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Abstract

Finite Markov chains are probabilistic network models that are commonly used as representations
of dynamical processes in the physical sciences, biological sciences, economics, and elsewhere.
Markov chains that appear in realistic modelling tasks are frequently observed to be nearly
reducible, incorporating a mixture of fast and slow processes that leads to ill-conditioning of
the underlying matrix of probabilities for transitions between states. Hence, the wealth of
established theoretical results that makes Markov chains attractive and convenient models
often cannot be used straightforwardly in practice, owing to numerical instability associated
with the standard computational procedures to evaluate the expressions. This work is
concerned with the development of theory, algorithms, and simulation methods for the
efficient and numerically stable analysis of finite Markov chains, with a primary focus on
exact approaches that are robust and therefore applicable to nearly reducible networks.
New methodologies are presented to determine representative paths, identify the dominant
transition mechanisms for a particular process of interest, and analyze the local states that
have a strong influence on the characteristics of the global dynamics. The novel approaches
yield new insights into the behaviour of Markovian networks, addressing and overcoming
numerical challenges. The methodology is applied to example models that are relevant to
current problems in chemical physics, including Markov chains representing a protein folding
transition, and a configurational transition in an atomic cluster.

Relevant classical theory of finite Markov chains and a description of existing robust
algorithms for their numerical analysis is given in Chapter 1. The remainder of this thesis
considers the problem of investigating a transition from an initial set of states in a Markovian
network to an absorbing (target) macrostate. A formal approach to determine a finite
set of representative transition paths is proposed in Chapter 2, based on exact pathwise
decomposition of the total productive flux. This analysis allows for the importance of
competing dynamical processes to be rigorously quantified. A robust state reduction algorithm
to compute the expectation of any path property for a transition between two endpoint
states is also described in Chapter 2. Chapter 3 reports further numerically stable state
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reduction algorithms to compute quantities that characterize the features of a transition
at a statewise level of detail, allowing for identification of the local states that play a key
role in modulating the slow dynamics. An expression is derived for the probability that a
state is visited on a path that proceeds directly to the absorbing state without revisiting the
initial state, which characterizes the dynamical relevance of an individual state to the overall
transition process. In Chapter 4, an unsupervised strategy is proposed to utilize a highly
efficient simulation algorithm for sampling paths on a Markov chain. The framework employs
a scalable community detection algorithm to obtain an initial clustering of the network
into metastable sets of states, which is subsequently refined by a variational optimization
procedure. The optimized clustering is then used as the basis for simulating trajectory
segments that necessarily escape from the metastable macrostates. The thesis is concluded
with an overview of recent related advances that are beyond the scope of the current work
(Chapter 5), and a discussion of potential applications where the novel methodology reported
herein may be applied to perform insightful analyses that were previously intractable.
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Chapter 1

Nearly reducible finite Markov chains:
theory and algorithms

Finite Markov chains, memoryless random walks on complex networks, appear commonly as
models for stochastic dynamics in condensed matter physics, biophysics, ecology, epidemiology,
economics, and elsewhere. Here we review exact numerical methods for the analysis of
arbitrary discrete- and continuous-time Markovian networks. We focus on numerically stable
methods that are required to treat nearly reducible Markov chains, which exhibit a separation
of characteristic timescales and are therefore ill-conditioned. In this metastable regime,
dense linear algebra methods are afflicted by propagation of error in the finite precision
arithmetic, and the standard kinetic Monte Carlo algorithm to simulate paths is unfeasibly
inefficient. Furthermore, iterative eigendecomposition methods fail to converge without the
use of nontrivial and system-specific preconditioning techniques. An alternative approach is
provided by state reduction procedures, which do not require additional a priori knowledge
of the Markov chain. Macroscopic dynamical quantities such as the mean first passage time
(MFPT) for a transition to an absorbing state, higher moments of the FPT distribution, and
the average mixing time, as well as microscopic dynamical quantities such as the stationary,
committor, and absorption probabilities for nodes, can be computed robustly using state
reduction algorithms. The related kinetic path sampling algorithm can be used to efficiently
sample paths on a nearly reducible Markov chain. Thus, all information required to determine
the kinetically relevant transition mechanisms, and to identify the states that have a dominant
effect on the global dynamics, can be computed reliably even for computationally challenging
models. Rare events are a ubiquitous feature of realistic dynamical systems, and so the
methods described herein are valuable in many practical applications.
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1.1 Introduction

Finite Markov chains1–4 are commonly used to represent a variety of stochastic processes.
They provide attractive coarse-grained representations of continuous-state models, such as
the dynamics of many-particle systems,5 since the high dimensionality of the coordinate
space can be preserved.6 That is, a Markov chain can be constructed as a discretized
representation of a continuous state space with a one-to-one mapping between nodes of
the network and contiguous regions of the full coordinate space, without projection onto
representative or aggregated coordinates. Markov chains corresponding to a continuous-
state system can be constructed by using explicit simulation data to estimate a network
model by maximum-likelihood7–11 or Gibbs sampling12–15 approaches.16–20 Alternatively, the
energy landscape of a physical system can be mapped to a Markovian network using geometry
optimization methods21 to locate the stationary points.22–29 The dynamics of the resulting
Markov chain are described by a linear master equation,30–32 a system of coupled first-order
ordinary differential equations (ODEs). That is, the Markov chain corresponds to a complex
network for which the edges are parameterized by rates Kij for the transitions between nodes
i← j (in the continuous-time case), or transition probabilities Tij(τ) at a lag time τ (in the
discrete-time case).33 Continuous-time Markov chains are also frequently used to represent
population dynamics processes, where the transitions correspond to discrete changes in the
numbers of species. That is, each node of the network is associated with a vector specifying
the population distribution. Since the populations of species are unbounded, the state space
of the network is countably infinite,34,35 but can be truncated to yield a finite Markov chain
with negligible error.36,37 Simple examples of such models include birth-death processes38,39

and queuing networks.40 More complex examples arise as representations of chemical41,42

and biochemical43–45 reaction cycles, gene regulatory networks,46–49 epidemic spread,50 and
ecosystems.51

It is a ubiquitous feature of realistic models for complex dynamical processes that there
exists a separation of characteristic timescales.52–66 For instance, the extinction of a species in
an ecosystem takes place over a long period of time, compared to short-timescale fluctuations
in the size of the population arising from births and deaths.51 In economic models, significant
changes in the overall status of a market occur infrequently relative to the frequency of
individual trades.67 In molecular and condensed matter systems, the underlying energy
landscape typically features a disparity in the heights of energy barriers separating regions
of the state space.68–72 In each of these applications, it is precisely the rare event that is the
transition of interest.

In the present work, we review exact computational methods to analyze the dynamics of
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arbitrary discrete- and continuous-time finite Markov chains. In particular, we are concerned
with nearly reducible Markov chains,73,74 which exhibit rare event dynamics and are consequently
ill-conditioned.75–80 The application of conventional dense linear algebra methods to nearly
reducible Markovian networks is therefore usually prohibited by the severe propagation
of error arising from the limits of numerical precision.81 Similarly, the standard kinetic
Monte Carlo82,83 (kMC) algorithm for explicit simulation of the stochastic dynamics becomes
unfeasibly inefficient, since the trajectories have a tendency to ‘flicker’ within the metastable
sets of nodes.84–88 We therefore focus on specialized methods that are capable of treating
Markov chains featuring metastability. We consider a general Markov chain comprising the
set of nodes S. To formulate the problem of analyzing a particular transition, we consider
initial and absorbing (target) sets of nodes, denoted B and A, respectively. The nodes in B
are a subset of the set of transient (nonabsorbing) nodes, denoted Q ≡ Ac.

Following an overview of the relevant theory of Markov chains and standard linear algebra
methods for their exact analysis (Sec. 1.2), we provide a detailed review of procedures
that have superior numerical stability, and are therefore recommended for application to
Markovian networks exhibiting metastability. Specifically, we discuss state reduction methods
that are inherently robust and do not involve preconditioning techniques. The mean first
passage time (MFPT) for the A ← B transition, which is the usual dynamical observable,
can be computed using the graph transformation (GT) algorithm (Sec. 1.3).89–94 The GT
approach is closely related to uncoupling-coupling methods (Secs. 1.4.1 and 1.4.2) and the
Grassmann-Taksar-Heyman (GTH) algorithm (Sec. 1.4.3) for computation of the stationary
distribution. Further state reduction procedures exist to compute other macroscopic dynamical
properties, such as the expected time to reach the equilibrium distribution, and higher
moments of the first passage time distribution (Sec. 1.4.4). State reduction algorithms
are also available to compute microscopic dynamical properties, including the committor
probabilities for nodes (Sec. 1.5.1), defined as the probability that a trajectory initialized at
that node hits state A before state B, and other quantities that characterize the A ← B
transition path ensemble (TPE).95–101 Finally, we discuss efficient methods to simulate paths
on a nearly reducible Markov chain. The kinetic path sampling84,85 (kPS) and Monte Carlo
with absorbing Markov chains102–105 (MCAMC) algorithms provide an efficient alternative
to standard kMC simulations82,83 for this purpose (Sec. 1.5). The former method extends
the GT algorithm with an iterative reverse randomization procedure to sample the time
associated with a path escaping from a metastable region of the network, while the latter
approach uses local eigendecompositions. By employing the advanced methods described
herein, it is in principle possible to extract any desired dynamical information from a nearly
reducible Markov chain.
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1.2 Background theory of Markov chains

1.2.1 Master equation dynamics

The dynamics of a continuous-time Markov chain (CTMC), parameterized by i← j internode
transition rates Kij and with state space S, is governed by the linear master equation30–32,106

dpj(t)
dt =

∑
i 6=j

(
Kjipi(t)−Kijpj(t)

)
∀ j ∈ S, (1.1)

where pj(t) is the time-dependent occupation probability of the j-th node. Eq. 1.1 can be
written in matrix form as

dp(t)
dt

= Kp(t), (1.2)

where p(t) = (p1(t), p2(t), . . . , p|S|(t))> is the time-dependent occupation probability vector
for the nodes of the network, and K is the transition rate matrix. K has off-diagonal
elements equal to the transition rates, and diagonal elements such that the columns of the
matrix sum to zero, i.e. Kjj = −∑γ 6=jKγj. The right eigenvectors of K represent dynamical
eigenmodes, where the magnitudes and signs of the elements reflect the extent and direction
of probability flow for the corresponding nodes, respectively. The solution of Eq. 1.2 is
a sum of contributions that decay exponentially with rates equal to the negatives of the
eigenvalues {γk} of K.8 This solution leads to a formal definition for metastability, namely
that the Markov chain exhibits a spectral gap in its set of eigenvalues {γk}, and hence
there exists a set of dynamical eigenmodes that represent comparatively slow relaxation
processes.64 By the Perron-Frobenius theorem,107 K has a unique dominant zero eigenvalue
γ1 = 0 if the Markov chain is irreducible,74 i.e. if every node of the network is reachable from
all other nodes. The zero eigenvalue is associated with the stationary probability vector
π, and all other eigenvalues have a negative real component. The stationary distribution
satisfies the global balance equation Kπ = 0, where 0 is the column vector with all elements
equal to zero.74 If the stationary distribution also satisfies the detailed balance condition,
Kijπj = Kjiπi ∀ i 6= j, then the Markov chain is said to be reversible, and the eigenvalues
of K are real.2

The transition rate (or infinitesimal generator) matrix K relates to a transition probability
matrix T(τ), which propagates the probability distribution vector p(t) at discrete time
intervals τ according to the Chapman-Kolmogorov equation2 p(t+ τ) = T(τ)p(t), via50

T(τ) = exp(Kτ), (1.3)

4
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and
K = lim

τ→0

T(τ)− I
τ

, (1.4)

where I is the identity matrix. For an irreducible and aperiodic Markov chain, T has a
single dominant eigenvalue λ1 = 1 associated with the stationary distribution π, which is
the occupation probability distribution in the limit of infinite time. The absolute value of all
other eigenvalues, λk for k = 2, ...|S|, is less than unity.1 The transition rate and probability
matrices share the same set of right and left eigenvectors, {ψ(k)} and {φ(k)}, respectively.
Their eigenvalues are related via eγkτ = λk(τ), cf. Eq. 1.3.50 When the dynamics are
reversible, the Markov chain has a complete set of orthonormal eigenvectors.108 Specifically,
the left and right eigenvectors satisfy the orthonormality conditions8

∑
j∈S

φ
(k)
j φ

(l)
j πj =

∑
j∈S

ψ
(k)
j ψ

(l)
j /πj

=
∑
j∈S

ψ
(k)
j φ

(l)
j = δkl, (1.5)

where ψ(k)
j is the j-th element of the k-th right eigenvector, and δkl is the Kroenecker delta.

There are two possible choices of stochastic matrix for a CTMC.109 The first is the
branching probability matrix P, with elements Pij = Kij/

∑
γ 6=jKγj.92 P contains no

self-loops, and the time associated with a transition from the j-th node is exponentially
distributed with mean τj = 1/∑γ 6=jKγj,110 referred to as the mean waiting time for the
j-th node. The second valid stochastic matrix for a CTMC is the continuous-time linearized
transition probability matrix84

Tlin(τ) = I + τK, (1.6)

for which the mean waiting times are uniform for all nodes, equal to τ . Tlin has the same
sparsity pattern as P, except that the linearized matrix contains self-loop transitions, whereas
Pjj = 0 ∀ j. Provided that τ ≤ min{−K−1

jj : ∀ j}, the linearized transition matrix is column-
stochastic, and shares the same set of eigenvectors as K, but the eigenvalues are shifted.111

In the following exposition, we will use the notation T to denote any general stochastic
matrix for a discrete- or continuous-time Markov chain, and draw attention to separate
considerations for the different formulations where necessary.

1.2.2 Fundamental properties of irreducible Markov chains

Irreducible Markov chains have a stationary distribution π that satisfies the global balance
equations Tπ = π and Kπ = 0. The Markovian kernel112 [I − T(τ)] and the transition
rate matrix K, which we will collectively denote by A, are singular, but there exist a class

5



Nearly reducible finite Markov chains: theory and algorithms

of generalized inverses113–117 G that satisfy AGA = A. Such matrices are fundamental in
the sense that key global dynamical properties can be expressed straightforwardly in terms
of G and the stationary distribution π.1,118 In the following discussion, we use T(τ) to refer
to a discrete-time stochastic matrix parameterized at lag time τ , or the linearized transition
matrix of a CTMC with uniform mean waiting times τ .

Important examples of generalized inverses are Kemeny and Snell’s fundamental matrix1,109

Z = (I−T(τ) + π1>S )−1, (1.7)

where 1S is the |S|-dimensional column vector with elements equal to unity, and Meyer’s
group inverse,119

A# = Z− π1>S , (1.8)

with elements120

A#
ij =

∞∑
n=0

(
T nij − πi

)
. (1.9)

The fundamental matrix is a generalized inverse113 that also satisfies AZ = ZA,112,116,121,122

and the group inverse is the unique generalized inverse that additionally satisfies A#AA# =
A#.112,115 The group inverse is also the unique solution to the Bellman-type equations123

A# = (I− π1>S ) + T(τ)A#

= (I− π1>S ) + A#T(τ), (1.10)

with constraints A#π = 0 and∑γ A
#
γj = 0 ∀ j ∈ S. The diagonal elements of A# are strictly

positive.
In practice, it is sometimes more convenient to compute and work with the group

inverse rather than the fundamental matrix, since A# can be obtained without knowledge
of the stationary distribution.119 Furthermore, the elements of the group inverse have a
probabilistic interpretation. Specifically, A#

ij represents the expected deviation in the number
of visits to the i-th node for the relaxation process to the stationary distribution initialized
from the j-th node, compared to the average number of visits when starting at a node
chosen randomly in proportion to the stationary distribution.124 Formally, if N (n)

ij denotes
the expected number of times that the i-th node is visited on a trajectory of n steps initialized
from the j-th node, then119

lim
n→∞

(
N

(n)
ij −N

(n)
ik

)
= A#

ij − A
#
ik. (1.11)

A key macroscopic quantity characterizing a particular transition is the mean first passage
6
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time119,125–136 (MFPT), defined as the expected first hitting time for trajectories to reach an
absorbing (target) state given an initial condition.2 The matrix of MFPTs for all pairwise
internode transitions can be expressed directly in terms of the fundamental matrix or the
group inverse,119,129

T = (I−G + EGd)Dτ, (1.12)

where E is the |S|×|S|-dimensional matrix with all elements equal to unity, Gd is the matrix
with diagonal elements of a generalized inverse G and off-diagonal elements equal to zero,
and D = diag(π). The matrix whose elements Vij are the variances of the FPT distribution
for all pairwise internode transitions is given by V = T (2) − T ◦ T , where ◦ denotes the
element-wise product, and115,117

T (2) =
(
2[T G− (T G)dE] + T (2)

d DT
)
τ 2, (1.13)

with
T (2)

d = D−1 + 2D−1[G(I− π1>S )]dD−1. (1.14)

More complicated expressions exist for matrices with elements corresponding to the higher
moments of the FPT distributions for internode transitions.116

Another important property that characterizes the global dynamics of an irreducible
Markov chain is the average mixing time,1 which can be thought of as the expected time for
an initial occupation probability distribution to relax to the stationary distribution. More
formally, the average mixing time is the expected time for trajectories to first hit a target node
that is sampled in proportion to the stationary distribution.137 This quantity is independent
of the initial condition138–140 and is known as the Kemeny constant,1,118 given by112

ζK =
∑
γ∈S
Tγjπγ ∀ j ∈ S

= Tr(Z)τ =
(

Tr(A#) + 1
)
τ. (1.15)

Higher moments of the mixing time distribution are dependent on the initial state, but
can nonetheless be derived from a generalized inverse. Let the variance of the mixing time
distribution when the relaxation to equilibrium is initialized from the j-th node be denoted
by νj. These variances are given by

νj =
∑
γ∈S
T (2)
γj πγ − ζ2

K, (1.16)

7
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and are the elements of the vector117 (using Eqs. 1.13 and 1.14)

ν =
(
2[ζK(1>SG)> − Tr(LG)1S ]

+ 2(α>[I−G + EGd])> − ζK1S
)
τ − ζ2

K1S , (1.17)

where L = DT = T −1
d T is the mixing matrix,138 and α is the vector with elements

αi = ∑
γ Tiγπγ. The Kemeny constant effectively quantifies the extent to which all of the

nodes in the state space of a Markov chain are mutually reachable.137 When the dynamics
are diffusive, the average mixing time is relatively small, and the variances of the mixing time
distributions are likewise small and fairly uniform. In contrast, when there are metastable
states, relaxation to the stationary distribution is a slow process, and the mixing time
distributions are fat-tailed, with large means and variances, owing to the existence of rare
event transitions.

