160 research outputs found

    Final Project Report for Bricks from Recyclables

    Get PDF
    The Bricks from Recyclables team is dedicated to designing and constructing an eco-friendly concrete brick that incorporates plastic to tackle the issue of plastic waste in the environment. The sponsor, Samadhi Yoga Retreat, plans to use this innovative product as a building material on-site to recycle and repurpose plastic, thereby eliminating the impracticality of transporting plastic waste to a recycling center in the remote location. The team conducted tests on four essential subsystems: shredder, mixer, mold, and brick. The shredder tests involved evaluating the shredder\u27s capability and speed. The capability test demonstrated that the shredder could process both PET and HDPE plastic effectively into appropriate sizes, with HDPE producing slightly more of the targeted size. The speed test demonstrated that the shredder could process five bottles of both plastic types in under five minutes. These tests showed that the shredder adhered to the shredder functionality working criteria. The mixer test evaluated whether the mixture could produce a visually uniform blend in less than five minutes. All mixtures created in the mixer successfully met the criteria. However, the team recommends using a larger mixer for producing full-size bricks. The mold functionality test evaluated the effectiveness of the molds utilized to fabricate the coupons. The 3-D printed molds demonstrated excellent performance, with easy ejection of coupons and convenient cleaning and reusability. However, the melamine coupon mold proved less efficient due to being hand-manufactured and requiring the application of messy silicone for sealing. To accommodate the size limitations of the 3-D printers available to the team, the full-size mold comprises a combination of melamine and 3-D printed components. This test showed that the 3D printed mold adhered to the mold functionality working criteria. The brick tests included a compression test to determine the optimum plastic-concrete formulation and a weather resistance test to assess the brick\u27s water resistance. The compression test showed that pure Quikrete achieved a compressive strength of over 1900 psi for water ratios ranging from 7-7.5%. The team selected 7.5% water as it retained plastic particles more effectively. PET outperformed HDPE in compression tests. However, none of the coupons with plastic ratios ranging from 1 to 15 percent plastic on a mass basis, or 1.54 to 23.11 percent on a volume basis, met the 1900 psi requirement mandated by ASTM C90 [1]. The team recommends longer curing times as a way to increase compressive strength. The final phase of compression testing was anisotropic tests, which tested the bricks\u27 performance in a more consistent orientation with how full-size bricks will be loaded. The results indicated that an increase in plastic particle size resulted in an increase in compressive strength. The rough surfaces of the coupons, caused by molds designed for testing in the other orientation, led to some of the lower fatigue stresses. This test demonstrated that modifying the mold\u27s orientation could increase the compressive strength and potentially lead to a formulation that meets the 1900 psi requirement. The team recommends further research and testing on the anisotropic orientation. The weather resistance test evaluated the water absorption capacity and the formation of salt deposits as the bricks/coupons dried. All specimens underwent both tests and successfully passed. To meet the requirements of the absorption test, the bricks/coupons needed to absorb less than 20% of their original weight. The full-size ASTM C90 bricks performed better, with a range of 6-7%, compared to the coupons, which had a range of 8.8-14.9%

    The Clinchfield and Unicoi County: Documenting the Oral History and Traditions of a Railroad Community

    Get PDF
    The panel will focus on the oral history and traditions of the Clinchfield from those that were there, as passengers, employees, landowners, and various other stakeholders of the railroad and Unicoi County

    Dealing with femtorisks in international relations

    Get PDF
    The contemporary global community is increasingly interdependent and confronted with systemic risks posed by the actions and interactions of actors existing beneath the level of formal institutions, often operating outside effective governance structures. Frequently, these actors are human agents, such as rogue traders or aggressive financial innovators, terrorists, groups of dissidents, or unauthorized sources of sensitive or secret information about government or private sector activities. In other instances, influential .actors. take the form of climate change, communications technologies, or socioeconomic globalization. Although these individual forces may be small relative to state governments or international institutions, or may operate on long time scales, the changes they catalyze can pose significant challenges to the analysis and practice of international relations through the operation of complex feedbacks and interactions of individual agents and interconnected systems. We call these challenges "femtorisks," and emphasize their importance for two reasons. First, in isolation, they may be inconsequential and semiautonomous; but when embedded in complex adaptive systems, characterized by individual agents able to change, learn from experience, and pursue their own agendas, the strategic interaction between actors can propel systems down paths of increasing, even global, instability. Second, because their influence stems from complex interactions at interfaces of multiple systems (e.g., social, financial, political, technological, ecological, etc.), femtorisks challenge standard approaches to risk assessment, as higher-order consequences cascade across the boundaries of socially constructed complex systems. We argue that new approaches to assessing and managing systemic risk in international relations are required, inspired by principles of evolutionary theory and development of resilient ecological systems

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • …
    corecore