness and response to the coronavirus disease 2019 epidemic across European referral EDs for children. A lack in early availability of a documented contingency plan, provision of simulation training, appropriate use of PPE, and appropriate isolation facilities emerged as gaps that should be optimized to improve preparedness and inform responses to future pandemics.publishersversionPeer reviewe

    Evolutionary relationships and divergence times among the native rats of Australia

    Get PDF
    Background The genus Rattus is highly speciose and has a complex taxonomy that is not fully resolved. As shown previously there are two major groups within the genus, an Asian and an Australo-Papuan group. This study focuses on the Australo-Papuan group and particularly on the Australian rats. There are uncertainties regarding the number of species within the group and the relationships among them. We analysed 16 mitochondrial genomes, including seven novel genomes from six species, to help elucidate the evolutionary history of the Australian rats. We also demonstrate, from a larger dataset, the usefulness of short regions of the mitochondrial genome in identifying these rats at the species level. Results Analyses of 16 mitochondrial genomes representing species sampled from Australo-Papuan and Asian clades of Rattus indicate divergence of these two groups ~2.7 million years ago (Mya). Subsequent diversification of at least 4 lineages within the Australo-Papuan clade was rapid and occurred over the period from ~ 0.9-1.7 Mya, a finding that explains the difficulty in resolving some relationships within this clade. Phylogenetic analyses of our 126 taxon, but shorter sequence (1952 nucleotides long), Rattus database generally give well supported species clades. Conclusions Our whole mitochondrial genome analyses are concordant with a taxonomic division that places the native Australian rats into the Rattus fuscipes species group. We suggest the following order of divergence of the Australian species. R. fuscipes is the oldest lineage among the Australian rats and is not part of a New Guinean radiation. R. lutreolus is also within this Australian clade and shallower than R. tunneyi while the R. sordidus group is the shallowest lineage in the clade. The divergences within the R. sordidus and R. leucopus lineages occurring about half a million years ago support the hypotheses of more recent interchanges of rats between Australia and New Guinea. While problematic for inference of deeper divergences, we report that the analysis of shorter mitochondrial sequences is very useful for species identification in rats

    Circadian Rhythm and Cartilage Extracellular Matrix Genes in Osseointegration: A Genome-Wide Screening of Implant Failure by Vitamin D Deficiency

    Get PDF
    Successful dental and orthopedic implants require the establishment of an intimate association with bone tissue; however, the mechanistic explanation of how biological systems accomplish osseointegration is still incomplete. We sought to identify critical gene networks involved in osseointegration by exploring the implant failure model under vitamin D deficiency.Adult male Sprague-Dawley rats were exposed to control or vitamin D-deficient diet prior to the osteotomy surgery in the femur bone and the placement of T-shaped Ti4Al6V implant. Two weeks after the osteotomy and implant placement, tissue formed at the osteotomy site or in the hollow chamber of T-shaped implant was harvested and total RNA was evaluated by whole genome microarray analyses.Two-way ANOVA of microarray data identified 103 genes that were significantly (>2 fold) modulated by the implant placement and vitamin D deficiency. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assigned the highest z-score to the circadian rhythm pathway including neuronal PAS domain 2 (NPAS2), and period homolog 2 (Per2). NPAS2 and Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/Bmal 1) were upregulated around implant and diminished by vitamin D deficiency, whereas the expression pattern of Per2 was complementary. Hierarchical cluster analysis further revealed that NPAS2 was in a group predominantly composed of cartilage extracellular matrix (ECM) genes. Whereas the expression of bone ECM genes around implant was not significantly affected by vitamin D deficiency, cartilage ECM genes were modulated by the presence of the implant and vitamin D status. In a proof-of-concept in vitro study, the expression of cartilage type II and X collagens was found upregulated when mouse mesenchymal stem cells were cultured on implant disk with 1,25D supplementation.This study suggests that the circadian rhythm system and cartilage extracellular matrix may be involved in the establishment of osseointegration under vitamin D regulation

    A highly efficient multi-core algorithm for clustering extremely large datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer.</p> <p>Results</p> <p>We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization.</p> <p>Conclusions</p> <p>Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer.</p

    A Future for the Dead Sea Basin: Water Culture among Israelis, Palestinians and Jordanians

    Full text link
    corecore