1.2.3 Eigendecomposition analysis

It is sometimes more convenient, for reasons of numerical stability or efficiency, to compute
properties of a Markov chain via an eigendecomposition operation, instead of a matrix
inversion operation required to compute the group inverse (Sec. 1.2.2). Similar to the
utility of generalized inverses, many dynamical quantities can be expressed in terms of the
eigenspectrum of a Markovian network. For instance, the average mixing time (Eq. 1.15) is
given directly by the eigenvalues of an irreducible and reversible Markov chain. In discrete-
time,108

ζK =
(

1 +
∑
k

1
1− λk

)
τ. (1.18)

The MFPTs for internode transitions can also be written in terms of the eigenspectrum of a
reversible Markov chain.133 In continuous-time, the i← j MFPT is given by108,141

Tij = 1
πj

|S|∑
k>1

1
−γk

ψ
(k)
j

[
φ

(k)
j − φ

(k)
i

]
. (1.19)

The overall A ← B MFPT, for a transition to an arbitrary absorbing macrostate A from
a set of initial nodes B, is a sum of MFPTs for transitions from each of the nodes comprising
B, where each term is weighted by the initial occupation probability of the starting node,

TAB =
∑
b∈B

pb(0)TAb. (1.20)

Although the MFPT is the usual dynamical observable,119,125–136 the complete FPT distribution
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contains valuable dynamical information that is not captured in the average. For instance,
the width of the FPT distribution characterizes the heterogeneity of the TPE. When the
transition probabilities or rates of the Markov chain depend on an external parameter, such
as the temperature in physical systems,88 the form of the FPT distribution may change
dramatically and with a relatively well-defined threshold.142 The existence of multiple peaks
in the FPT distribution suggests the presence of competing transition mechanisms that each
make a non-negligible contribution to the MFPT.101 To justify ‘lumping’ a subset of nodes of
a Markov chain, and thus obtain a reduced Markovian representation of the dynamics,1,143–153

the FPT distribution for escape from the community of nodes ought to be an exponential
distribution, which has the memoryless property.51,110

In discrete-time, the FPT distribution can be computed from eigendecomposition of the
substochastic transition probability matrix TQQ, comprising only transient nodes of the set
Q ≡ Ac. The equivalent formulation in continuous-time uses the corresponding rate matrix
KQQ, for which the diagonal elements include contributions from transitions to absorbing
nodes of the set A, so that the columns of KQQ do not necessarily sum to zero. KQQ does
not have a zero eigenvalue and associated stationary distribution, and instead all eigenvalues
have a negative real component. Since the dynamics within the transient set of nodes Q
are unchanged prior to absorption, we can still write a linear master equation (cf. Eq. 1.2)
for the dynamics within this subnetwork. There is a probability flux out of the macrostate
Q, which defines the probability distribution p(tFPT) for the A ← Q first passage times
tFPT. Noting that the propagation of an initial probability distribution p(0) according to
the linear master equation can be written in terms of the eigenspectrum of the rate matrix
(cf. Eq. 1.3),8

p(t) =
|S|∑
k=1

(
ψ(k) ⊗ φ(k)

)
p(0)eγkt, (1.21)

where ⊗ denotes the outer product, we obtain the properly normalized FPT distribution52

p(tFPT) =− 1>Q
(∑

k

γQk ψ
(k)
Q ⊗ φ

(k)
Q

)(∑
l

eγ
Q
l
tψ

(l)
Q ⊗ φ

(l)
Q

)
pQ(0) (1.22)

=−
∑
k

γQk e
γQ
k
t1>Q

(
ψ

(k)
Q ⊗ φ

(k)
Q

)
pQ(0). (1.23)

Here, γQk is the k-th eigenvalue of KQQ, with φ(k)
Q and ψ(k)

Q the corresponding left and
right eigenvectors, respectively, and pQ(0) is the vector containing the initial occupation
probabilities for the transient nodes. In writing Eq. 1.23 from Eq. 1.22, we have assumed
orthonormality of the eigenvectors (cf. Eq. 1.5). The eigendecomposition of the FPT distribution
is particularly insightful, since it separates the distribution into contributions from individual

9



Nearly reducible finite Markov chains: theory and algorithms

dynamical eigenmodes. The k-th orthonormal eigenmode makes a dominant contribution to
the FPT distribution when the product 1>Q[ψ(k)

Q ⊗ φ
(k)
Q ]pQ(0) is close to unity. The n-th

moment of the FPT distribution (Eq. 1.23) is given by52,154

〈tnFPT〉 =
∫ ∞

0
tnFPTp(tFPT)dtFPT

= n!
∑
k

1
|γQk |n

1>Q
(
ψ

(k)
Q ⊗ φ

(k)
Q

)
pQ(0). (1.24)

1.2.4 Numerical considerations for linear algebra methods

Many properties of an irreducible Markov chain can be directly expressed in terms of a
fundamental matrix, obtained via a matrix inversion operation (Sec. 1.2.2). In Sec. 1.2.3,
we noted that several key dynamical quantities characterizing the dynamics of a Markov
chain can also be computed straightforwardly from its eigenspectrum, including MFPTs
(Eq. 1.19), the FPT distribution (Eq. 1.22), the time-dependent occupation probability
distribution (Eq. 1.21), and the average mixing time (Eq. 1.18). Typical algorithms for
eigendecomposition, and for matrix inversion or diagonalization, have time complexityO(|S|3),
which is comparable to the time complexity of the state reduction algorithms described in
Secs. 1.3 and 1.4. However, dense linear algebra methods are afflicted by the propagation
of roundoff error in the finite precision arithmetic when applied to nearly reducible Markov
chains.90,92,155 The extent to which a Markov chain with metastable states is ill-conditioned
is essentially independent of its dimensionality.140 Hence, for Markov chains featuring a
rare event, numerical error can prohibit the use of conventional dense methods, such as LU
decomposition to solve linear systems of equations,35 or the QR algorithm to perform an
eigendecomposition,156 even when the network comprises just a few nodes.52,93

For reversible Markov chains,2 marginal improvements in the numerical stability of linear
algebra methods can be gained by employing the symmetrized transition rate matrix (in
the continuous-time case), with elements K̃ij = (KijKji)1/2, or the symmetrized transition
probability matrix (in the discrete-time case), with elements T̃ij(τ) = (Tij(τ)Tji(τ))1/2.52

These symmetrized matrices have the same eigenvalues as their unsymmetrized counterparts,
and the elements of the right and left eigenvectors for the two formulations are related via
ψ

(k)
j = π

1/2
j ψ̃

(k)
j and φ(k)

j = π
−1/2
j φ̃

(k)
j , respectively.8

An alternative framework to solve linear systems of equations or to determine the eigenspectrum
of a Markov chain is provided by iterative methods,157–160 which can be optimized to treat
Markov chains featuring a spectral gap via preconditioning.161 Unlike direct solution methods,
iterative methods preserve the sparsity of a stochastic matrix, and are therefore well-suited
to treating high-dimensional structured systems,162 such as those that arise in population
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dynamics models.37 Below, we briefly outline the basis of these iterative methods and
preconditioning strategies to aid their convergence. A detailed review of both direct and
iterative solution methods in the context of Markov chains can be found in Ref. 77.

As an illustrative example, we consider application of the simplest iterative solution
method, namely the power method, to compute the stationary distribution of a Markov
chain, i.e. to solve Kπ = 0 (in continuous-time) or T(τ)π = π (in discrete-time). In the
power method, the solution vector x is repeatedly updated according to

x′ = T(τ)x = (I−K)x. (1.25)

The convergence rate for Eq. 1.25 is λ2.77 Thus when the Markov chain is nearly reducible,
the convergence x → π is exceedingly slow. To remedy this problem, we may introduce
a preconditioning matrix M that is readily invertible, ideally such that M ≈ K and the
inverse M−1 yields a matrix (I−M−1K) that has no subdominant eigenvalues close to the
unique unit eigenvalue. The rate of convergence of the preconditioned version of Eq. 1.25
is consequently fast. In general, preconditioning refers to any method to modify a system
of linear equations by premultiplication. That is, Ax = b ⇒ M−1Ax = M−1b, where
Mc = y can be solved efficiently with any y, and this transformation favourably alters the
distribution of eigenvalues, thereby aiding the convergence of iterative methods.

The success of iterative solution methods applied to ill-conditioned Markov chains exhibiting
rare event dynamics is clearly strongly dependent on the choice of M. Some iterative
methods simplify the additional input required from the user by implicitly incorporating
a preconditioning matrix. Successive overrelaxation163 (SOR) to solve the linear problem
Ax = b, which can be thought of as a generalization of Gauss-Seidel iteration, splits the
relevant matrix A as

ωA = (D− ωL)− (ωU + (1− ω)D), (1.26)

with D a diagonal matrix, L and U strictly lower- and upper-triangular matrices, respectively,
and ω > 0 is the relaxation factor. A solution vector x is then iterated according to

x′ =(D− ωL)−1(ωU + (1− ω)D)x + ω(D− ωL)−1b. (1.27)

The matrix ω−1(D−ωL) effectively acts as a preconditioner in SOR.163 Hence, the problem
of selecting an appropriate preconditioning matrix is simplified to the problem of determining
a suitable value for the scalar parameter ω. In practice, there is very little guidance on an
appropriate choice of relaxation factor for solving a given system of linear equations if the
matrix A is unstructured, and the possible gains in efficiency may be quite limited.93
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Krylov subspace methods are a class of sparse iterative procedures that can be used to
perform an eigendecomposition of a matrix A.155,156,164,165 The idea is to generate a sequence
of m vectors, {vk} ∀ k = 1, . . . ,m, which form an orthonormal basis of the m-th order
Krylov subspace spanned by the set of vectors (v1,Ax, . . . ,Am−1v1), where v1 is an arbitrary
normalized vector.166 The Arnoldi algorithm167 provides an iterative method to produce a
sequence of orthonormal vectors Vm = (v1, . . . ,vm) spanning the Krylov subspace.168,169

The procedure yields a m×m-dimensional upper Hessenberg matrix Hm that satisfies Hm =
V>mAVm. For a sufficiently large number of iterations m, the dominant eigenvalues of H
converge to those of A. Additionally, if ϕ(m)

k denotes the k-th dominant eigenvector of
Hm, then the so-called Ritz vector Vmϕ

(m)
k approximates the k-th eigenvector of A.170 The

generalized minimal residual (GMRES) algorithm171 adapts this concept to solve the linear
problem Ax = b.

For well-conditioned matrices A, the eigenvalues of Hm converge rapidy to those of A,
so that the former matrix is comparatively low-dimensional and its eigenpairs can be found
efficiently by direct solution methods. For more computationally challenging problems, the
required number of iterations m is large, so that the storage requirements and operation
counts of the procedure become prohibitively large. Typical implementations of the Arnoldi
and related algorithms incorporate implicit restarting to improve efficiency and avoid “wasteful"
memory usage.172,173 However, numerical problems remain pervasive for pathological systems
such as nearly reducible Markov chains.174 In this ill-conditioned regime, the Arnoldi
and GMRES methods can be made more effective by preconditioning in the usual way,161

i.e. replacing the matrix A with M−1A, where M is similar to A and M−1y can be evaluated
efficiently and reliably for any vector y.

Similar strategies can also be used to solve systems of ODEs. A numerically stable
approach to solving the master equation for the time-dependent occupation probability
distribution p(t) (Eq. 1.2) uses a stiff ODE175,176 integrator,177–181 employing GMRES iterations171

preconditioned with an appropriate matrix to solve the relevant system of linear equations.182

In principle, preconditioned iterative methods provide stable algorithms to analyze Markov
chains that are scalable in terms of both operation counts and memory usage. However, this
approach is of limited use in practice, owing to nontrivial and system-specific considerations
that arise. That is, the rate of convergence of iterative procedures is strongly dependent
on the choice of preconditioning matrix and on the initial guess for the solution vector.
Without appropriate preconditioning, iterative solvers may converge unfeasibly slowly for
linear problems involving nearly reducible Markov chains.93 For arbitrary Markov chains,
there is limited a priori information on appropriate input to sparse procedures, and strategies
are not generalizable. Hence, the additional parameters must usually be explored empirically
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in a trial-and-error fashion.

1.2.5 Transition path theory

The theory presented in Secs. 1.2.2 and 1.2.3 was concerned with global dynamical properties
of Markov chains. The role of individual nodes in determining macroscopic behaviour is
elucidated by transition path theory (TPT).95–99 TPT provides a theoretical framework to
analyze the transition path ensemble46,47,101 (TPE) of reactive paths,100,183 which proceed
directly from an initial macrostate B to an absorbing macrostate A, without revisiting B.
The central object of TPT is the vector of committor probabilities184–187 for nodes. We
denote by q+

j the forward A ← B committor probability for the j-th node. q+
j is the

probability that a trajectory occupying node j will visit the absorbing macrostate A before
the initial macrostate B. It is in this sense that the committor probability represents an
idealized reaction coordinate quantifying the progress of a A ← B transition, onto which
state variables can be projected.111

Formally, the forward committor probability for the j-th node is defined as98

q+
j ≡ Pj(hB < hA), (1.28)

where Pj denotes the probability considering all trajectories ξ(t) initialized from the node
j, and the random variable hB = inf{t > 0 : ξ(t) ∈ B} is the first hitting time for the
macrostate B.2 In the context of Markovian networks, a trajectory ξ(t) is a sequence of
visited nodes and associated times. For reversible Markov chains, the backward committor
probabilities, for the B ← A direction, which are defined analogously to Eq. 1.28 but for
the time-reversed dynamics,98 are related to the forward committor probabilities simply by
q−j = 1 − q+

j .111 The committor probabilities can be written as the solution of a series of
linear equations obtained by a first-step analysis4

q+
j =

∑
i/∈A

Tijq
+
i , (1.29)

where we have noted that, in this definition, q+
a∈A = 1 and q+

b∈B = 0. See Ref. 98 for a
detailed proof. Eq. 1.29 can be solved using a variety of methods,111,188 such as Gauss-Seidel
iteration,189,190 successive over-relaxation,92,165 or robustly by state reduction (Sec. 1.5.1).191

The committor probabilities can also be computed from the second dominant (i.e. first
nontrivial) right eigenvector of the modified stochastic matrix T for which nodes of the sets
B and A are subsumed into single nodes b and a, respectively, and where both of these
supernodes are considered to be absorbing. That is, T aj = 0 ∀ j 6= a and T bj = 0 ∀ j 6= b.
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This transition matrix has two unit eigenvalues, one of which is associated with the unit
vector, and the second is associated with an eigenvector that we shall denote by ψ(2). The
committor probability for the j-th node is then111

q+
j =

ψ
(2)
j − ψ

(2)
a

ψ
(2)
b − ψ

(2)
a

. (1.30)

Obtaining the committor probabilities using Eq. 1.30 is the most scalable approach, since the
Lanczos algorithm169 can be used to compute ψ(2) efficiently for sparse systems.162 Moreover,
this formulation is readily extended to the first hitting problem (cf. Eq. 1.28) for an arbitrary
number of target states.111

Several quantities characterizing the A ← B TPE at a nodewise level of detail can be
obtained from the committor probabilities.95–99 One such dynamical property of interest
is the probability distribution of reactive trajectories mR

j , defined as the probability that
the j-th node is occupied at equilibrium by a trajectory that is reactive.98 Intuitively, this
quantity is a product of the probabilities that the trajectory last visited B before A and will
next visit A before B, and the stationary probability of the j-th node. Therefore, from the
definition of the committor probabilities (Eq. 1.28), if the detailed balance condition holds,
this probability is given by

mR
j = πjq

+
j (1− q+

j ). (1.31)

The probability that any given trajectory at equilibrium is reactive is equal to the normalization
factor ZAB = ∑

j∈S m
R
j . The normalized distribution of reactive trajectories, mj = mR

j /ZAB,
is the probability to observe a trajectory at node j, conditional on the trajectory being
reactive.

In the continuous-time case,98 the net probability flux of reactive trajectories along the
i← j edge of the network is

f+
ij =

πjKij(q+
i − q+

j ), if q+
i > q+

j ,

0, otherwise.
(1.32)

In discrete-time, Tij replaces Kij in Eq. 1.32.111 The A ← B steady state rate constant,192

kSS
AB, can be calculated by defining an isocommittor cut183 Σα, which partitions the network

into two sets A∗ ⊃ A and B∗ ⊃ B such that q+
a∈A∗ > α > q+

b∈B∗ , and summing over the net
probability fluxes associated with the edges of the cut193,194

kSS
AB = 1

πB

∑
i∈A∗,j∈B∗

f+
ij = JAB

πB
. (1.33)
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Here, we have denoted the steady state reactive A ← B flux43 as JAB, and πB = ∑
b∈B πb. Of

particular interest is the isocommittor cut Σα=0.5, which defines the edges that constitute the
transition state ensemble (TSE). The TSE essentially characterizes the boundary between
the effective basins of attraction associated with A and B.195–199 Alternative approaches to
characterize the TSE are based on Bayesian path statistics200 and the emission-absorption
cut defined in terms of the eigenvectors.64

Eq. 1.33 shows that the steady state reactive flux, JAB, can be exactly decomposed into
additive contributions from individual edges. Hence, the local states that constitute the
dominant channels for the productive pathways can be readily identified. Alternatively, JAB
can be exactly decomposed into a finite set of contributions from transition flux-paths,193,201

as we show in Chapter 2. This procedure allows for a pathwise analysis to quantify the
relative importance of competing mechanisms for the transition process.

The expressions for the probability distribution of reactive trajectories for nodes (Eq. 1.31),
and the net reactive fluxes for edges (Eq. 1.32), correspond to the equilibrium TPE. That is,
these quantities are concerned with the situation where the system has relaxed to a steady
state. Formally, this analysis involves considering a trajectory of infinite length in time,
which continually transitions between the A and B states.98 The dynamical obserable for
the equilibrium path ensemble is kSS

AB (Eq. 1.33). In Ref. 100, a theory of transition paths was
developed for the nonequilibrium path ensemble, i.e. considering the first hitting problem
where trajectories are absorbed at the A state. In particular, expressions were derived for
an analogue of the net reactive flux (cf. Eq. 1.32), and for the expected numbers of times
that nodes are visited along reactive paths. In Chapter 3, expressions for the probabilities
that nodes are visited along reactive paths are derived for both the nonequilibrium and
equilibrium cases.191 Together with the committor probabilities for nodes, the reactive
visitation probabilities provide a rigorous metric to identify the local states that have a
dominant influence on the productive A ← B dynamics.101

1.3 Graph transformation method to calculate MFPTs

We now proceed to describe numerically stable state reduction methods to compute the
properties of a Markov chain, including moments of the first passage time distribution
(Eq. 1.24), the average mixing time (Eq. 1.15), and other quantities introduced in Sec. 1.2.
The state reduction approach is exact and requires no additional knowledge of the Markov
chain besides the transition probability or rate matrix. Hence, state reduction procedures
are of greater general utility than sparse linear algebra algorithms in application to nearly
reducible Markov chains, since convergence of the latter methods in the metastable regime
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is strongly dependent on the careful choice, and moreover existence, of a suitable auxiliary
matrix in the preconditioning scheme (Sec. 1.2.4). In this section, we introduce the concept
of a renormalized Markov chain, which is central to the state reduction methodology, and
prove that renormalization can be used to robustly compute the MFPT for a transition. In
Sec. 1.4, we describe further closely related state reduction methods for the exact analysis
of Markovian network dynamics.

1.3.1 Graph transformation algorithm

The graph transformation89–93 (GT) algorithm is a procedure for the iterative elimination
of nodes in an arbitrary Markov chain, while preserving the A ← B mean first passage time
(MFPT) for the transition from an initial node {b} ≡ B to an absorbing macrostate A.94 We
denote the set of intervening nodes by I ≡ (A∪ B)c. The GT method uses renormalization
of transition probabilities, and of mean waiting times (in the continuous-time case) or lag
times (in discrete-time) for transitions from nodes, to preserve individual path probabilities
and the average time associated with the ensemble of paths to the absorbing state.

At each step of the nodewise iterative GT algorithm, the n-th node, n ∈ I, is eliminated
from the network, and the probabilities for internode i ← j transitions on the remaining
network are renormalized according to

T ′ij = Tij + TinTnj
∞∑
m=0

Tmnn

= Tij + TinTnj
1− Tnn

. (1.34)

The waiting or lag times of nodes j, which we denote by τj, are likewise updated according
to

τ ′j =
∑
γ 6=n

{
Tγjτj + TγnTnj

∞∑
m=0

(
τj + (m+ 1)τnTmnn

)}

= τj + Tnjτn
1− Tnn

. (1.35)

The transition probabilities for pairs of nodes i and j, where one or both of the nodes are not
directly connected to n, are unaffected by the renormalization (Eq. 1.34). If i and j were not
directly connected in the untransformed network, but both nodes were directly connected
to n, i.e. the sequence of direct transitions i ← n ← j existed prior to renormalization,
then a new i← j transition connects the pair of nodes in the renormalized network. Hence,
the renormalized network at the n-th iteration of the GT algorithm is less sparse than the
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network at the (n− 1)-th iteration, and self-loop (j ← j) transtions, if not initially present,
are introduced into the successive Markov chains in the course of the algorithm. The mean
waiting or lag time for a transition from the j-th node, τj, increases upon elimination of
the n-th node if the n← j transition exists, and remains unchanged by the renormalization
otherwise (Eq. 1.35). Hence, if the τj are initially uniform, as is the case for the lag times
of a DTMC, then they become nonuniform in the renormalized network. The effect of the
renormalization procedure to eliminate a single node (Eqs. 1.34 and 1.35) is illustrated in
Fig. 1.1.

Eq. 1.34 conserves the probability flow out of all noneliminated nodes, i.e. ∑
γ T
′
γj =

1 ∀ j 6= n.92 The renormalized transition probabilities T ′ij subsume all i← j transitions that
occurred indirectly, i.e. via intervening n, with an arbitrary number of self-loop transitions
of n, on the original network.84 That is, the transition probabilities for the renormalized
network not only account for direct i ← j transitions, but also ‘round-trip’ transitions
i← n← j, i← n← n← j, etc. The renormalized mean waiting or lag times τ ′j (Eq. 1.35)
have a similar probabilistic interpretation. Namely, τ ′j represents the expected time for a
transition from the j-th node, accounting for the average contribution from deviations via the
eliminated node n.140 That is, τ ′j includes the average time attributable to n← . . .← n← j

loops before proceeding to escape from {j} ∪ {n}.
Eqs. 1.34 and 1.35 exactly preserve the MFPTs from any given transient node in the

network to the set of absorbing nodes A. The renormalization of transition probabilities
(Eq. 1.34) also preserves the probabilities associated with individual paths (in a renormalized
representation) from transient to absorbing nodes. Hence, the elements Bab of the absorption
matrix B, where a ∈ A and b ∈ B, are given by the renormalized transition probabilities T ′ab
of the network where all nodes of the set (A∪ {b})c have been eliminated using Eq. 1.34. A
formal proof of these statements is the subject of Sec. 1.3.2. If the original Markov chain is
irreducible, then the renormalized Markov chain is also irreducible, and an expression can be
derived for the stationary distribution π of the transformed network.74 This theorem forms
the basis of state reduction methods to compute π (Secs. 1.4.1-1.4.3).

The GT method for the computation of A ← B MFPTs is significantly more numerically
stable than linear algebra methods.92,93 The GT procedure can retain numerical precision
even when a node n to be eliminated is associated with a dominant probability for the self-
loop transition, Tnn → 1, because in this case the equivalence 1 − Tnn ≡

∑
γ 6=n Tγn can be

exploited to avoid performing the subtraction operation.202,203 Using this numerical trick
minimizes error in the finite precision arithmetic that is subsequently propagated,75–80 which
for nearly reducible Markov chains is otherwise prohibitively severe.73,81

The GT algorithm has a time complexity that is strongly dependent on the average
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Figure 1.1: Schematic illustration of renormalization (Eq. 1.34) to eliminate a single node n from a
Markov chain parameterized by the transition probability matrix T. The transition probabilities T′
of the renormalized Markov chain account for transitions that occur indirectly, via the “censored"
state (here, the n-th node). Thus, the reduced model features a γ ← β transition that is not present
in the original network, which corresponds to the family of transitions γ ← n← . . .← n← β, where
an arbitrary number of n ← n transitions occur. Similarly, the reduced Markov chain contains a
β ← β transition, and the probabilities of the β ← δ and γ ← δ transitions have increased (indicated
by +) to account for paths that proceed via the eliminated node n.

degree of nodes and on the heterogeneity of the node degree distribution.90 Empirically, the
nodewise iterative renormalization procedure has been observed to scale as O(|S|4) for sparse
random networks and as O(|S|3) for some other classes of structured network.84 Since a
DTMC is less sparse than the corresponding CTMC, there is no advantage to converting from
a continuous- to a discrete-time formulation (Eq. 1.3), as the state reduction computation will
then be less efficient. The reverse operation (formally given by Eq. 1.4) is highly nontrivial
to perform in practice,140 and in any case an equivalent continuous-time representation of a
DTMC does not necessarily exist.10,204 The performance considerations for state reduction
methods are complementary to those for matrix inversion and diagonalization methods
(Sec. 1.2.4), which have time complexity O(|S|3),205 but frequently fail when the Markov
chain features a spectral gap.81 GT is therefore the method of choice to compute MFPTs
between two subsets of nodes in a Markov chain featuring a rare event, and likewise the state
reduction procedures outlined in Sec. 1.4 allow for robust computation of further dynamical
quantities that are otherwise challenging to obtain for nearly reducible Markov chains. There
are numerous tricks for performance optimization of state reduction methods, for example
prioritizing the elimination of nodes with a low degree,92 switching from sparse to dense
storage when the number of remaining nodes in the network falls below a threshold,90 and
eliminating multiple nodes at once via a matrix inversion operation (Sec. 1.4.1).94,192
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1.3.2 Graph transformation proof

We wish to prove that the GT algorithm correctly preserves the MFPT from any given node
in the network to a set of absorbing nodes A. Recall that the overall A ← B MFPT, TAB,
is an average of MFPTs TAb for transitions from a node b ∈ B of the initial set to any node
of the absorbing set A, for a specified initial occupation probability distribution (Eq. 1.20).
The following argument demonstrates that the individual MFPTs TAb, from which TAB is
derived, can be computed exactly using the renormalized transition probabilities (Eq. 1.34)
and waiting times (Eq. 1.35) that are obtained after eliminating all nodes of the set (A∪ b)c,
with A and b chosen arbitrarily.

First, we derive the renormalized mean waiting or lag times (Eq. 1.35) more explicitly.
To do this, we introduce the reweighted transition probabilities T̃ij = Tije

ζτj . Consider the
n-step discrete path ξ specified as a sequence of visited nodes, ξ = {in ← in−1 ← . . .← i1}.
The probability of this path from i1 is Wξ = ∏

(i←j)∈ξ Tij, where the product includes all
i ← j transitions in the path ξ, with the correct multiplicities. The product of reweighted
transition probabilities along the path, W̃ξ, is defined similarly. The reweighted transition
probabilities have the convenient property of satisfying d

dζ
W̃ξ


ζ=0

=Wξ

n−1∑
k=1

τik . (1.36)

Hence, this derivative yields the product of the path probability and the average waiting time
associated with the path. For an a ∈ A ← b ∈ B path ξ(a,b), this quantity is the contribution
of the path to the overall A ← b MFPT. Therefore to correctly preserve the A ← b MFPT
by renormalization of the waiting times for nodes j that are directly connected to the n-th
(eliminated) node, each renormalized waiting time τ ′j must be equal to the sum of derivatives
(Eq. 1.36) of each of the reweighted transition probabilities for transitions from j to the set
of nodes directly connected to j or n, excluding n. We will denote this set of adjacent nodes
by Γ. If we use the GT relation for the reweighted transition probabilities (Eq. 1.34) in this
expression, then we recover Eq. 1.35,92

τ ′j =
∑
γ∈Γ

 d
dζ
T̃ ′γj


ζ=0

=
∑
γ∈Γ

 d
dζ

T̃γj + T̃γnT̃nj

1− T̃nn


ζ=0

= τj + Tnjτn
1− Tnn

. (1.37)

While Eq. 1.34 preserves the probabilities associated with individual ξ(a,q) first passage
paths (in their resulting reduced representation) from any transient node q ∈ Q to any
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absorbing node a ∈ A, Eq. 1.35 does not preserve the expected first passage times for
individual paths to the absorbing state, but instead preserves the A ← q MFPTs for all
transient nodes q ∈ Q. That is, Eq. 1.35 preserves the path ensemble average time for the
transition from a transient node to the set of absorbing nodes. To understand this result,
note that the formula for the renormalized waiting time τ ′j (Eq. 1.35) is an average over
all γ ∈ Γ ← j transitions (cf. Eq. 1.37) and is associated with each of the renormalized
probabilities for these transitions. We now proceed to provide a formal proof that Eq. 1.35
not only preserves the probability and mean time for the local γ ∈ Γ ← j transitions, but
also preserves the A ← q MFPTs for all transient nodes q ∈ Q that remain noneliminated.

The overall probability associated with a a ← q first passage path that proceeds via at
least one transition between nodes of the set Γ, on a network where the n-th node has been
eliminated, can be factorized into probabilities for segments of the path divided as follows:
the portion of the path from the starting transient node q ∈ Q to a node j of the set Γ
(denoted ξ(j,q)), the portion of the path from a node γ of the set Γ to the absorbing node
a ∈ A (denoted ξ(a,γ)), and transitions within nodes of the set Γ. The probability for any
γ ∈ Γ ← j transition on the transformed network is simply T ′γj, and the path segments
ξ(j,q) and ξ(a,γ) are associated with products of transition probabilities Wξ(j,q) and Wξ(a,γ) ,
respectively, which do not involve renormalized transition probabilities. Using the reweighted
transition probabilities and the convenient property of their derivatives (Eq. 1.36), we can
hence write the contribution from the family of paths starting from node q and ending in
node a, with a single transition γ ← j between nodes of the set Γ, to the total A ← B MFPT
as follows:92 d

dζ

∑
ξ(j,q)

W̃ξ(j,q)

∑
γ∈Γ

T̃ ′γj
∑
ξ(a,γ)

W̃ξ(a,γ)


ζ=0

=
∑
ξ(j,q)

dW̃ξ(j,q)

dζ


ζ=0

∑
γ∈Γ

T̃ ′γj
∑
ξ(a,γ)

W̃ξ(a,γ)

+
∑
ξ(j,q)

W̃ξ(j,q)

∑
γ∈Γ

dT̃ ′γj
dζ


ζ=0

∑
ξ(a,γ)

W̃ξ(a,γ)

+
∑
ξ(j,q)

Wξ(j,q)

∑
γ∈Γ

T ′γj
∑
ξ(a,γ)

dW̃ξ(a,γ)

dζ


ζ=0

. (1.38)

In this expression, there are sums over all path segments ξ(j,q) initialized from a particular
transient node q ∈ Q and ending at a node j ∈ Γ, and over all path segments ξ(a,γ) beginning
at a node γ ∈ Γ and terminating at a particular absorbing node a ∈ A. Only the second
term in Eq. 1.38 is affected by the renormalization, and the derivative in this term is the
same as the local term in Eq. 1.37. The contribution of the described family of paths (for
a particular absorbing node a) to the overall A ← q MFPT is not preserved by the graph
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transformation, owing to the fact that each γ ∈ Γ ← j step is associated with the same
averaged τ ′j, as stated previously. To obtain the result for all A ← q first passage paths, we
sum over absorbing nodes a ∈ A.92,140 The contribution of this set of paths to the A ← q

MFPT is conserved, ∑a∈A
∑
ξ(a,γ)Wξ(a,γ) = 1 ∀ γ ∈ Γ. Hence, the renormalization equations

(Eqs. 1.34 and 1.35), applied any number of times to the Markov chain, preserve the MFPTs
TAq for transitions from all transient nodes q ∈ Q that remain noneliminated.

The vector of MFPTs for transitions from all transient nodes, of the set Q ≡ Ac, can
be obtained by solving the following system of linear equations obtained from a first-step
analysis:4

TAj = τj +
∑
γ /∈A

TγjTAγ. (1.39)

Recall that we wish to find the MFPT for the transition from a particular initial node b.
When all nodes of the set (A ∪ b)c have been eliminated from the Markov chain according
to Eqs. 1.34 and 1.35, the only remaining edges in the network represent transitions from
the b-th node to nodes of the absorbing macrostate A, and the b ← b self-loop. The first-
step relation for the MFPTs (Eq. 1.39) therefore reduces to a direct solution for the A ← b

MFPT,
TAb = τ ′b

1− T ′bb
. (1.40)

To compute the overall A ← B MFPT (Eq. 1.20), for an initial macrostate B ⊆ Q, the
MFPTs for transitions from each node of the set B to the absorbing state A are required.
When the initial set of nodes B is small, this can be achieved easily in practice as follows.
Each individual MFPT, TAb for nodes b ∈ B, is determined via Eq. 1.40 by eliminating all
nodes of the set B \ b, after first eliminating all nodes of the set I ≡ (A ∪ B)c and storing
the resulting renormalized network. Then only the former computation needs to be repeated
for each initial node b ∈ B, in order to obtain TAB. When the absorbing state A is small,
the MFPT for the reverse (B ← A) direction can be computed similarly with comparatively
little additional computational effort, by eliminating all nodes of the set A \ a from the
renormalized network resulting from elimination of all nodes of the set I, for each node
a ∈ A in turn.

1.4 Further state reduction algorithms

The renormalization of transition probabilities (Eq. 1.34) forms the basis for the family
of state reduction methods to robustly compute the properties of a Markov chain. In this
section, we extend the theory of renormalization to eliminate blocks of nodes simultaneously,
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and describe numerically stable state reduction procedures to compute many of the dynamical
quantities introduced in Sec. 1.2, including uncoupling-coupling methods to determine the
stationary distribution (Secs. 1.4.1 and 1.4.2), and the REFUND algorithm to compute the
group inverse (Sec. 1.4.4).

1.4.1 Exact uncoupling-coupling via stochastic complements

In Sec. 1.3, we argued that renormalization of the transition probabilities upon eliminating
a single node n in the network (Eq. 1.34) preserves the probabilities of individual paths, in
their renormalized representation, on the resulting reduced Markov chain. This theory can
be extended to allow for elimination of a block of nodes N in a single step, using a matrix
inversion operation. The state space of the Markov chain is partitioned as S ≡ N ∪ Z, so
that we write the transition probability matrix in block form as

T =
TNN TNZ

TZN TZZ

 , (1.41)

where TNZ contains the n ∈ N ← z ∈ Z transition probabilities, and the other blocks are
defined similarly. Hence, TNN is the substochastic matrix for transitions within the subset of
nodes to be eliminated, N , and TZZ likewise corresponds to the subnetwork comprising the
nodes of the macrostate to be retained, Z ≡ N c. The renormalized Markov chain consisting
only of the nodes within the set Z is associated with the transition probability matrix203

T′ZZ ← TZZ + TZN (I−TNN )−1TNZ . (1.42)

Eq. 1.42 is referred to as a stochastic complement by Meyer.74 The renormalized transition
probabilities account for the average behaviour of paths that visit N , including transitions
within N , analogous to the case of eliminating a single node (Eq. 1.34).206 Therefore, if there
was no direct i ← j transition in the original network, but there were i ← N ← j paths,
then a direct i← j transition is present in the renormalized network for i, j ∈ Z. Similarly,
it can be shown that the |Z|-dimensional vector of renormalized mean waiting or lag times
for the remaining network is given by94

τ ′Z ← τZ + τN (I−TNN )−1TNZ . (1.43)

Eqs. 1.42 and 1.43 constitute a block formulation of the GT algorithm (Sec. 1.3) that
remains numerically stable when each of the blocks of nodes to be eliminated N constitute
a metastable state, so that the TNN matrices do not feature a spectral gap, and hence
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the Markovian kernel (I − TNN ) can be safely inverted by dense linear algebra methods.
Simultaneous elimination of blocks of nodes in a Markov chain can also lead to improved
time complexity of the GT algorithm.192

It can be shown that if a Markov chain is irreducible, then any stochastic complement
(Eq. 1.42) also has a well-defined stationary distribution,1 and hence, so do any stochastic
complements of that stochastic complement, and so on. Moreover, if a transition probability
matrix is partitioned intoN communities, C = {1, 2, . . . , N}, then the stochastic complements
(i.e. renormalized Markov chains) corresponding to each of the communities have independent
stationary distributions, from which the stationary distribution of the original Markov chain
can be inferred.207 Specifically, the stationary distribution of the original Markov chain
partitioned according to

T =


T11 T12 · · · T1N

T21 T22 · · · T2N
... ... . . . ...

TN1 TN2 · · · TNN

 , (1.44)

is given by
π = (ζ1π

′
1, . . . , ζN−1π

′
N−1, ζNπ

′
N)>, (1.45)

where ζY = ∑
y∈Y πy is the coupling factor corresponding to the stochastic complement

(Eq. 1.42) comprising the nodes of the set Y , which has a stationary distribution vector π′Y ,
and ∑Y ζY = 1. The N -dimensional vector of coupling factors,

ζ = (ζ1, . . . , ζN−1, ζN)>, (1.46)

is the stationary distribution for the stochastic matrix C with elements CXY = 1>XTXYπ′Y , for
all communities X ,Y ∈ C.207 C is referred to as the aggregation matrix, since its elements are
simply the intercommunity transition probabilities when a local equilibrium6 is established
within each of the separate macrostates. If the community structure C appropriately characterizes
the metastable communities of nodes, then C is well-conditioned, and hence ζ can be
determined accurately with relatively little computational effort, since the number of communities
N is typically small. The coupling factors take a particularly simple form in the case of a
two-level partition into sets N and Z ≡ N c (Eq. 1.41), namely74

ζZ = 1− 1>NTNNπ′N
2− 1>ZZTZZπ′Z − 1>NTNNπ′N

, (1.47)

and ζN = 1− ζZ .
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These observations suggest the following uncoupling-coupling algorithm to compute the
stationary distribution vector. In the uncoupling phase, an irreducible Markov chain and its
derived stochastic complements are repeatedly decomposed into two or more renormalized
Markov chains of reduced dimensionality, based on a determined partitioning C at each
iteration. For the set of stochastic complements resulting from the final iteration of the
uncoupling phase, linear algebra methods (Sec. 1.2) or the GTH algorithm125,208 (Sec. 1.4.3)
can be used to compute the independent stationary distributions for each of the renormalized
Markov chains with state space Y , π′Y ∀Y ∈ C. Then the aggregation matrix C is constructed
from this information, and the coupling factors ζY associated with each of the stochastic
complements are obtained as the stationary distribution of C. The vectors {π′Y} and
corresponding coupling factors {ζY} yield the stationary distribution of the parent Markov
chain, comprising the nodes in all communities Y ∈ C (Eq. 1.45). That is, the final
iteration of the uncoupling stage has been undone. Repeated coupling of the stationary
distributions for the stochastic complements at each level of the hierarchical partitioning
that was performed in the uncoupling phase eventually recovers the stationary distribution
of the original Markov chain. This uncoupling-coupling procedure based on stochastic
complementation (Eq. 1.42) is illustrated in Fig. 1.2.

In practice, this exact uncoupling-coupling algorithm has been found to be highly effective
for determining the stationary distribution of a nearly reducible Markov chain.209 To understand
this observation, consider an iteration of the uncoupling phase, where the Markov chain T
has N metastable macrostates, and is partitioned into the set of N communities C, which
accurately characterizes the metastable sets of nodes. For each community Z ∈ C, the
renormalized transition matrix T′ZZ (Eq. 1.42) is then close to the (nearly stochastic) block
TZZ (Eq. 1.41) of the parent transition matrix.74 Since the dynamics within the state space
Z are fast compared to escape from this subnetwork, neither the absorbing Markov chain
TZZ nor its derived stochastic complement T′ZZ have any subdominant eigenvalues close
to unity, and the renormalized Markov chain T′ZZ is therefore well-conditioned. Hence,
inversion of the Markovian kernel to determine the corresponding stochastic complement
(Eq. 1.42), and computation of the stationary distribution for this stochastic complement,
is numerically stable.210

More formally, since each of the metastable macrostates gives rise to a slowly decaying
dynamical eigenmode, the nearly reducible Markov chain T necessarily has at least N − 1
eigenvalues λk that are close to unity, in addition to the eigenvalue λ1 = 1 that is associated
with the stationary distribution. Furthermore, each of the stochastic complements T′ZZ ,
corresponding to communities Z ∈ C, necessarily has a unit eigenvalue.207 Each of the
unique unit eigenvalues for the N stochastic complements are associated with one of the N
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dominant eigenvalues for the original Markov chain, and this mapping becomes exact in the
limit where the original Markov chain is completely reducible, i.e. where the separate blocks
Z ∈ C are themselves irreducible.73 Hence, by the continuity of the eigenspectrum, if there is
a spectral gap after theN dominant eigenvalues of the original Markov chain, then each of the
N stochastic complements must have a spectral gap after the unit eigenvalue.74 In fact, it can
be shown that there exists an upper bound on the second dominant eigenvalue for a stochastic
complement of a reversible Markov chain.211 Thus if the community structures used to
partition the stochastic complements during the uncoupling phase appropriately characterize
all metastable sets of nodes in the relevant Markov chains, so that the aggregation matrices
are also well-conditioned, then the entire uncoupling-coupling procedure is numerically stable.
Moreover, the uncoupling-coupling procedure is readily parallelizable, owing to the independence
of the stationary distributions for the stochastic complements derived from a parent Markov
chain.207

1.4.2 Iterative aggregation-disaggregation

Stochastic complementation is close in spirit to iterative aggregation-disaggregation (IAD)
methods212–215 to compute the stationary distribution π. Both methods use an N -way
partitioning of a Markov chain based on the community structure C (Eq. 1.44). Whereas
the uncoupling-coupling in stochastic complementation is exact, IAD uses the substochastic
blocks of a partitioned Markov chain directly, thereby avoiding the matrix inversion operations
required to compute the stochastic complements (Eq. 1.42).

To infer an approximation to the stationary distribution of the parent Markov chain in
IAD, the normalized right eigenvector ψ(1)

Y associated with the dominant eigenvalue (which
is less than unity) is computed for each of the substochastic matrices TYY , corresponding
to communities Y ∈ C. The vector of coupling factors ζ∗ (cf. Eq. 1.46) that are associated
with these eigenvectors is determined as the stationary distribution for a N×N -dimensional
stochastic coupling matrix C∗ with elements C∗XY = 1>XTXYψ(1)

Y ∀X ,Y ∈ C. Note that
thus far, the IAD procedure is analogous to the exact uncoupling-coupling method described
in Sec. 1.4.1, except that the quantities are inexact since the substochastic blocks are used
in place of the stochastic complements. The eigenvectors and associated coupling factors
together yield an initial approximation to the stationary distribution of the original Markov
chain (cf. Eq. 1.45), π ≈ (ζ∗1ψ1

1, . . . , ζ
∗
1ψ

N
1 )>, which is iteratively refined as follows.

Let π∗ = (π∗1, . . . ,π∗N)> denote the current estimate for the stationary distribution. First,
the vectors πY ∀Y ∈ C are normalized to yield the vectors {π̄Y}, and updated coupling
factors {ζ∗Y} are computed as the stationary distribution of a new stochastic aggregation
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Figure 1.2: Schematic illustration of the exact uncoupling-coupling procedure (Sec. 1.4.1) to
compute the stationary distribution π of an irreducible Markov chain parameterized by the
transition probability matrix T. The state space of the model network shown is partitioned
into three communities, S ≡ X ∪ Y ∪ Z. The edges of the network are bidirectional. In the
uncoupling step, the stochastic complement T′YY (Eq. 1.42) is computed for each community Y
of the set C. Observe that the stochastic complements T′YY contain additional edges compared
to the corresponding substochastic blocks TYY of the original Markov chain. For instance, the
stochastic complement for the community Y has an additional edge between two nodes for which
an indirect transition via the set X ∪ Z exists. After uncoupling, the stationary distribution
is computed for each of the independent reduced Markov chains. In the figure, the notation
T ⇒ π indicates that the stochastic matrix T has stationary distribution π. The independent
stationary distributions are used to construct a stochastic aggregation (coupling) matrix C in
which each community is represented by a single node. The stationary distribution π of the original
Markov chain is constructed from the stationary distribution ζ associated with C, and from the
independent stationary distributions of the separate stochastic complements, π′Y ∀Y ∈ C (coupling
step). The algorithm illustrated above has a single uncoupling stage, but the independence of
the stochastic complements can be exploited to recursively reduce the derived Markov chains in
multiple uncoupling steps, and this algorithm is readily parallelizable. In iterative aggregation-
disaggregation (IAD) procedures (Sec. 1.4.2), the substochastic blocks TYY are used in place of
the stochastic complements T′YY . Hence, the initial stationary distribution determined by the
coupling step is inexact. New coupling factors ζ∗Y and corresponding approximate local stationary
distributions π∗Y are iteratively updated by repeatedly forming a stochastic aggregation matrix and
then solving a system of linear equations (Eq. 1.48).
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matrix C∗ with elements C∗XY = 1>XTXYπ̄∗Y ∀X ,Y ∈ C (aggregation step). The new coupling
factors yield the vector z = (ζ∗1 π̄∗1, . . . , ζ∗N π̄∗N)>. Second, an updated estimate for π is
obtained by solving the following N systems of linear equations (disaggregation step),216

π∗X = TXXπ∗X +
∑
Y<X

TXYπ∗Y +
∑
Y>X

TXYzY , ∀X ∈ C. (1.48)

These two steps are repeated until the estimate for the stationary distribution of the parent
Markov chain converges, π∗ → π. Further refinements to this procedure that improve
numerical stability and convergence were reported in Ref. 217.

In practice, this procedure typically converges to the true stationary distribution rapidly.210,218

IAD shares many of the same advantages as exact uncoupling-coupling, most notably the
numerical stability conferred when the community structure reflects the nearly reducible
structure of a Markov chain with metastable states, and the possibility of parallelization.
The GTH algorithm (Sec. 1.4.3) can be used to solve the linear systems of equations that
arise in both the aggregation and disaggregation steps of IAD, leading to improved numerical
stability.219

1.4.3 Grassmann-Taksar-Heyman algorithm

The Grassmann-Taksar-Heyman (GTH) algorithm125,208 is essentially a nodewise iterative
formulation of exact uncoupling-coupling via stochastic complementation (Sec. 1.4.1). Consider
the elimination of the n-th node in a Markov chain by renormalization (Eq. 1.34), as in
the nodewise iterative formulation of the GT algorithm (Sec. 1.3). Since the equilibrium
distribution is equal to the proportion of time spent at a node in the infinite time limit, the
stationary distribution of the parent Markov chain, π, must be proportional to that of the
reduced model, π′:

πj = απ′j ∀ j ∈ S \ {n}, (1.49a)

πn = 1− α. (1.49b)

From Eq. 1.49 and the global balance equation for the stationary distribution of the parent
Markov chain at the n-th node, πn = ∑

γ πγTnγ, we have123

α =
1 +

∑
γ 6=n π

′
γTnγ

1− Tnn

−1

, (1.50)

where Tij is the i← j transition probability for the original Markov chain.
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Eqs. 1.49 and 1.50 suggest the following nodewise iterative procedure to compute the
stationary distribution of an irreducible Markov chain. The GTH algorithm uses renormalization
of transition probabilities (cf. Eq. 1.34) to eliminate all nodes n of the Markov chain for
which |S| ≥ n > 1. The stationary probability for the reduced Markov chain comprising
the single remaining node (n = 1) is, of course, known to be π′1 = 1. The algorithm then
employs a back substitution phase to “undo” the state reduction stage, thereby recovering the
original Markov chain and associated stationary distribution.40 The GTH algorithm, which
is essentially equivalent to a Gaussian elimination,40 is given as pseudocode in Algorithm 1.
Like the GT algorithm, the GTH algorithm is numerically stable,220 since the relation
1 − Tnn ≡

∑
γ 6=n Tγn can be exploited to avoid problematic subtraction operations when

Tnn → 1.202

input : transition probability matrix T
set of nodes n ∈ S \ {1} to be eliminated from the state space S

output: stationary probability distribution vector π
/* elimination phase */
for n = |S|, |S| − 1, . . . , 2 do

Sn =
∑
γ<n Tγn (≡ 1− Tnn); // confers numerical stability

for j < n do
Tnj ← Tnj/Sn;
for i < n do

Tij ← Tij + TinTnj ;
/* back substitution phase */
π1 ← 1;
µ← 1;
for n = 2, . . . , |S| − 1, |S| do

πn = Tn1 +
∑n−1
γ=2 πγTnγ ;

µ← µ+ πn;
/* normalization */
for n = 1, . . . , |S| − 1, |S| do

πn ← πn/µ;
return π;

Algorithm 1: Grassmann-Taksar-Heyman (GTH) algorithm125,208 to compute the stationary
distribution π of a Markov chain.

1.4.4 FUND and REFUND algorithms

Recall that the key macroscopic dynamical properties of an irreducible Markov chain, including
moments of the first passage time distributions for all pairwise transitions between nodes, and
moments of the mixing time distributions for relaxation processes from alternative starting
nodes, can be computed from any generalized matrix inverse (Sec. 1.2.2). The FUND79,221,222
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and REFUND123 algorithms provide numerically stable procedures to compute the group
inverse A# (Eqs. 1.8-1.10) associated with an irreducible Markov chain, and can be readily
adapted to obtain related generalized inverses such as the fundamental matrix Z.

The FUND algorithm is based on the fact that a generalized inverse X satisfying129

X(I−T) = I− π1>S , (1.51)

can be obtained from the result of the first phase of the GTH algorithm (Algorithm 1), and
that the group inverse can be written directly in terms of any generalized inverse X satisfying
Eq. 1.51:123

A# = X(I− π1>S ). (1.52)

The first step of the FUND algorithm is to obtain a LU decomposition of the Markovian
kernel; I−T = UL, where U and L are upper- and lower-triangular matrices, respectively.
To see that this factorization is achieved naturally and robustly by the elimination phase of
the GTH algorithm (Sec. 1.4.3), consider that the elements of the stochastic matrix T are
overwritten during the procedure, yielding the matrix T∗. Let F denote the strictly lower-
triangular matrix and G the upper-triangular matrix containing the corresponding elements
of T∗, so that T∗ = F + G + (I− S), where S is the diagonal matrix with nonzero elements
Snn = Sn (cf. Algorithm 1). It can be shown that:40,221

I−T = (G− S)(F− I) = UL. (1.53)

The U matrix has all column sums equal to zero. The diagonal elements of U can be
computed by enforcing this constraint, which thereby provides an additional opportunity to
enforce numerical stability.79 The diagonal elements of L are all equal to −1, and hence L
is non-singular.

The LU decomposition of Eq. 1.53 can be used to solve Eq. 1.51 in two stages. Firstly, the
(unique) solution Y to the problem YL = I−π1>S is determined by backward substitution.
The second step is to solve XU = Y.129 Since the first column of U is identically zero, the
first column of Y is also necessarily the null vector, and therefore the generalized inverse X is
not a unique solution to this equation.221 The simplest choice is to set the first column of X to
be the null vector, and the remaining component vectors can then be solved for by forward
substitution.222 The group inverse A# then follows straightforwardly from X (Eq. 1.52),
where π is computed by following through the later stages of the GTH algorithm.

The FUND algorithm outlined above is usually stable since there is not significant
numerical error associated with the forward and backward substitution procedures to determine
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Y and X. However, a difficulty may sometimes arise where L is ill-conditioned even though
the Markovian kernel I − T is not. A small refinement of the FUND algorithm proposed
in Ref. 79 addresses this issue. The time complexity of either formulation of the FUND
algorithm is O(|S|3).

An explicit formula relating the group inverses associated with a renormalized Markov
chain where a single node has been eliminated and the corresponding parent Markov chain
was derived in Ref. 123. This relation allows for a state reduction procedure to compute
the group inverse that has a similar structure to the GTH algorithm, namely the REFUND
algorithm. That is, the REFUND algorithm consists of an elimination phase to iteratively
reduce the Markov chain by renormalization, trivial assignment of the group inverse for the
Markov chain with only a single node remaining, and a backwards pass phase to compute
the group inverses for the sequence of Markov chains resulting from the restoration of
nodes in turn, given the group inverse for the reduced Markov chain where the node of
the current iteration is eliminated. The recursive phase of the REFUND procedure also
computes the stationary distribution of the reduced Markov chain at each iteration, which
is required to compute the group inverse of the parent Markov chain. The n-dimensional
stationary distribution vector for the reduced Markov chain with the n-th node restored,
πn, is normalized at each iteration of the backwards pass phase. This differs from the GTH
algorithm (Algorithm 1), where the stationary distribution is only normalized at the final
step. REFUND has comparable stability to the refined FUND algorithm, and likewise has
asymptotic time complexity O(|S|3). The REFUND algorithm is given as pseudocode in
Algorithm 2.

1.4.5 Other state reduction methods

Many procedures based on the concept of renormalization have been proposed as numerically
stable approaches to solve various other linear algebra problems for Markov chains and
related systems.126 In Ref. 130, an extension of the GTH algorithm was derived to compute
the variance and higher moments of the FPT distributions for the transitions from each
of the transient nodes of a reducible Markov chain to the absorbing state. In Chapter 3,
we propose a state reduction procedure to determine the expected numbers of times that
transient nodes are visited on first passage paths prior to absorption.191 Together with
state reduction methods to compute the stationary probability distribution (Secs. 1.4.1-1.4.3)
and committor probabilities (Sec. 1.5.1), this method allows for robust computation of all
microscopic properties characterizing the transition path ensemble (Sec. 1.2.5). Notably, it
is possible to obtain the probabilities that nodes are visited along reactive paths, for both
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nonequilibrium and equilibrium cases, which clearly identifies the kinetically relevant states
with respect to the productive transition.

In Ref. 223, a state reduction framework was formulated for application to Markov
decision processes (MDPs). A MDP augments the state space of a Markov chain with
alternative sets of probabilities for transitions from the nodes, each associated with a different
action that is available to the decision-making agent. A set of actions corresponding to each
of the nodes of the MDP is a policy, which defines how the agent operates. The i ← j

transition under action aj is associated with a reward Rij(aj). The reward at the t-th step is
usually weighted by γt, where γ is a discount factor to ensure that the reward for a trajectory
converges, 0 < γ < 1. The usual optimization problem is to determine the optimal policy,
namely that which maximizes the expected reward when starting from a specified initial
node. The algorithm of Ref. 223 is a robust method to find the optimal policy by policy
iteration, using repeated application of the following two-stage procedure. Firstly, a state
reduction algorithm is used to determine the vector of expected rewards starting from each
node and when the agent obeys the current policy. Secondly, these expected rewards are
used in an improvement step to obtain an update to a suboptimal policy. This numerically
stable method is valuable in many practical applications, where nodes associated with large
rewards may be rarely visited under an initial policy.

1.5 Algorithms for simulating pathways

The state reduction framework presented in Secs. 1.3 and 1.4 provides numerically stable
procedures to compute almost all dynamical properties of a Markov chain. However, there
are two notable quantities introduced in Sec. 1.2 that have not yet been obtained by state
reduction methods. Firstly, there is no state reduction algorithm to exactly compute the
time-dependent occupation probability distribution vector p(t), given a transition rate matrix
K. Instead, p(t) must be computed by matrix exponentiation (Eq. 1.3) or eigendecomposition
(Eq. 1.21). Secondly, we desire a state reduction method to compute the committor probabilities
for nodes (Eq. 1.29), which constitute the central object in transition path theory (Sec. 1.2.5).

In the present section, we describe the kinetic path sampling (kPS) method to efficiently
simulate trajectories, and hence p(t), for a nearly reducible Markov chain. The kPS algorithm
applies a state reduction procedure to the currently occupied metastable macrostate of
the Markovian network, followed by a backwards pass phase to sample the numbers of
internode transitions, and therefore the time, associated with a trajectory escaping from the
subnetwork. In Chapter 4, we propose a workflow for kPS simulations based on obtaining an
accurate partition of a Markov chain into metastable macrostates, and apply our methodology
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to a peptide folding transition. The formulation of the graph transformation algorithm
(Sec. 1.3) employed in kPS leads to an exact state reduction procedure to compute the
committor probabilities for all nodes of a Markov chain (Sec. 1.5.1).

In principle, numerical estimates for the A ← B FPT distribution (Eq. 1.22), and
for the occupation probability distribution p(t), can be obtained by explicit simulation of
A ← B first passage paths using any algorithm that samples the solution to the linear
master equation (Eq. 1.1) exactly. The standard procedure to simulate trajectories on a
Markovian network in continuous-time is rejection-free kinetic Monte Carlo (kMC).82,83 In
the the kMC algorithm, a trajectory that currently occupies the j-th node is advanced to the
next node using two random numbers r1, r2 ∈ (0, 1] drawn from a uniform distribution.224

The first random number is used to sample an i← j transition in proportion to the branching
probabilities Pij, and the second is used to increment the simulation clock by ∆t = τj ln r2.110

The probabilities of the sampled paths then agree exactly with the linear master equation
(Eq. 1.1). By using the branching probability matrix, this procedure avoids self-loops, and so
prevents the system from becoming trapped in any one node associated with small outgoing
transition rates. However, for nearly reducible Markov chains, the trajectories exhibit a
strong tendency to ‘flicker’ within metastable communities of nodes,85–88 which can cause
kMC simulation to be unfeasibly inefficient.84,101

For Markov chains featuring a rare event, large gains in efficiency can be achieved by
defining the currently occupied metastable community of nodes (or basin) B, sampling a
node at the boundary ∂A ⊆ A of the absorbing macrostate A ≡ Bc, and sampling an
escape time for the trajectory segment escaping to the absorbing boundary. The kinetic
path sampling84,85 (kPS) (Sec. 1.5.1) and Monte Carlo with absorbing Markov chains102–105

(MCAMC) (Sec. 1.5.2) algorithms provide exact methods to do this. The kPS and MCAMC
algorithms forfeit resolution of the trajectory within the metastable macrostates, which in
any case ought to be unproductive and hence of little interest, and gain the desirable property
that their efficiency is essentially independent of the metastability of the Markov chain.84

The kPS and MCAMC methods require a partitioning of the network into metastable
communities. This clustering can be specified a priori, for example with a suitable community
detection algorithm,225 or constructed on-the-fly, for instance using a breadth-first search
procedure with criteria for including nodes in the basin.226 The algorithms can be used
in conjunction with standard rejection-free kMC, automatically switching to the advanced
method when flickering of a trajectory within a subset of nodes is detected.84
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1.5.1 Kinetic path sampling

Renormalization phase

To simulate a trajectory segment in the kinetic path sampling84,85 (kPS) algorithm, the
state space S ≡ B∪A is divided into the currently occupied community B and an absorbing
macrostate A. The nodes of the basin B ≡ E∪T are further divided into the set of eliminated
nodes E ⊆ B and the set of retained nodes T ⊂ B. The set T may be empty, T = ∅. We also
define the absorbing boundary ∂A ⊆ A as the subset of nodes of the absorbing macrostate
that are directly connected to one or more nodes of the basin B. The total number of nodes
in the set E∪T∪∂A is denoted Nc. The definitions of these states are illustrated in Fig. 1.3.

To simulate a trajectory escaping from the active community B to the absorbing boundary
∂A, kPS uses a stochastic matrix corresponding to the relevant subnetwork E ∪ T ∪ ∂A.
In the first phase of the kPS algorithm, nodes 1, . . . , |E| ∈ E are eliminated in turn by
renormalization (Sec. 1.3), while retained nodes |E|+1, . . . , |B| ∈ T and absorbing boundary
nodes |B| + 1, . . . , Nc ∈ ∂A remain noneliminated. The input to the sampling stage of the
kPS algorithm is the set of |E| + 1 transition probability matrices {T(n)}, 0 ≤ n ≤ |E|,
with T(0) corresponding to the transition probability matrix for the subnetwork B ∪ ∂A of
the original (untransformed) network. T(0) has dimensions Nc × |B|, since the absorbing
boundary nodes have no outgoing transitions. Successive stochastic matrices (with n > 0)
are computed by the iterative elimination of the |E| nodes n ∈ E from this subnetwork using
the GT algorithm (Sec. 1.3). In the renormalization, the transition probabilities for all pairs
of nodes are updated according to

T
(n)
ij = T

(n−1)
ij +

T
(n−1)
nj (T (n−1)

in − δin)
1− T (n−1)

nn

, (1.54)

cf. Eq. 1.34. Transitions from eliminated to noneliminated nodes are preserved by Eq. 1.54,
but transitions from noneliminated to eliminated nodes have zero probability. As in Eq. 1.34,
only the probabilities for transitions between pairs of nodes that are both directly connected
to the n-th node are affected by the renormalization. However, unlike renormalization using
Eq. 1.34, connections involving eliminated nodes must also be considered. The mean waiting
or lag times for transitions from nodes are not renormalized (cf. Eq. 1.35) in the kPS
algorithm, since the state reduction procedure is reversed before sampling the time associated
with a trajectory escaping from the basin to the absorbing boundary.

The formulation of GT expressed in Eq. 1.54 is analogous to a LU decomposition210,227 of
a stochastic matrix.84 Exploiting this analogy reduces the memory requirements of the kPS
algorithm, since the intermediate transition matrices arising from the iterative elimination
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of nodes need not be stored. Instead, it is only necessary to store the original and final
stochastic matrices, T(0) and T(|E|), respectively, and the matrices L and U that contain the
elements required to construct T(n−1) from T(n). Specifically, the L and U matrices have
elements (cf. Eq. 1.54)

Lnj =
T

(n−1)
nj

1− T (n−1)
nn

and Uin = T
(n−1)
in − δin. (1.55)

Sampling dynamics on the renormalized network and iterative reverse randomization

Recall that renormalization preserves the path probabilities to individual absorbing nodes
(Sec. 1.3.2).92 This property of the state reduction framework is the basis for the kPS
algorithm. To sample the absorbing boundary node α ∈ ∂A at which the trajectory segment
terminates, the following probability vectors are used to simulate successive i← j transitions
on the renormalized subnetwork comprising the nodes of the set B ∪ ∂A:

cj =

t(|E|)
∗,j , if j ≤ |E|,

t(j)
∗,j, if j > |E|,

(1.56)

starting from the currently occupied node ε ∈ B. Here, t(|E|)
∗,j denotes the vector containing

the elements of the j-th column of T(|E|), and t(j)
∗,j (for j > |E|) denotes the j-th column

of the transition matrix given by the elimination (Eq. 1.54) of node j from T(0). In this
sampling procedure, transitions between eliminated nodes are not permitted (cf. Eq. 1.54),
but transitions from noneliminated transient nodes j ∈ T to eliminated nodes i ∈ E are
possible. This setup greatly reduces the number of steps required to reach a node at the
absorbing boundary. If T = ∅, then the trajectory necessarily reaches the absorbing boundary
in a single transition. If E = ∅, then Eq. 1.56 reduces to the standard rejection-free kMC
algorithm.228

Let h denote the |E|-dimensional vector with elements hj equal to the number of transitions
from node j ∈ E to nodes i > j, i.e. transitions to nodes that are noneliminated in the
stochastic matrix at the j-th iteration of the renormalization phase. Let η denote the |B|-
dimensional vector with elements ηj equal to the total number of transitions from the j-th
node. We also define the set of |E| + 1 hopping matrices {H(n)}, 0 ≤ n ≤ |E|, each of
dimension (Nc − n) × |E|. The element H(n)

ij corresponds to the number of i ← j ∈ E
transitions on the renormalized stochastic matrix resulting from the elimination of n nodes
(Eq. 1.54). Hence, ηj = ∑

γ∈B∪∂AH
(0)
γj . Note that there are no transitions to eliminated

nodes (with indices j ≤ n) in the hopping matrix of the n-th iteration, hence the stated
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dimensionality.
In the next stage of the kPS algorithm, an iterative reverse randomization procedure

is used to sample the matrix H(0) with elements H(0)
ij corresponding to the numbers of

i ← j transitions on the original (untransformed) subnetwork, with associated stochastic
matrix T(0). This procedure exploits the fact that H(n−1) can be sampled directly from
H(n), T(n), and T(n−1) without requiring explicit simulation of the dynamics on the network
corresponding to T(n−1), in which the n-th node is not eliminated. In this sense, a single
iteration of the reverse randomization procedure “undoes” a single iteration of the renormalization
(Eq. 1.54). The relationship between renormalization and iterative reverse randomization is
illustrated in Fig. 1.4. The sampling of successive hopping matrices is based on the set of
Nc × n-dimensional matrices {G(n)(τ)}, for 0 < n ≤ |E|, with elements G(n)

ij given by the
ratio of i ← j transition probabilities in Markov chains where the n-th node is the next to
be eliminated in the renormalization phase, and where the n-th node has been eliminated:

G
(n)
ij =

T
(n−1)
ij

T
(n)
ij

∀ i > n. (1.57)

Hence, G(n)
ij is the fraction of i ← j transitions in T(n−1) that are direct, i.e. that do not

proceed via the n-th node. If either i or j are not directly connected to n in T(n−1), then
G

(n)
ij = 1.
Since the total number of i ← j kMC transitions along the α ← ε trajectory on the

original Markov chain is known from η, which is derived from H(0) and h, the time tA
elapsed along the path for escape from the community B can be sampled. The pseudocode
for the categorical sampling, iterative reverse randomization, and transition time sampling
procedures detailed in this section is given in Algorithm 3. Here, ∼ denotes a random
number drawn from a distribution, Γ(α, β) is the gamma distribution with shape parameter
α and rate parameter β−1, and B(h, p) and NB(r, p) are the binomial and negative binomial
distributions, respectively, with trial number h, success number r, and success probability p.

The final section of Algorithm 3, in which tA is sampled, assumes that the input transition
probability matrices correspond to a CTMC. Recall that in the continuous-time case, the
time for a i← j transition is sampled from an exponential distribution with rate parameter
τ−1
j .110 If the linearized transition probability matrix (Eq. 1.57) is used instead of the
branching probability matrix, then the mean waiting times for nodes on the untransformed
subnetwork T(0) are uniform, τj ≡ τ ∀j. Hence, the time tA elapsed along the escape
trajectory on the untransformed network can be drawn from a single gamma distribution,
with shape parameter equal to the total number of internode transitions on T(0) and rate
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parameter τ−1. That is, tA ∼ Γ(∑j∈E∪T ηj, τ). In the discrete-time case, the time step is
fixed and uniform for all transitions, equal to the lag time τ , and so tA = τ

∑
j∈E∪T ηj.

Algorithm 3 describes the generation of a single escape trajectory from the currently
occupied community B, given the set of transition matrices {T(n)} computed by renormalization
(Sec. 1.5.1). In a kPS simulation to sample complete A ← B first passage paths, the
main loop of the kPS algorithm (comprising renormalization, categorical sampling, iterative
reverse randomization, and sampling of a transition time) is repeated many times to yield a
stochastic trajectory that hits the target state A.

Model example

For clarity, we illustrate the kPS algorithm for a model example. The network shown in
Fig. 1.4 consists of four nodes. The set E comprises three nodes β < n < γ that are
to be eliminated by graph transformation, in order of increasing indices. The absorbing
boundary comprises a single node, ∂A ≡ {α}, and there are no retained nodes, so that
E ≡ B. Therefore, when all three nodes of the set E have been eliminated, the only available
moves are to the absorbing node α. Hence, in the categorical sampling procedure based
on Eq. 1.56, the escape trajectory reaches the absorbing boundary from the initial node ε
in a single transition. The corresponding element H(γ)

αε of the hopping matrix H(γ), which
contains the numbers of transitions on the network T(γ) where all nodes of the set E are
eliminated, is then incremented by one.

To understand the effect of renormalization, in the form employed within kPS (Eq. 1.54),
consider the elimination of node n from the stochastic matrix T(β) to give T(n), as shown
in Fig. 1.4. Prior to the elimination of node n, node β is already eliminated, and hence
no edges to node β are included in the network T(β). Upon the elimination of node n,
edges to node n, including the n ← n self-loop, are likewise removed from the network.
To compensate for the removal of these transitions, the transition probabilities of edges
from node n to neighbouring noneliminated nodes (i.e. γ and α) increase. The transition
probabilities for edges between pairs of nodes that are both directly connected to node n,
and for which the terminal node is noneliminated, similarly increase. This operation involves
updating the γ ← γ and α ← α self-loops, as well as the α ← γ, γ ← α, and α ← β edges,
which already exist in the network, and the addition of a γ ← β edge (indicated by ∗ in
Fig. 1.4) in the renormalized network, since nodes β and γ were not directly connected in
T(β). Fig. 1.4 also shows the reverse randomization procedure to sample H(β) from H(n),
hopping matrices for which node n is noneliminated and eliminated (i.e. corresponding to
the networks T(β) and T(n)), respectively. The numbers of transitions along the edges to be
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updated are generated randomly in a way that compensates for the changes in the transition
probabilities resulting from the corresponding single iteration of the renormalization phase,
as outlined in Algorithm 3.

A single iteration of the reverse randomization procedure, given as pseudocode in the
third for loop of Algorithm 3, comprises four individual steps. Fig. 1.5 shows the effect
of each of these individual steps, (i)-(iv), on the hopping matrix H(n) to yield the matrix
H(β) (cf. Fig. 1.4). In step (i), the numbers of transitions along each edge from a node of
the set E to a noneliminated node, excluding edges associated with node n, are updated by
drawing new values from a binomial distribution. For each transition along an edge of the
renormalized network T(n), a Bernoulli trial is conducted with success probability equal to
the ratio of transition probabilities for the edge in the networks T(β) and T(n), where node n
is eliminated and noneliminated, respectively. It is not necessary to consider edges associated
with a node that is not directly connected to node n in T(β), because renormalization does
not affect these edges, and hence the success probability in the Bernoulli trials is unity.
Similarly, if two nodes are not directly connected to one another, but are both connected to
node n in T(β), then the ratio of transition probabilities associated with this edge in T(β)

and T(n) is necessarily zero, and hence there are no transitions along this (nonexistent) edge
in H(β). Thus the γ ← β edge in Fig. 1.5 is removed after step (i).

In step (ii), the numbers of transitions along edges from nodes of the set E to node
n, excluding the n ← n self-loop, increase to account for any decreases in the numbers
of transitions from nodes of the set E in step (i). Similarly, in step (iii), the numbers of
transitions from node n to noneliminated nodes increase to account for any decreases in the
numbers of transitions to noneliminated nodes in step (i). Finally, in step (iv), the number
of n ← n self-loop transitions is drawn from a negative binomial distribution, where the
number of trials is equal to the number of transitions from node n to noneliminated nodes.
By repeated application of this reverse randomization procedure, the numbers of transitions
from all eliminated (and any transient) nodes on the original subnetwork T(0) are obtained,
and hence a time for the trajectory can be sampled.

Committor and absorption probabilities

The formulation of the state reduction methodology employed in kPS (Eq. 1.54) provides a
numerically stable procedure to compute committor probabilities (Sec. 1.2.5). Recall that the
forward A ← B committor probability for the j-th node, q+

j (Eqs. 1.28 and 1.29), is defined
as the probability that a trajectory at node j hits the absorbing macrostate A before hitting
the initial macrostate B.98 By definition, q+

b = 0 for b ∈ B and q+
a = 1 for a ∈ A.111 The
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committor probabilities for all nodes are obtained as a result of the renormalization phase of
the kPS computation if the state space is divided so that A ≡ A∪B and E ≡ (A∪B)c. Then,
after repeated application of Eq. 1.54 to the |E| nodes in the set E, the only transitions from
eliminated nodes in the transformed network T(|E|) are to nodes in either of the endpoint
states A or B. The forward committor probability for the j-th node, j ∈ E, is therefore
simply

q+
j =

∑
a∈A T

(|E|)
aj∑

γ T
(|E|)
γj

. (1.58)

We provide a detailed description of our proposed state reduction procedure to robustly
compute the committor probabilities in Chapter 3.

This formulation of GT also allows for the robust computation of the absorption probabilities.191

The probability Baj that a trajectory initialized at the j-th node is absorbed at node a ∈ A is
given straightforwardly from the transition probabilities of the renormalized network where
only the nodes of the set Ac remain noneliminated, i.e. using A ≡ A and E ≡ Ac, via
ba∈A,j /∈A = T

(|E|)
aj .

1.5.2 Monte Carlo with absorbing Markov chains

The Monte Carlo with absorbing Markov chains102–105 (MCAMC) algorithm provides an
alternative approach to simulate pathways for a nearly reducible Markov chain, and is similar
in spirit to kPS. In the first passage time analysis229 (FPTA) variant of the MCAMC method,
the problem of sampling a transition time tA and exit node at the absorbing boundary
α ∈ ∂A, for a trajectory escaping from an initial node of the currently occupied community
ε ∈ B, is solved exactly using eigendecomposition (Sec. 1.2).

The probability that the trajectory has exited the community B at time t is equal to the
sum of occupation probabilities for the absorbing boundary nodes at that time, which in the
continuous-time case is given by (cf. Eq. 1.21)

p∂A(t) =
∑
α′∈∂A

pα′(t) =
∑
α∈∂A

∑
k

ψ
(k)
α′ φ

(k)
ε eγkt, (1.59)

where we have used the fact that the initial probability distribution is localized at the ε-th
node. The Markov chain for the subnetwork B ∪ ∂A is reducible because the nodes of the
state ∂A are treated as absorbing, so that p∂A(t→∞) = 1. An exit time tA can therefore be
sampled by drawing a random number r1 ∈ (0, 1] and solving for p∂A(tA) = r1 numerically
using a bracketing and bisection method.229 The iterative calculation to determine tA in the
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𝔸

𝔹 ≡ 𝔼 ∪ 𝕋
𝝐 ∈ 𝔹

𝜶 ∈ 𝛛𝔸

𝛛𝔸

Figure 1.3: Formulation of the escape from a community B to the absorbing boundary ∂A ⊆ A
in the kPS algorithm. Given an initially occupied node ε, which in the above illustration belongs
to the subset E ⊆ B of nodes of the basin B that are to be eliminated by renormalization, the
output of Algorithm 3 is a stochastically drawn escape time tA for a sampled trajectory from ε
to an absorbing node α ∈ ∂A. A subset T ⊂ B of nodes of the basin may be retained in the
renormalization stage of the kPS algorithm.
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Figure 1.4: Illustration of the main idea of the kPS algorithm. The model network shown consists
of four nodes and the state space is divided as follows: E = {β, n, γ}, ∂A = {α}, and T = ∅. The
transition probability matrix T(β) is given by the elimination of node β from the initial transition
matrix T(0). (a) Elimination of node n from T(β) by renormalization gives the matrix T(n). (b) The
hopping matrix H(β), containing the numbers of internode transitions on T(β), can be generated
randomly from the hopping matrix H(n), where node n is eliminated, using T(β) and T(n). +
and − indicate that the matrix element corresponding to the relevant edge must have increased or
decreased, respectively. Note that the values of the elements of the hopping matrix may instead stay
the same in the reverse randomization procedure. Broken arrows indicate that the edge does not
exist or that the corresponding matrix element is zero. Eliminated nodes are shown as transparent.
∗ indicates a new edge resulting from renormalization. The illustration assumes that the stochastic
matrix is the linearized or discrete-time transition matrix, so that both the transition and hopping
matrices are dependent on the lag time τ , and each node has a self-loop transition.
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Figure 1.5: Illustration of a single iteration of the reverse randomization procedure (the third for
loop of Algorithm 3) for the network depicted in Fig. 1.4. The hopping matrix H(β), which contains
the numbers of kMC moves on the network T(β), where node n is noneliminated, is generated
randomly from the hopping matrix H(n), which contains the numbers of internode transitions on
the network T(n), where node n is eliminated. This procedure uses the transition probabilities that
are the elements of the stochastic matrices T(β) and T(n), and is completed in four stages, (i)-(iv),
as described in Sec. 1.5.1. + and − indicate that the hopping matrix element corresponding to
the relevant edge must have increased or decreased, respectively, or else have remained the same.
Broken arrows indicate that the edge does not exist or that the corresponding matrix element is
zero. Eliminated nodes are shown as transparent. The highlighted edges are those that are updated
in the indicated stage of the reverse randomization procedure. Edges used in this calculation are
weakly transparent, and irrelevant edges are strongly transparent. The illustration assumes that
the stochastic matrix is the linearized or discrete-time probability matrix, so that the elements of
the hopping matrices are dependent on the lag time τ , and each node has a self-loop transition.
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FPTA method is initialized from the mean exit time, which is given by

〈tA〉 =
−∑|S|k≥2

∑
α′∈∂A ψ

(k)
α′ φ

(k)
ε γk∑|S|

k≥2
∑
α′∈∂A ψ

(k)
α′ φ

(k)
ε

, (1.60)

where we have used the Perron-Frobenius theorem, γ1 = 0.107 The approximate mean rate
method avoids the iterative calculation to determine tA by simply using 〈tA〉 to advance the
simulation clock.230 The relative occupation probability distribution of absorbing nodes at
any given time is also known from the eigendecomposition (Eq. 1.59), and therefore an exit
node α can be sampled by drawing a second random number r2 ∈ (0, 1] and comparing
with the probability distribution pα′(tA)/p∂A(tA) ∀α′ ∈ ∂A, analogous to the procedure for
selecting a move in the standard kMC algorithm.82,83

1.5.3 Practical considerations for advanced simulation algorithms

The time complexity to simulate a trajectory segment escaping from the currently occupied
basin B to the absorbing boundary ∂A is O(|B ∪ ∂A|3) for both the kPS84 and MCAMC93

algorithms. Importantly, the CPU time to execute a single iteration of the main loop in the
kPS and MCAMC algorithms does not depend on the actual number of transitions along
the path. This feature makes the methods extremely powerful when the basins are chosen to
accurately reflect the metastable sets of nodes, so that the trajectory segments are sufficiently
long that simulation of the path by standard kMC is unfeasible. Thus the computational
overhead associated with the more advanced algorithms is then offset.101 The choice of
community structure that is leveraged in these advanced simulation algorithms is therefore
crucial to their success in simulating trajectories on nearly reducible Markov chains. The
partitioning is also a critical consideration in the block formulation of the GT algorithm to
compute the A ← B MFPT, and in exact uncoupling-coupling to compute the stationary
distribution (Sec. 1.4.1), where inversion of the Markovian kernel for a community of nodes is
numerically unstable if the subnetwork encompasses a separation of characteristic timescales.
Likewise, a condition for efficient convergence of iterative aggregation-disaggregation is that
the diagonal blocks of the partitioned Markov chain are nearly stochastic (Sec. 1.4.2).

A discussion of appropriate community detection procedures to identify metastable macrostates
is beyond the scope of the present review. However, we briefly outline a framework to
refine an initial partitioning, which is useful in practical applications of the aforementioned
methods, where the efficiency and/or numerical stability is highly sensitive even to slight
perturbations of the community structure. The central theorem of this approach is that, for
a given partitioning of a CTMC into a set of N communities, there exists an upper bound on
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the second dominant eigenvalue of the N ×N -dimensional lumped rate matrix given by the
local equilibrium approximation (LEA).141,153,231 An analogous theorem applies in discrete-
time. This result suggests a variational optimization procedure to refine an initial clustering,
where the assigned macrostates for one or more nodes at the intercommunity boundaries are
randomly switched to that of a neighbouring community. The second dominant eigenvalue
γC2 of the updated lumped Markov chain given by the LEA6,140 is then computed. The
latter operation is efficient if N is not large, especially since the full eigenspectrum is not
required and therefore Krylov subpsace methods (Sec. 1.2.4) can be employed. Moreover, the
eigendecomposition is numerically stable if the lumped Markov chain does not encompass
a separation of characteristic timescales, which in any case is required for the Markovian
approximation to the coarse-grained dynamics to be valid.

An increase in γC2 essentially guarantees that the reduced Markovian network better
approximates the slowest relaxation process of the original Markov chain.232,233 This eigenvalue
therefore provides a rigorous metric to improve an initial clustering in an interpretable way.
Recently, it was shown that there exists a lower bound for the Kemeny constant ζCK (Eq. 1.15)
of a reduced Markov chain lumped according to the community structure C, and with coarse-
grained intercommunity transition probabilities or rates given by the LEA.108 ζCK therefore
provides an alternative objective function for the variational optimization procedure, which
may be preferable to using the second dominant eigenvalue γC2 . The former is a sum
of eigenvalues (Eq. 1.18), and therefore quantifies the extent to which the coarse-grained
Markov chain reproduces all relaxation processes of the original Markov chain, with slower
dynamical eigenmodes receiving a larger weighting. In the simplest possible implementation,
the variational optimization is performed using a greedy approach, where node-switching
moves that increase γC2 (or decrease ζCK) are always accepted. More sophisticated stochastic
optimization approaches calculate an acceptance probability for a proposed move. Our
proposed procedure to refine a community structure C by variational optimization is discussed
in more detail in Chapter 4.

The computational overhead associated with the kPS and MCAMC algorithms may
become cumbersome if a metastable community comprises a large number of nodes. It
is not an option to split a large basin into separate macrostates, because then escape of a
trajectory to an absorbing boundary does not constitute a long-timescale process. The only
way to reduce the computational expense for a given iteration of either simulation algorithm
is to reduce the dimensionality of the relevant subnetwork. A simple way to achieve this goal
is recursive regrouping6 to subsume sets of nodes that are interconnected by transition rates
that exceed a specified threshold,52 with the new intergroup transition rates given by the local
equilibrium approximation.153 If the basin is metastable, then the error resulting from this
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procedure ought to be small, since the regrouping of nodes that are interconnected by fast
transition rates should not have a significant effect on the slow dynamics for escape from the
community. A more advanced pre-processing strategy is partial graph transformation,234

where renormalization (Eqs. 1.34 and 1.35) is used to eliminate a subset of chosen nodes
within the predefined communities.87 This framework exploits the fact that, for a typical
Markov chain, it is likely that the path probability distribution for the ensemble of escape
trajectories from a given basin is localized.101 For instance, the probability distribution of
reactive trajectories (Eq. 1.31) may be concentrated in a small fraction of nodes, or escape to a
particular node at the absorbing boundary may be strongly favoured. Therefore, in principle,
it should be possible to identify the subset of basin nodes to be eliminated that minimizes
the information loss on the slow dynamics for escape from the community. Empirically, we
find that it is favourable to retain nodes at the intercommunity boundary, as well as nodes
with large stationary probabilities and small mean waiting times.234

1.6 Conclusions

We have provided an overview of linear algebra (Sec. 1.2) and state reduction (Secs. 1.3-
1.5.1) methods for the exact numerical analysis of Markovian network dynamics. In Sec. 1.2,
we surveyed expressions for properties characterizing both the global and local dynamical
behaviour of finite Markov chains. We began by noting that macroscopic quantities, such
as moments of the first passage and mixing time distributions, can be computed from
a fundamental matrix associated with an irreducible Markov chain (Sec. 1.2.2), or using
eigendecomposition (Sec. 1.2.3). We also defined quantities that characterize an A ← B
transition from an initial (B) to an absorbing (A) state at a microscopic level of detail,
including the committor probabilities for nodes, which are the central object in analyzing
the features of the productive transition (Sec. 1.2.5). For nearly reducible Markov chains,
which feature a separation of characteristic timescales, ill-conditioning typically prohibits the
solution of a given system of linear equations by conventional algorithms. While preconditioning
schemes can be employed to aid the convergence of sparse linear algebra methods applied
to Markov chains exhibiting metastability, this framework is not readily generalizable, since
nontrivial and system-specific considerations arise (Sec. 1.2.4).

We therefore focused on state reduction algorithms, which have inherent numerical stability,
to analyze arbitrary discrete- and continuous-time Markov chains. State reduction methods
are based on renormalization (Eq. 1.34) to sequentially eliminate nodes or blocks thereof.
Some state reduction algorithms (such as the GTH125,208 and REFUND123 algorithms) also
incorporate a backward pass phase to restore nodes in turn, recursively computing the
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properties of the successive Markov chains having assigned the trivial solution to the simple
one-node reduced system. Sec. 1.3 detailed the graph transformation algorithm to robustly
compute the A ← B MFPT. In Sec. 1.4, state reduction procedures were described that
enable computation of all dynamical properties outlined in Sec. 1.2 for nearly reducible
Markov chains. The stationary distribution can be computed by exact uncoupling-coupling
(Sec. 1.4.1), iterative aggregation-disaggregation (Sec. 1.4.2), or the Grassmann-Taksar-
Heyman algorithm (Sec. 1.4.3). The fundamental matrix of an irreducible Markov chain can
be determined by the REFUND algorithm (Sec. 1.4.4). Other state reduction methods were
summarized in Sec. 1.4.5. Finally, we noted that sampling trajectories using kinetic Monte
Carlo is unfeasibly inefficient for systems exhibiting rare event dynamics, and presented an
account of kinetic path sampling, which extends the state reduction methodology to sample
the numbers of internode transitions along pathways (Sec. 1.5).

In this thesis, we extend the scope of the state reduction methodology with new procedures,
propose novel quantitative analyses to extract global and local dynamical information from
finite Markov chains (that are applicable to nearly reducible models when the necessary
quantities are obtained robustly), and address workflow and implementation issues to optimize
the efficiency of state reduction algorithms. In Chapter 2, we extend the theory of eliminating
nodes from a Markov chain by renormalization (Sec. 1.3.1) to compute the expectation of any
first passage path property that is a sum of contributions from individual transitions. We
also propose a method to obtain a finite set of simple transition flux-paths that correspond
to a factorization of the total reactive A ← B flux (Eq. 1.33). This approach provides a
pathwise analysis of the reactive flux that is complementary to the usual analysis based on
a A-B cut set of edges (Sec. 1.2.5). Our analysis uses a shortest paths algorithm with edge
weights that depend on the stationary distribution and committor probabilities, which can
be obtained robustly via state reduction (see Secs. 1.4.1-1.4.3 and Sec. 1.5.1, respectively). In
Chapter 3, we extend the GT algorithm of Sec. 1.3.1 with a backwards pass phase to compute
the MFPTs for transitions from all transient nodes in a single computation. In addition, we
report state reduction algorithms to compute the committor probabilities and the expected
numbers of times that nodes are visited on first passage and transition paths. We also derive
an expression for the probability that a node is visited on a transition path, which we refer
to as the reactive visitation probability, and which can be evaluated straightforwardly from
this information. Hence, we can assess the importance of individual nodes in facilitating
the dominant A ← B pathways. In Chapter 4, we propose a workflow for the unsupervised
simulation of complete A ← B pathways using kPS (Sec. 1.5.1), based on obtaining an initial
approximate partition of the Markov chain into metastable macrostates, and subsequent
refinement of this community structure by a variational optimization procedure (Sec. 1.5.3).

45



Nearly reducible finite Markov chains: theory and algorithms

We show that our approach provides a powerful framework to obtain simulation estimates for
the committor and reactive visitation probabilities, as well as first passage time distributions.

We demonstrate our methodology with applications to realistic and computationally
challenging systems that are relevant to the physical sciences, namely: a model landscape
with metastable states (Chapter 2), a structural transition in an atomic cluster (Chapter 3),
and the folding transition of a peptide (Chapter 4). Each of these systems features a
separation of characteristic timescales, and therefore corresponds to a nearly reducible Markov
chain. Metastability is crucially important to consider, since realistic dynamical models
typically exhibit a particular rare event that is the process of interest.52–66 Thus we show that
the state reduction procedures reviewed herein allow for comprehensive numerical analysis
of nearly reducible Markov chains, which would otherwise be intractable, and hence are
valuable in many practical applications. The ability to extract observable quantities and
perform detailed analyses of numerically challenging models will lead to new insights into
the dynamical behaviour of complex systems. We discuss possibilities for future work in
Chapter 5. In particular, we can probe the relationship between the local features of a
Markovian network and the slow global dynamics, which is typically influenced strongly by
a small number of states that facilitate the dominant transition mechanisms.88,101,191,201

46



Nearly reducible finite Markov chains: theory and algorithms

input : transition probability matrix T
set of nodes n ∈ S \ {1} to be eliminated from the state space S

output: group inverse A#

stationary distribution π

/* elimination phase. Note that nodes are eliminated in reverse order, thereby effectively
performing the triangular decomposition of the Markovian kernel: I−T = UL */

for n = |S|, |S| − 1, . . . , 2 do
/* p:n is the column and q>:n the row vector, respectively, corresponding to the node to
be eliminated (n) in the stochastic matrix for the reduced Markov chain at the
current iteration, not including the diagonal element. Both vectors are of dimension
(n− 1) */

p:n,q>:n ← GetBlock(T,n);
Sn ←

∑
γ<n

Tγn (≡ 1− Tnn); // factors Sn ∀ 1 < n < |S| are stored in a vector
T′:n,:n ← T:n,:n + S−1

n p:nq>:n; // GTH elimination of the n-th node

T:n+1,:n+1 ←
(

T′:n,:n p:n
S−1
n q>:n Tnn

)
; // overwrite the elements of the transition matrix

/* the stationary distribution and group inverse for the reduced Markov chain with only one
node remaining are trivial */

π1 ← ( 1 );
A#

1 ← ( 0 );
/* backwards pass phase. At this stage, the first diagonal element of T, T11 = 1,

corresponds to the stochastic matrix for a reduced Markov chain comprising only a single
node. The other off-diagonal elements of T are the vectors p:n and q>:n for 1 < n ≤ |S| */

for n = 2, . . . , |S| − 1, |S| do
/* p>:n and q>:n are defined above, but q>:n is now scaled by S−1

n compared to the q>:n
vector returned by GetBlock during the elimination phase */

p:n,q>:n ← GetBlock(T,n);
α← (1 + π>n−1q:n)−1;
β ← απ>n−1q:n/Sn (≡ (1− α)/Sn); // confers numerical stability
r← αA#

n−1q:n;
t> ← βp>:nA#

n−1;
c← β(α+ p>:nr);
c← cπn−1 − t;
/* stationary distribution for the reduced Markov chain with the n-th node restored */

πn ← α
(
π>n−1q:n
πn−1

)
; // this stationary vector is normalized

δ ← (π>n−1q:n)−1 (≡ α/(1− α)); // confers numerical stability
/* the group inverse for the parent Markov chain, for which the n-th node is restored,
is recovered by an explicit formula */

A#
n ←

(
A#
n−1 − [rπ>n−1 + 1n−1c>]> −δc

r> − c1>n−1 δc

)
; // 1n−1 is the (n− 1)-dimensional unit vector

A# ← A#
|S|; π ← π|S|;

return A#,π;

/* function to partition the relevant block of the matrix T. During the elimination phase,
this block corresponds to the stochastic matrix for the reduced Markov chain at the
current iteration (the other elements are overwritten during this phase) */

function GetBlock(T,n)

let T:n+1,:n+1 =
(T:n,:n p:n

q>:n Tnn

)
; // reduced Markov chain partitioned into blocks

return p:n,q>:n;

Algorithm 2: REFUND algorithm123 to compute the group inverse A# of a Markov chain
(Eqs. 1.8-1.10). The stationary distribution π is computed concomitantly. In the above, T:i,:j
denotes the (i− 1)× (j − 1)-dimensional block of the stochastic matrix T comprising elements
with row index less than i and column index less than j. Similarly, p:n is the (n−1)-dimensional
column vector containing the elements of p with indices 1 ≤ γ < n.
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input : sets of nodes E 6= ∅, T, B ≡ E ∪ T, A ≡ Bc and ∂A ⊆ A (Fig. 1.3)
Nc = |E ∪ T ∪ ∂A|
initially occupied node ε ∈ B
set of |E|+ 1 stochastic matrices {T(n)}, 0 ≤ n ≤ |E|, from renormalization (Eq. 1.54) of nodes in E
set of |E| matrices {G(n)}, for 0 < n ≤ |E|, derived from the {T(n)} matrices via Eq. 1.57

output: absorbing node α ∈ ∂A
hopping matrix H(0) with elements H(0)

ij equal to the numbers of i← j ∈ E internode transitions
along the sampled α← ε path on T(0)

vector η with elements ηj equal to the total number of transitions from node j ∈ B
time elapsed tA for the α← ε trajectory for escape from B

initialize H(|E|) (dimension (Nc − |E|)× |E|);
initialize h (dimension |E|);
initialize η (dimension |B|);
β ← ε;
/* Categorical sampling procedure to sample an absorbing boundary node α ∈ ∂A and numbers of

internode transitions on the renormalized subnetwork B ∪ ∂A */
while β /∈ ∂A do

γ ∼ cβ (Eq. 1.56);
if β ∈ E then

H
(|E|)
γβ ← H

(|E|)
γβ + 1;

else
ηβ ← ηβ + 1;

β ← γ;
α← β;
/* Sample numbers of transitions from noneliminated nodes */
for δ ∈ T do

fδ ∼ NB(ηδ, 1− T (0)
δδ );

ηδ ← ηδ + fδ;
/* Iterative reverse randomization to generate the numbers of internode transitions on the

original subnetwork B ∪ ∂A */
for n← |E| to 1 do

initialize H(n−1) (dimension (Nc − (n− 1))× |E|);
for β ∈ E \ {n} and γ ∈ {n+ 1, . . . , Nc} do

H
(n−1)
γβ ∼ B(H(n)

γβ , G
(n)
γβ );

for β ∈ E \ {n} do
H

(n−1)
nβ ←

∑
γ∈{n+1,...,Nc}

H
(n)
γβ −H

(n−1)
γβ ;

for γ ∈ {n+ 1, . . . , Nc} do
H

(n−1)
γn ← H

(n)
γn +

∑
β∈E\{n}H

(n)
γβ −H

(n−1)
γβ ;

hn ←
∑

γ∈{n+1,...,Nc}
H

(n−1)
γn ;

H
(n−1)
nn ∼ NB(hn, 1− T (n−1)

nn );
ηn ← hn +H

(n−1)
nn ;

deallocate H(n), T(n);
/* sample the transition time for the α ∈ ∂A← ε ∈ B trajectory */
tA ← 0;
for j ∈ B do

∆j ∼ Γ(ηj , τj);
tA ← tA + ∆j ;

deallocate H(0), T(0), h, η;
return tA, α;

Algorithm 3: The categorical sampling, iterative reverse randomization, and transition time
sampling procedures that constitute the remainder of the main loop of the kinetic path sampling
(kPS) algorithm, after determination of the set of transition probability matrices {T(n)}, 0 ≤
n ≤ |E| by renormalization. Note that the final for loop, in which a transition time is sampled,
corresponds to the continuous-time formulation.
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Chapter 2

Graph transformation and shortest
paths algorithms for finite Markov
chains

The graph transformation (GT) algorithm robustly computes the mean first passage time to an
absorbing state in a finite Markov chain. Here we present a concise overview of the iterative
and block formulations of the GT procedure and generalize the GT formalism to the case of
any path property that is a sum of contributions from individual transitions. In particular,
we examine the path action, which directly relates to the path probability, and analyze the first
passage path ensemble for a model Markov chain that is metastable and therefore numerically
challenging. We compare the mean first passage path action, obtained using GT, with the
full path action probability distribution simulated efficiently using kinetic path sampling,
and with values for the highest-probability paths determined by the recursive enumeration
algorithm (REA). In Markov chains representing realistic dynamical processes, the probability
distributions of first passage path properties are typically fat-tailed and therefore difficult to
converge by sampling, which motivates the use of exact and numerically stable approaches to
compute the expectation. We find that the kinetic relevance of the set of highest-probability
paths depends strongly on the metastability of the Markov chain, and so the properties of the
dominant first passage paths may be unrepresentative of the global dynamics. Use of a global
measure for edge costs in the REA, based on net productive fluxes, allows the total reactive
flux to be decomposed into a finite set of contributions from simple flux-paths. By considering
transition flux-paths, a detailed quantitative analysis of the relative importance of competing
dynamical processes is possible even in the metastable regime.

57



Graph transformation and shortest paths algorithms for finite Markov chains

2.1 Introduction

Diverse stochastic phenomena are conveniently represented by finite Markov chains;1 probabilistic
network models for which the future dynamics depend only on the currently occupied state
and not on the prior history of the trajectory.2 Discrete-time Markov chains3 (DTMCs) are
commonly estimated from trajectory data on a continuous potential energy landscape in the
Markov State Model (MSM) framework.4–8 In a complementary approach, continuous-time
Markov chains1 (CTMCs) can be mapped from a potential energy landscape by geometry
optimization9 of local stationary points in the discrete path sampling (DPS) framework.10–13

CTMCs with a countably-infinite state space14,15 are widely used to represent the number of
each species in population dynamics16–18 processes such as chemical and biochemical reaction
cycles,19–24 and can be transformed to finite Markov chains with negligible error by truncating
the state space.25,26

In previous work we have considered a discrete-state Markov reward process27 on a finite
state space S, where individual i ← j transitions in the Markov chain are associated with
a reward Rij that depends only on the identity of the currently occupied node j and not
the next node i (i.e. Rij ≡ Rj ∀ i). The graph transformation (GT) algorithm28–32 can be
used to compute the average reward along first passage33,34 trajectories from an initial set
of nodes B to an absorbing set of nodes A in this case. An important example of a path
property of this kind is the path time. The mean time elapsed along an A ← B first passage
path33,34 in a CTMC2 is a sum of mean waiting times τj for transitions from nodes j in the
path.30 For a DTMC,3 the fixed lag time associated with transitions is uniform for all nodes,
τj ≡ τ ∀ j.35 The A ← B mean first passage time (MFPT),36 TAB, is a sum of path times,
taken over all possible first passage paths, weighted by the associated path probabilities.35

The GT algorithm is numerically stable, and therefore valuable in many practical applications.31

Markov chains representing realistic dynamical processes are frequently observed to encompass
a separation of characteristic timescales, and the corresponding transition probability or
rate matrix is therefore ill-conditioned.37–48 This feature arises in Markovian networks
constructed using the MSM and DPS frameworks because of the exponential sensitivity
of estimated transition probabilities or rates to the structure of the underlying energy
landscape.49,50 Metastability also emerges in reaction networks where the rate constants for
alternative competing reactions are disparate.19–24 Markov chains that harbour metastable
communities of nodes pose numerical challenges, since dynamical simulations become unfeasibly
inefficient51,52 and conventional linear algebra methods lead to a severe propagation of
numerical error. The GT algorithm provides a powerful alternative approach to compute
MFPTs in high-dimensional and ill-conditioned Markov chains.31
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In the present contribution we generalize the GT algorithm28–32 to the case of rewards
Rij that are different for transitions to alternative destination nodes i from the currently
occupied node j. Relevant examples of such rewards include the path action,53 which directly
relates to the path probability, and the entropy flow,54 which quantifies the reversibility of
a trajectory.55,56 Although they are not dynamical observables, the average path action and
entropy flow have rigorous interpretations, and the probability distributions for these path
properties yield important insight into the characteristics of a Markov chain. For instance,
the expectation of the path action is the Shannon entropy57 associated with the ensemble
of first passage paths.58–62 A similar quantity is employed in the maximum caliber and
maximum entropy frameworks as the objective function in a variational principle to estimate
Markovian transition probabilities or rates for a discrete set of states, given constraints on the
stationary distribution and additional global dynamical information.63,64 The entropy flow
is a central quantity in stochastic thermodynamics,65 since the average entropy production is
governed by an integral fluctuation theorem.66 Previous analytical results considering paths
in Markov chains weighted by arbitrary rewards are limited and do not lend themselves to
the design of computational procedures that have the desirable scalability and stability of
our generalized GT algorithm.67

Following derivations of the expected rewards for paths on renormalized Markov chains
(Sec. 2.2.2), and of the iterative and block formulations for the generalized GT algorithm
(Sec. 2.2.3), we compute the mean first passage path action for a model metastable Markov
chain (Sec. 2.3). We compare the expectation for the path action with the full probability
distribution simulated efficiently using kinetic path sampling,68,69 and with the values for
the highest-probability paths determined by the recursive enumeration algorithm (REA)
(Sec. 2.2.4).70 We demonstrate that the probability distributions of first passage path
properties are typically fat-tailed, and that the fraction of the total probability flux to
the absorbing state accounted for by the dominant first passage paths depends strongly
on the metastability of the Markov chain. Hence, it is often challenging to obtain an
accurate numerical estimate for the expectation of a first passage path property by sampling
trajectories, and it may be unfeasible to converge the pathwise sum for the expectation using
shortest paths algorithms. We propose an alternative shortest paths analysis to provide
quantitative information on the relative importance of alternative A ← B processes, using
edge costs in the REA that are based on net reactive fluxes.71 This formulation allows the
total A ← B reactive flux to be decomposed into a sum of contributions from a finite set
of simple flux-paths (Sec. 2.2.5). We find that the total reactive flux becomes increasingly
localized among a small subset of transition flux-paths with increasing metastability.
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2.2 Theory

2.2.1 Mathematical definitions

We consider arbitrary discrete-3 and continuous-time72 finite Markov chains. A DTMC is
parameterized by i ← j transition probabilities Tij(τ) for a fixed time step τ . A CTMC is
parameterized by i ← j 6= i transition rates Kij.1 Equivalently, a CTMC can be specified
by a branching probability matrix73 P with off-diagonal elements Pij = Kij/

∑
γ 6=jKγj and

diagonal elements Pjj = 0, and a vector of mean waiting times for transitions from nodes j,
with elements τj = 1/∑γ 6=jKγj. In the present work, we denote the stochastic matrix of a
Markov chain (T(τ) for a DTMC and P for a CTMC) by T for generality, as in Chapter 1.
We denote the state space of the Markov chain (i.e. the complete set of nodes) as S, and
consider two disjoint sets of endpoint nodes A and B, where A∪B ⊆ S, which are the target
and initial states, respectively.

Let the i ← j transition be associated with a reward Rij, which does not modify the
dynamics but instead is used to assign a weight R[ξ] to paths ξ. The total reward along
a particular A ← B first passage path ξ ≡ {a ∈ A ← in ← in−1 ← · · · ← i1 ← b ∈ B},
where i1, . . . , in /∈ A, is a sum of contributions from individual transitions along ξ, R[ξ] =∑

(i←j)∈ξ Rij. An important example of a path property of this type is the path action,57

− lnW [ξ] = −∑(i←j)∈ξ lnTij. Here, W [ξ] denotes the product of transition probabilities
along the path ξ, i.e. the path weight.30 The path probability P [ξ] is equal to this probability
weighted by the probability pb(0) of starting at the initial node b ∈ B of the path ξ, P [ξ] =
pb(0)W [ξ].74 Another tangible example of a reward is the entropy flow.54 In discrete time,
the path entropy flow is75 S[ξ] = ∑

(i←j)∈ξ ln(Tji/Tij) (in units of the Boltzmann constant),
and in continuous time76 S[ξ] = ∑

(i←j)∈ξ ln(Kji/Kij). The numerical results presented in
Sec. 2.3 are concerned with the path action.

In addition to rewards R[ξ] along individual trajectories ξ, we are interested in the
ensemble average reward RAB, considering all trajectories that start in the state B and are
absorbed upon hitting the stateA, including revisits to B.30 We refer to this set of trajectories
as the first passage path ensemble58–62 (FPPE) and RAB as the mean first passage reward
(MFPR).

2.2.2 Expected rewards for individual paths on censored Markov chains

Our generalized GT algorithm to calculate the MFPR (Sec. 2.2.3) utilizes the concept of a
censored Markov chain,16,77–82 introduced in Chapter 1. We begin by considering the effect
of renormalization to eliminate a single node83 n on the rewards associated with paths on
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the resulting censored network. For pairs of nodes i and j for which there exist i ← n

and n ← j transitions, it is possible to define renormalized transition probabilities T ′ij that
account for the average contribution of i← j transitions proceeding via the eliminated node
n. Specifically, the total probability of the i ← j transition in the renormalized Markov
chain is30

T ′ij = Tij + TinTnj
1− Tnn

. (2.1)

Here, the first contribution corresponds to direct i← j transitions on the original network,
and the second contribution corresponds to indirect (‘round-trip’) transitions, i ← n ←
. . . ← n ← j, where the eliminated node n is visited an arbitrary number of times.68 The
updated transition probabilities of Eq. 2.1 naturally yield a new stochastic matrix without
requiring explicit normalization.30

We wish to derive the renormalized reward R′ij associated with the i ← j transition in
the censored Markov chain for which the n-th node is eliminated. We must account for the
fact that the expected reward associated with i ← j transitions proceeding indirectly, via
the eliminated (censored) node n, is different from the reward for the direct i← j transition,
which does not involve the censored node. The conditional probability that a i← j transition
is direct is given by Tij/T ′ij (cf. Eq. 2.1), and the reward for the direct transition is simply
Rij. The contribution to the renormalized i← j reward arising from indirect transitions via
node n is more complicated. On average, a trajectory at node n will transition from n a
total of (1− Tnn)−1 times before leaving n, including the final transition to escape from n.3

Thus the expected reward for an indirect i← j transition is

〈Rindir
in 〉 = Rin +Rnj +Rnn

( 1
1− Tnn

− 1
)
. (2.2)

The average reward associated with the i ← j transition for the renormalized (censored)
network is the sum of direct and average indirect rewards weighted by the conditional
probabilities of direct and indirect i← j transitions, respectively,

R′ij = 1
T ′ij

TijRij + TinTnj
1− Tnn

〈Rindir
in 〉

. (2.3)

Here T ′ij is given by Eq. 2.1 and 〈Rindir
in 〉 by Eq. 2.2. Eq. 2.3 conserves the average rewards

R[ξ] for all individual paths ξ, with arbitrary initial and final nodes, on a censored Markov
chain.77 The rewards associated with trajectories on the censored Markov chain are strictly
an expectation with respect to the contributions of path segments that visit censored nodes.77

Reducing the dimensionality of Markov chains by renormalization provides a strategy to
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facilitate the sampling of trajectories,84 and Eq. 2.3 allows for the probability distributions
of path rewards on the transformed network to be estimated within this framework.

Our result in Eq. 2.3 can also be exploited to compute the overall A ← B MFPR.
Following elimination of all nodes of the set (A∪ b)c using renormalization of the transition
probabilities and rewards (Eqs. 2.1 and 2.3, respectively), where b ∈ B is a single node of
the initial state, the average reward associated with the ensemble of A ← b trajectories is

RAb =
( 1

1− T ′bb
− 1

)
R′bb +

∑
a∈A

T ′abR
′
ab

1− T ′bb
. (2.4)

Here, we have again used the result that the expected number of transitions from node b
before hitting a different node is (1 − T ′bb)−1, all of which except the final transition are
b ← b self-loop transitions, and the probability that the node a ∈ A is hit upon leaving b
is T ′ab/(1 − T ′bb). The average reward for paths of the A ← B FPPE,58–62 RAB, is simply a
weighted average of rewards RAb (Eq. 2.4) with respect to the initial occupation probability
distribution pb(0) for nodes b ∈ B.31

2.2.3 Mean first passage reward computed using a generalized graph
transformation procedure

Let the set of transient (nonabsorbing) nodes of the Markov chain be denoted Q, and the
complete set of nodes as S ≡ Q∪A. The results of Sec. 2.2.2 demonstrate that the A ← B
MFPR can be computed by iteratively renormalizing the elements of a reward matrix R that
is initially of dimensions |Q| × |Q|, and from which the n-th row and column are removed
when eliminating node n. In fact, it is only necessary to consider an initial |Q|-dimensional
vector of mean rewards for transitions from the transient nodes in order to compute the
MFPR to the absorbing state, as we now show.

For a general Markov chain, the sum of path probabilities to the absorbing state A from
a transient node q ∈ Q is given by the component

[
1>ATAQNQQ

]
q
, and is unity for all

q.85 Here, NQQ = (IQQ−TQQ)−1 is the fundamental matrix3 associated with the absorbing
Markov chain parameterized by the substochastic matrix TQQ, for transitions between nodes
of the set Q, 1A is a column vector of dimension |A| with unit entries, and IQQ denotes the
|Q|-dimensional identity matrix.

To produce a general formula for the MFPR from the set of transient nodes to the
absorbing state, RAQ, we introduce the reweighted i ← j transition probabilities T̂ij =
Tij exp (ζRij). This is the same mathematical trick that we used to prove the GT algorithm
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in Chapter 1. In component form we have ∂T̂ij/∂ζ
∣∣∣
ζ=0

= TijRij, and so

∂T̂AQ
∂ζ

∣∣∣∣
ζ=0

= TAQ ◦RAQ, (2.5)

where ◦ denotes the elementwise (Hadamard) product, which we write as CAQ. Here, TAQ is
the substochastic matrix for transitions from transient to absorbing nodes, with dimensions
|A| × |Q|, and RAQ is the corresponding matrix of associated rewards for the transitions.

The A ← QMFPR can be computed from the fundamental matrix NQQ of the absorbing
Markov chain as

RAQ = ∂

∂ζ
1>AT̂AQN̂QQ

∣∣∣∣
ζ=0

pQ(0), (2.6)

where pQ(0) is the initial occupation probability distribution within Q. We require the
derivative

∂N̂QQ
∂ζ

∣∣∣∣
ζ=0

= NQQ
∂T̂QQ
∂ζ

∣∣∣∣
ζ=0

NQQ

= NQQCQQNQQ, (2.7)

which gives

RAQ = 1>A (CAQ + TAQNQQCQQ) NQQpQ(0)

=
(
1>ACAQ + 1>QCQQ

)
NQQpQ(0)

= r>QNQQpQ(0), (2.8)

where the q-th component of the column vector rQ is the average reward for transitions from
node q:

[rQ]q =
∑
γ

TγqRγq. (2.9)

For comparison, the corresponding formula for the MFPT (derived in Chapter 1) is85 TAQ =
τ>NQQpQ(0), where τ is the vector of mean waiting times (for a CTMC) or lag times
(for a DTMC) for transitions from the nodes. Eq. 2.8 also demonstrates that [NQQ]ij is
the expected number of times the i-th node is visited prior to absorption for first passage
paths initialized from the j-th node.3 We consider the matrix NQQ in detail in Chapter 3.
Using Eqs. 2.8 and 2.9, the A ← q MFPRs for all transient nodes q ∈ Q can be computed
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simultaneously by inversion of a matrix with dimensions |Q| × |Q|.
For Markov chains exhibiting metastability, the matrix inversion operation to compute

NQQ is numerically unstable. We can instead iteratively eliminate blocks of one or more
nodes to compute A ← B MFPRs by renormalization of an average reward vector (Eq. 2.9)
and a transition probability matrix. The set of initial nodes B forms a subset of the transient
state, with the set of other (intervening) nodes denoted I, i.e. Q ≡ B∪I. After eliminating
nodes of the state I, so that the Markov chain comprises only nodes of the set B ∪ A, the
corresponding path probabilities can be written as 1>ATIABNIBB, where32,77,85

TIAB = TAB + TAINIITIB, (2.10a)

NIBB = (IBB −TIBB)−1. (2.10b)

Here, we have used the superscript I to indicate that nodes of the set I have been eliminated
by renormalization. Introducing the reweighted transition probabilities T̂ij and following a
derivation analogous to that for Eq. 2.8 yields the following expression for the A ← B MFPR:

RAB =
(
r>B + r>INIITIB

)
NIBBpB(0). (2.11)

Since the initial occupation probability distribution is localized within B, the MFPR will be
conserved if we iteratively eliminate blocks of nodes N ⊆ I, renormalizing the probabilities
for transitions from nodes in the set Q′ ≡ Q \ N according to the usual GT formula (cf.
Eq. 2.10a),

TNSQ′ = TSQ′ + TSNNNNTNQ′ , (2.12)

and updating the average rewards according to

rNQ′
> = r>Q′ + r>NNNNTNQ′ . (2.13)

Eq. 2.12 is the block analogue of Eq. 2.1. That is, Eq. 2.12 yields the same renormalized
stochastic matrix as the repeated application of Eq. 2.1 to iteratively eliminate the nodes of
the set N in any order. The generalized GT procedure to compute the A ← B MFPR based
on Eqs. 2.12 and 2.13 is both numerically stable and efficient if nodes in blocks N to be
eliminated simultaneously belong to the same metastable community.32,85 The communities
can be determined a priori by an appropriate clustering algorithm.52,86

Eq. 2.13 is analogous to the result for the renormalized waiting times that preserve the
MFPT,30,85 with the mean rewards for transitions from transient nodes q ∈ Q in place of the
mean waiting (or lag) times. Eliminating a single node n ∈ I by renormalization, Eq. 2.12
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reduces to Eq. 2.1, and Eq. 2.13 reduces to

[rnQ′ ]q = [rQ′ ]q + [rQ′ ]nTnq
1− Tnn

. (2.14)

Exploiting the relation 1 − Tnn = ∑
γ 6=n Tγn when Tnn → 1 avoids the propagation of

significant roundoff error in the finite precision arithmetic, and this algorithm is numerically
stable.37–47 The time complexity of the iterative procedure depends on the average degree of
nodes and on the heterogeneity of the degree distribution,29,68 and varies between O(|Q|3)
and O(|Q|4).

2.2.4 Recursive enumeration algorithm

Formally, the expected A ← B reward is a sum of contributions R[ξ] from all paths ξ of the
first passage path ensemble35,57,62

RAB =
∑

ξ∈{A←B}
pb(0)W [ξ]R[ξ]. (2.15)

The weighted sum in Eq. 2.15 has an infinite number of terms for Markov chains featuring
loops, but the contributions to the sum from paths related by additional traversals of a
particular loop converge. The highest-probability first passage paths,87 and their contribution
to the A ← B reward sum in Eq. 2.15, can be determined by a k shortest paths algorithm88–90

where the i ← j edge cost is − lnTij, i.e. the contribution of the transition to the path
action.74,91 For DTMCs, self-loop transitions for nodes can be eliminated by renormalization
using Tij ⇒ Tij/(1− Tjj) ∀ i 6= j,30 while preserving the MFPR using Rij ⇒ Rij +
Rjj[(1− Tjj)−1 − 1] (see Sec. 2.2.2).

For Markov chains with metastable states, successive shortest paths tend to differ by
small modifications, such as a single additional loop traversal or a small segment of the
path proceeding via a few alternative nodes.74 We therefore choose to employ the recursive
enumeration algorithm (REA) of Jiménez and Marzal,70 which is particularly efficient in
cases where the set of k shortest paths share most of their nodes in common, and consist
of a small fraction of the total number of nodes in the network.70 The REA has worst-
case time complexity O(E + kV log (E/V )) for a network comprising V nodes and E edges.
The algorithm is empirically observed to outperform alternative general k shortest paths
algorithms that have superior asymptotic time complexity, such as those of Eppstein [time
complexityO(E+V+k log k)],92,93 Azevedo et al. [time complexityO(kE)],94,95 and Martins,
Pascoal, and dos Santos [time complexity O(kV log V )],96–98 because the REA is associated
with a comparatively small computational overhead.70 In the following informal derivation
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of the REA, we assume that all nodes are reachable from all nonabsorbing nodes, i.e. the
set S \ A is transient.

The REA formulates the general single-source node, single-sink node a ∈ A ← b ∈ B
k shortest paths problem as a set of Bellman equations,99 which are solved recursively.100

Let the k-th shortest path to node j be denoted ξk(j), with associated cost R[ξk(j)], and
the set of nodes with direct transitions to node j be denoted D(j). The first stage of the
REA constructs the shortest path tree for the transitions from the single initial node to all
alternative nodes using any appropriate procedure, such as Dijkstra’s algorithm [worst case
time complexity O(E + V log V )].101–103 The REA exploits the fact that the k-th shortest
path to node j can be written in the form ξk(j) ≡ ξk

′(i) ∪ {j ← i}, where i ∈ D(j) and
k′ ≤ k. At the (k−1)-th iteration of the REA, the next (k-th) shortest path to the absorbing
node a can therefore be selected from a list M(a) of such candidate paths. For each node
i ∈ D(a), only the candidate path ξk

′(i) ∪ {a ← i} for which ξk
′(i) has the lowest cost,

and which has not already been chosen as a previous shortest path to the a-th node, needs
to be considered. Hence, there are at most |D(a)| candidates for the next shortest path to
node a; one for each node with a transition to a. Here, we have noted that ties may be
broken arbitrarily, and that there is no more than one edge connecting any pair of nodes in
a Markovian network. The REA maintains an array of candidate pathsM(j) for all nodes j
of the network, and an array of the k-th shortest paths to each node. At each iteration of the
REA, a function is called to determine the next shortest path to the target node a. Recursive
calls to this function are used to ensure that candidate paths are assigned, and that with
lowest cost selected, for the shortest paths to preceding nodes, as required. The pseudocode
for this procedure applied to determine the highest-probability first passage paths in a finite
Markov chain, employing path costs R[ξ] ≡ − lnW [ξ], is presented in Algorithm 4.

2.2.5 Transition flux-paths

The transition probabilities are a local measure of the probability flux, and − lnTij represents
only one possible choice for the i ← j edge costs to extract dynamical information from
shortest paths algorithms.87 As we show in Sec. 2.3, the k shortest paths for this choice
of edge costs are very closely related for Markov chains exhibiting metastability, and may
together account for only a small proportion of the total A ← B probability flux. Hence, for
Markov chains exhibiting metastability, the number of shortest paths that can be feasibly
determined by the REA is typically insufficient to converge the pathwise sum for the MFPR
(Eq. 2.15).

An alternative choice, which may be especially useful in the metastable regime, is to use
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edge costs that represent a global measure of the probability flux. The contribution of a
transition path ξ ≡ {a ∈ A ≡ in+1 ← in ← . . .← i1 ← b ∈ B}, where i1, . . . , in /∈ A ∪ B, to
the total reactive steady-state104 flux JAB is105

J [ξ] = f+
i1b

n∏
k=1

f+
ik+1ik

f+
ik

. (2.16)

Here,

f+
ij =

πjTij(q
+
i − q+

j ), if q+
i > q+

j ,

0, otherwise,
(2.17)

is the net A ← B reactive flux along the i ← j edge,71 f+
j = ∑

γ f
+
γj = ∑

γ f
+
jγ, πj is the

stationary probability for the j-th node,83,106 and q+
j is the forward committor probability

for the j-th node,107–109 i.e. the probability that a trajectory initialized at node j hits the
target set of nodes A before hitting the initial state B.31 Eq. 2.16 implies the following
definition for the i← j edge costs:

R[{i← j}] =


− ln f+

ij

f+
j

, if j /∈ B,

− ln f+
ij , otherwise.

(2.18)

Unlike the local edge costs based on transition probabilities, i.e. − lnTij, the global edge
costs based on reactive fluxes (Eq. 2.18) represent the A ← B transition mechanism when
the system has reached a steady-state.71 That is, f+

ij (Eq. 2.17) is the net productive flux
along the i ← j edge for the equilibrium FPPE,104 and therefore JAB is the total steady-
state reactive A ← B flux.105 This stationary flux directly relates to the steady-state rate
constant, which is the dynamical observable associated with the equilibrium FPPE.85 Note
that it is also possible to define net reactive fluxes along individual edges, and hence edge
costs to determine flux-paths (cf. Eq. 2.18), for the nonequilibrium FPPE,62,104 for which
the MFPT is the associated dynamical observable. The two FPPEs are discussed in more
detail in Chapter 3.

When using edge costs given by Eq. 2.18, the weighted network representing the Markov
chain in the shortest paths algorithm has unidirectional edges, which are directed such
that paths are forced to proceed productively through a series of isocommittor cuts in the
network.110 Hence, there are no loops in the network (i.e. all paths based on the choice
of edge costs representing the net reactive flux are simple89), and the sum over transition
flux-paths to obtain the total reactive flux, JAB = ∑

ξ∈{A←B} J [ξ], is finite. Since the set of
nodes S \A is not transient when the edge costs are given by Eq. 2.18, the REA as presented
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Figure 2.1: Disconnectivity graph114 representing the energy landscape of the model eight-state
CTMC, at a threshold energy increment of ∆E = 2. The branches of the tree terminate at
the energies of the corresponding nodes. A fork indicates that there exists a path between
the corresponding sets of nodes via a highest-energy transition state that lies in between the
neighbouring energy thresholds. The branches corresponding to the absorbing and initial nodes,
which constitute the sets A and B, are colored red and blue, respectively.

in Algorithm 4 must be adapted to account for the situation where a candidate path does
not exist, as outlined in the original description of the REA (see Ref. 70). With this minor
modification, which is also required when using local edge costs − lnTij for Markov chains
that are reducible,3 the REA can be used to obtain the complete set of reactive A ← B
flux-paths and their contributions to the total reactive flux.

For ill-conditioned Markov chains, evaluation of the edge costs in Eq. 2.18 is highly
susceptible to numerical error.37–47 Hence, in the metastable regime, the stationary probabilities
{πj} and committor probabilities {q+

j } required in Eq. 2.17 should be determined by a
numerically stable method. The {πj} can be computed robustly by the GTH algorithm83,106

or an uncoupling-coupling procedure,77,111–113 as described in Chapter 1. We report a state
reduction algorithm for the computation of the {q+

j } in Chapter 3.104

2.3 Numerical results

We illustrate our methodology with results for the model eight-state CTMC considered in
Ref. 115, for which the disconnectivity graph114 is shown in Fig. 2.1. The system corresponds
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Figure 2.2: Variation in the A ← B mean first passage time, TAB, and the steady-state A ← B
reactive flux, JAB, with inverse temperature, for the eight-state CTMC (Fig. 2.1). The CTMC is
an effective two-state system, and hence the MFPT is dominated by the time to transition via the
single largest energy barrier. Thus the MFPT approximately follows an Arrhenius law, and the
height of the energy barrier associated with the slow bottleneck transition, which can be discerned
from the disconnectivity graph in Fig. 2.1, can be inferred from the gradient of the above linear
plot.

to a coarse-grained representation of an energy landscape,57 with a discrete set of states
connected via energy barriers. The internode transition rates have an Arrhenius form,116

dependent on the temperature T ,35 and characterize the Markovian network dynamics in
terms of branching probabilities73 and mean waiting times for transitions from nodes.30 A
complete specification of this model system is given in Appendix 2.A.

The variation in the heights of energy barriers for transitions in the system induces a
separation of timescales that increases with decreasing temperature. Both the A ← B MFPT
and the steady-state A ← B reactive flux vary by around twenty orders of magnitude in the
range of inverse temperature 1/T from 0.1 to 2 (Fig. 2.2). At low temperatures, conventional
linear algebra methods to determine MFPTs fail owing to numerical instability.36 This
CTMC therefore provides a useful benchmark problem, since Markov chains representing
realistic dynamical processes are frequently metastable117–124 and therefore ill-conditioned.37–48

We consider a single source node and a single sink node. Thus there is no contribution to
the path probability from the initial node occupation probability distribution, and therefore
W [ξ] ≡ P [ξ].

Fig. 2.3 shows the probability distribution for the path action in the FPPE obtained
from kinetic path sampling68 (kPS) simulations, and the mean path action computed by
the nodewise iterative formulation of the generalized GT algorithm (Eqs. 2.1 and 2.14),
for the eight-state CTMC at an inverse temperature of 1/T = 2. At low temperatures,
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Figure 2.3: Probability distribution of the path action for the ensemble of A ← B first passage
paths, obtained from 100000 kinetic path sampling68 iterations, and mean path action obtained
using the generalized GT algorithm (pink), for the eight-state CTMC (Fig. 2.1) at an inverse
temperature of 1/T = 2. At this temperature, the CTMC is strongly metastable.

where the model Markov chain is metastable, the use of the standard kinetic Monte Carlo
algorithm125 to sample A ← B first passage paths is unfeasibly inefficient.52 Kinetic path
sampling68,69 (kPS), described in Chapter 1, can instead be used to sample the numbers of
individual i ← j transitions along A ← B paths, and hence the probability distribution for
first passage path rewards. The path action distribution at this low value of the temperature
is fat-tailed.126–128 That is, there is a small but appreciable proportion of probability mass
at extreme values, which makes a substantial contribution to the mean, and thus the second
and higher central moments of the distribution are significant. Hence, reliable estimation
of the mean path action in the metastable regime by sampling paths requires a very large
number of observations, even for this low-dimensional system.

It is common in dynamical models of realistic systems for first passage time distributions
associated with transitions between two endpoint states to be fat-tailed.52,126–128 One approach
to examine this phenomenon is to compute the proportion of the A ← B probability flux
that can be attributed to the dominant first passage paths, and to examine the convergence
of the sum for the expectation of the first passage time (cf. Eq. 2.15) when an increasing
number of paths are included.

In Fig. 2.4, we compare the mean path action computed using GT to the values associated
with the highest-probability paths determined by the REA,70 for the eight-state CTMC
(Fig. 2.1) at an inverse temperature of 1/T = 2. Fig. 2.4 also illustrates the convergence of
the pathwise sum (Eq. 2.15) for the MFPT, TAB. The dominant first passage paths are highly
atypical, and are associated with values for the path action and time that are several standard
deviations smaller than the means of the respective distributions. Because these distributions

70



Graph transformation and shortest paths algorithms for finite Markov chains

are fat-tailed, the 100000 highest-probability paths account for a fraction of only around
5×10−7 of the total A ← B probability flux, and the pathwise sum for the MFPT is far from
converged. The probabilities associated with the 100000 dominant first passage paths are
close to uniform at this low temperature, suggesting that the paths determined by the REA
are all closely related. Indeed, the small number of paths (around 5000) with the very highest
probabilities are very similar, involving a small number of transitions via the lowest energy
barriers. However, subsequent shortest paths can be divided into two families: longer paths
involving only the most favourable transitions, and short paths proceeding via one or more
alternative, less favourable, transitions. Our analysis of this simple model demonstrates that,
while examination of the properties of the highest-probability first passage paths is insightful,
this analysis alone may be misleading, and it is crucial to calculate the expectation for the
path property of interest.

The extent to which the first passage time and path action distributions are fat-tailed
depends strongly on the metastability of the Markov chain. Fig. 2.5 shows the evolution
of the cumulative sum of probabilities for the 100000 dominant A ← B first passage paths
at varying temperature. Notably, the convergence of the path probability sum follows the
same pattern at all temperatures. There are a very small number (roughly 10-100) of first
passage paths with relative probabilities that are particularly high, and the profile for the
cumulative A ← B path probability then reaches a plateau. Thus, even for the model
system with a small state space and in the high-temperature limit, it is unfeasible to obtain
the set of paths that account for the majority (say, > 90%) of the A ← B first passage
path probability by shortest paths algorithms, which would require an exceptionally large
number (more than 1010) of paths to be determined. Nonetheless, at high temperatures,
where there is no significant separation of characteristic timescales, almost 50% of the total
A ← B probability flux is accounted for by the 100000 dominant paths, and therefore it is
feasible to obtain a representative picture of the global dynamics using the REA with edge
costs that represent a local measure of the probability flux. At low temperatures, however,
the set of highest-probability first passage paths accounts for a negligible proportion of the
total probability flux, and is therefore not kinetically relevant.

To provide quantitative information on the relative importance of alternative families of
first passage paths, we use the REA employing the edge costs given in Eq. 2.18, which are
based on the net reactive flux along individual edges (Eq. 2.17). The decomposition of the
total reactive A ← B steady-state flux JAB (Eq. 2.16) into contributions from individual
simple transition flux-paths, at varying temperature, is shown in Fig. 2.6. The observed
order of committor probabilities for nodes, which does not change with temperature for this
system, yields a pattern of unidirectional net reactive fluxes associated with a total of 36
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(pink) for the 100000 highest-probability A ← B first passage paths in the eight-state CTMC
(Fig. 2.1) at an inverse temperature of 1/T = 2. At this temperature, the CTMC is strongly
metastable. The value of the MFPT, computed using GT, is indicated by a dashed pink line. The
paths were determined using the recursive enumeration algorithm (Algorithm 4).70 Note the small
scale for the path action axis.
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A ← B simple flux-paths. Evidently, the reactive flux becomes increasingly localized among a
small subset of transition flux-paths with decreasing temperature (increasing metastability).
In the high-temperature regime (1/T = 0.1), the single flux-path associated with the largest
contribution to the pathwise sum for JAB contributes around a third of the total reactive
flux, and the 15 dominant simple paths are required to account for almost all (> 99%) of the
total reactive flux. Conversely, in the low-temperature regime (1/T = 2), the highest-flux
simple path contributes more than half of the total reactive flux, and the vast majority of
the total A ← B flux is associated with the four dominant flux-paths.

Because the set of simple flux-paths is finite, decomposition of the total reactive flux JAB
into additive contributions from transition flux-paths (cf. Eq. 2.16) provides a representative
picture of the global dynamics even in the metastable regime, where the set of highest-
probability first passage paths accounts for a negligible proportion of the total path probability
(Fig. 2.5). By effectively grouping together paths that are related by unproductive flickering,52

a quantitative comparison of the kinetic relevance of different competing A ← B transition
mechanisms is recovered. This shortest paths analysis is an alternative to the augmenting
paths algorithm of Ref. 71, which distinguishes families of simple flux-paths on the basis
of their associated dynamical bottleneck edges.105 Moreover, computation of the committor
probabilities109 by a robust state reduction algorithm104 or alternative linear algebra methods,108

and determination of the shortest paths using the REA, scales favourably with dimensionality
of the Markov chain. Hence, the complete set of simple flux-paths can be feasibly computed
using the REA for sparse networks comprising several tens of thousands of nodes.

2.4 Conclusions

In this chapter, we have derived a general expression for renormalized rewards (Eq. 2.3)
associated with arbitrary paths on a censored Markov chain.16,77–82 We have also derived
numerically stable iterative (Eqs. 2.1 and 2.14) and block (Eqs. 2.12 and 2.13) graph transformation28–32

(GT) procedures to compute the mean reward for the ensemble of first passage paths,57,62

i.e. the MFPR for a transition from an initial set of nodes B to an absorbing set of nodes
A. These formulations are applicable to both discrete- and continuous-time finite Markov
chains.35 If the system is not metastable, so that the transition probability matrix is well-
conditioned, then MFPRs for transitions from all nonabsorbing nodes can be computed
simultaneously using a single matrix inversion operation (Eq. 2.8).85

Knowledge of the expectation for the probability distributions of path properties in the
FPPE is useful for assessing the convergence when sampling these distributions, which are
frequently observed to be fat-tailed126–128 owing to the existence of rare events in dynamical
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Figure 2.6: Cumulative sum of relative contributions (cf. Eq. 2.16) to the total A ← B steady-
state reactive flux, JAB, from alternative simple flux-paths, for the eight-state CTMC (Fig. 2.1)
at varying temperature. There are 36 simple flux-paths in total, but no more than 15 transition
flux-paths are required to account for the vast majority (> 99%) of the total reactive flux for all
temperatures shown. The annotations denote the value of the inverse temperature, i.e. 1/T . The
flux-paths were determined using the recursive enumeration algorithm70 (Algorithm 4) with edge
costs based on net reactive fluxes (Eq. 2.18).

models for realistic systems.124

The mean values for first passage path properties can also be compared to the values
associated with the highest-probability paths74,91 determined by the recursive enumeration
algorithm (REA),70 to assess the extent to which the characteristics of the dominant first
passage paths87 are typical or otherwise. The shortest paths analysis allows us to evaluate
the dominant terms in the pathwise sum (Eq. 2.15) for the expectation of a first passage
path property, such as the A ← B MFPT.36 Even for low-dimensional Markov chains that do
not feature a separation of characteristic timescales, a substantial proportion of the A ← B
probability flux is attributable to an exceptionally large number of paths each associated
with a very small probability. Hence, the set of shortest paths alone typically accounts for
only a fraction of the pathwise sum for the MFPR.

In the metastable regime, low-probability paths comprising a very large number of transitions
account for the overwhelming majority of the total first passage path probability, and the set
of shortest paths alone is therefore not kinetically relevant. Alternative edge costs reflecting
the global dynamics (Eq. 2.18) can be employed to exactly decompose the reactive steady-
state A ← B flux, JAB, into a sum of contributions from simple flux-paths. This formulation
is exact,105 and provides a complementary viewpoint to the typical approach of decomposing
JAB into additive contributions (cf. Eq. 2.17) from members of a set of edges that together
constitute an A-B cut in the network.71 The latter framework, described in Chapter 1,
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effectively groups together transition paths that share the same dynamical bottleneck edge
of the cut set, and is therefore best suited to compare the relative importance of individual
edges comprising a chosen A-B cut.129 The flux-pathwise analysis proposed in the current
work provides a more detailed analysis that can be used to quantitatively understand the
characteristic features of the whole A ← B transition mechanism.

The GT and REA procedures scale favourably and can be applied to complex networks
with state spaces comprising several hundred thousand nodes.31,91 The methodology described
herein will therefore provide fundamental insight into a variety of first passage processes in
stochastic models. For instance: what is the single most probable route for the extinction
of a species in a population dynamics16–18 process? What are the most probable paths that
together account for a specified proportion of the first passage probability flux, and what is
the collective contribution of these paths to the MFPT?

2.A Description of the model system

Here we provide a complete specification of the model eight-state CTMC (for which the
disconnectivity graph is shown in Fig. 2.1) that was employed to demonstrate our proposed
methodology in Sec. 2.3. Let the diagonal element Ejj of the matrix E represent the energy
of the j-th node of the Markov chain, and the off-diagonal element Eij (for i 6= j) represent
the energy of the transition state connecting nodes i and j, so that Eij − Ejj is the energy
barrier for the i← j transition. The matrix E is:

E =



0 28 103 ∞ ∞ ∞ 18 ∞
... 8 20 25 30 ∞ 22 ∞
... . . . 10 35 25 ∞ 83 ∞
... . . . . . . 9 20 125 ∞ 24
... . . . . . . . . . 7 26 ∞ 36
... . . . . . . . . . . . . 1 ∞ 19
... . . . . . . . . . . . . . . . 1 ∞
· · · · · · · · · · · · · · · · · · · · · 2



, (2.19)

where off-diagonal entries Eij equal to∞ indicate that a direct connection between the i and
j nodes does not exist. Note that the matrix E is symmetric about the diagonal, hence only
the upper triangular elements are specified in Eq. 2.19. In the numerical results of Sec. 2.3,
we defined the initial state to be B = {1} and the absorbing state to be A = {8}.
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The i← j transition rate is then given by the Arrhenius expression116

Kij = exp
− Eij − Ejj

T

 ∀ i 6= j, (2.20)

where T is an effective temperature and we have set all the pre-exponential factors to unity
for simplicity. The calculations in Sec. 2.3 used the Markov chain parameterized by the
branching probability matrix as defined in Sec. 2.2.1. The eight-state model system provides
an ideal benchmark to test the numerical stability of algorithms, since the extent to which
the Markov chain is more or less ill-conditioned can be tuned by the value of the parameter
T (cf. Fig. 2.2).
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input : network G representing a finite Markov chain with state space S, and i← j edge
costs − lnTij ∀ i, j ∈ S

initial (source) node b ∈ B and absorbing (sink) node a ∈ A
total number of highest-probability paths to compute, ktot

output: ktot highest-probability a← b first passage paths; ξk(a) for 1 ≤ k ≤ ktot

ξk(j)← ∅ ∀ 1 ≤ k ≤ ktot, j ∈ S;
M(j)← ∅ ∀ j;
ξ1(j) ∀ j 6= b← Dijkstra(G);
/* main loop of REA */
for k = 2, . . . , ktot do

ξk(a)← NextPath(k,a);
return ξk(a) for 1 ≤ k ≤ ktot;

/* one-to-all shortest path algorithm */
function Dijkstra(G)
return ξ1(j)← arg minξ(j)R[ξ(j) ≡ ξ1(i) ∪ {j ← i}] ∀ j ∈ S \ b;

function Pred(k,j)
return k′, i where ξk(j) ≡ ξk′(i) ∪ {j ← i};

/* function to determine the k-th most probable first passage path to node j, given
that the 1, . . . , (k − 1)-th most probable first passage paths are known */

function NextPath(k,j)
if k == 2 then

/* Initialize set of candidates for the next most probable path to node j */
M(j)← {ξ1(i) ∪ {j ← i} ∀ i ∈ D(j) and 1, i 6= Pred(1,j) };
if j == b then

goto selectpath;
k′,i← Pred(k − 1,j);
/* the (k′ + 1)-th shortest path to node i is a viable parent segment of a

candidate path to node j. If unknown, compute this path with a recursive call
to the NextPath function */

if ξ(k′+1)(i) ≡ ∅ then
ξ(k′+1)(i)← NextPath(k′ + 1,i);

M(j)←M(j) ∪ {ξ(k′+1)(i) ∪ {j ← i}}; // add candidate path to list
selectpath:
ξk(j)← arg minξ∈M(j)R[ξ]; // assign candidate path with lowest cost
M(j)←M(j) \ ξk(j); // remove assigned candidate path from list

return ξk(j);

Algorithm 4: Recursive enumeration algorithm70 (REA) to compute the k highest-probability
first passage paths from an initial node b to an absorbing node a in an irreducible finite Markov
chain. ξk(j) denotes the k-th most probable a ← b path to node j. The cost associated with
the path ξ is R[ξ] = −

∑
(i←j)∈ξ lnTij . D(j) denotes the set of nodes for which a direct i ← j

connection exists. M(j) denotes the set of candidates for the next most probable path to the
j-th node. The ordered sequence of transitions along the k-th highest-probability path can be
obtained by tracing the shortest paths array using the Pred function. For reducible Markov
chains, or when using edge costs based on net reactive fluxes (Eq. 2.18), the NextPath function
may encounter the situation where a candidate path to a node cannot be found. In this case,
the next shortest path to the node does not exist. If the node in question is the target node a,
then the main loop of the REA is exited, the complete set of a← b paths having been found.
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Chapter 3

Numerical analysis of first passage
processes in finite Markov chains
exhibiting metastability

We describe state reduction algorithms for the analysis of first passage processes in discrete- and
continuous-time finite Markov chains. We present a formulation of the graph transformation (GT)
algorithm that allows for the evaluation of exact mean first passage times (MFPTs), stationary
probabilities, and committor probabilities for all nonabsorbing nodes of a Markov chain in a single
computation. Calculation of the committor probabilities within the state reduction formalism is readily
generalizable to the first hitting problem for any number of alternative target states. We then show
that a state reduction algorithm can be formulated to compute the expected number of times that each
node is visited along a first passage path. Hence, all properties required to analyze the first passage
path ensemble (FPPE) at both a microscopic and macroscopic level of detail, including the mean
and variance of the FPT distribution, can be computed using state reduction methods. In particular,
we derive expressions for the probability that a node is visited along a direct transition path, which
proceeds without returning to the initial state, considering both the nonequilibrium and equilibrium
(steady-state) FPPEs. The reactive visitation probability provides a rigorous metric to quantify the
dynamical importance of a node for the productive transition between two endpoint states, and thus
allows the local states that facilitate the dominant transition mechanisms to be readily identified. The
state reduction procedures remain numerically stable even for Markov chains exhibiting metastability,
which can be severely ill-conditioned. The rare event regime is frequently encountered in realistic
models of dynamical processes, and our methodology therefore provides valuable tools for the analysis
of Markov chains in practical applications. We illustrate our approach with numerical results for a
kinetic network representing a structural transition in an atomic cluster.
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3.1 Introduction

The analysis of first passage processes,1–4 concerning the evolution of a system until a
specified target state is hit, is of fundamental interest in the theory of stochastic dynamics.
The usual dynamical observable is the mean first passage time (MFPT), defined as the
expected time for trajectories to hit the target state.5–8 The set of possible paths and their
associated probabilities, for a given initial occupation probability distribution, defines the
(nonequilibrium) first passage path ensemble (FPPE).9–17 Finite Markov chains,18–24 in which
a dynamical process is modeled as a sequence of memoryless jumps between the nodes of a
network,25 are a class of discrete-state stochastic model that have been widely adopted in
diverse disciplines. First passage processes in Markov chains can be used to model stochastic
phenomena as varied as biomolecular conformational transitions,26–33 animal movement to
a foraging site within an ecosystem,34 and the sequence of events leading to a stock market
crash in economics.35

The dynamical properties of interest characterizing the FPPE for a Markov chain can in
principle be computed by solving a corresponding system of linear equations (Chapter 1).36,37

However, the required computations, including eigendecomposition or matrix inversion operations,
are liable to encounter numerical issues arising from finite precision when the Markov
chain exhibits metastability.38 For Markov chains featuring a separation of characteristic
timescales, the subdominant eigenvalue of the underlying transition probability (rate) matrix
approaches unity (zero),39,40 respectively, and the system is therefore severely ill-conditioned.41–44

Moreover, in general, it is nontrivial to apply preconditioning techniques to improve the
numerical stability of sparse linear algebra methods.42,45 In realistic applications, there is
typically a rare event that is of particular interest, which is the first passage process that we
wish to analyze.38,46–59 This situation motivates the development of alternative procedures
that have inherent numerical stability, so that the fundamental dynamical properties of a
Markov chain can be computed robustly.

In this chapter we focus on state reduction methods60 to derive numerically stable
algorithms for the analysis of Markov chain dynamics.61–64 These methods proceed via
elimination of the nodes in a Markov chain, while preserving averages for the dynamical
properties of interest, and may also employ a back substitution phase to restore the eliminated
nodes in turn.65 State reduction algorithms have been formulated to compute the stationary
distribution,66,67 MFPTs,68 moments of the FPT distribution,69 and the group inverse36,37

of an irreducible Markov chain.70–72

We present a convenient formulation of the graph transformation (GT) algorithm73–78

that allows for the simultaneous determination of the MFPTs, stationary probabilities,
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and committor probabilities79–82 for all nonabsorbing nodes of a Markov chain in a single
computation (Sec. 3.2), as well as the absorption probabilities.18 We also show that a state
reduction algorithm can be designed to compute the expected number of times that nodes
are visited along first passage paths (Sec. 3.3.2). Other quantities that characterize the
global and local properties of the FPPE, such as the variance of the FPT distribution and
the variances in the number of times that nodes are visited, can be determined from this
information (Sec. 3.3). We derive expressions for the probabilities that nodes are visited along
reactive transition paths, which proceed directly to the absorbing state without returning
to the initial state, considering both the nonequilibrium and equilibrium (i.e. steady-state)
FPPEs (Sec. 3.3.4). The reactive visitation probabilities quantify the dynamical relevance
of individual nodes, and therefore allow us to identify the key mechanisms for productive
transitions and the bottleneck nodes that mediate the dominant pathways. The theory
of committor and reactive visitation probabilities, and of reactive fluxes along individual
edges of the network, is generalizable to the case where there are multiple taboo states.83–85

Separation of the dynamics into competing first passage processes associated with alternative
target states is frequently of interest in models featuring several attractors.

The use of the state reduction algorithms is illustrated with numerical results for a kinetic
network representing a solid-solid structural transition in a model atomic cluster, for which
standard linear algebra methods are unable to compute any of the aforementioned dynamical
quantities (Sec. 3.4). Hence, our methodology provides a viable means to analyze first
passage processes in Markov chains exhibiting rare event dynamics, at both a microscopic
and macroscopic level of detail. The computations were performed using our DISCOTRESS
software.86

3.2 LU decomposition formulation of graph transformation

3.2.1 Markov chain dynamics

As in the previous chapters, we consider discrete-time Markov chains (DTMCs) parameterized
by a transition probability matrix T(τ), where i ← j transitions have probabilities Tij(τ)
and are associated with a fixed lag time τ ,18 and continuous-time Markov chains (CTMCs)
parameterized by a transition rate matrix K.20 The off-diagonal elements of K are the i← j

transition probabilities per unit time in the limit of an infinitesimally small time step, and
the diagonal elements are Kjj = −∑γ 6=jKγj, so that the columns of the matrix sum to
zero.87 The i← j transition probabilities for a CTMC are the elements Pij = Kij/

∑
γ 6=jKγj

of the branching probability matrix P, and the waiting time for the i ← j transition is
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drawn from an exponential distribution with mean τj = 1/∑γ 6=jKγj.88 We shall denote the
transition probability matrix, either T(τ) or P, by T for generality. We consider a Markov
chain with state space S partitioned into the set of absorbing nodes A and the set of transient
(nonabsorbing) nodes Q, so that S ≡ Q ∪ A.89 That is, we consider Markov chains where
the set A must eventually be reached when the process is initialized at any node of the set
Q ≡ Ac.18 If the nodes of the set A are not absorbing in the underlying model, so that it
is possible to reach any node of the network from any other node, then the Markov chain
is said to be irreducible.36,90–92 We may then define the stationary probability distribution
(column) vector π, which satisfies the global balance equations T(τ)π = π and Kπ = 0.87

A key dynamical quantity characterizing a first passage process is the A ← j mean first
passage time (MFPT) TAj, defined as the expected time at which a trajectory first hits
the state A, given that it was initialized at node j.20,93,94 Let the time associated with a
particular A ← j first passage trajectory be denoted by tFPT. Then the MFPT is defined as

TAj = 〈tFPT〉 =
∫ ∞

0
tFPTp(tFPT)dtFPT. (3.1)

Here, p(tFPT) is the first passage time (FPT) distribution15

p(tFPT) = Pr{ξ(tFPT) ∈ A, ξ(0 ≤ t < tFPT) /∈ A

| ξ(t = 0) = j}, (3.2)

where ξ(t) denotes the node of the Markov chain that is occupied for the first passage path
ξ = (A ← in ← . . . ← i1 ← j) at time t, where j, i1, . . . , in /∈ A.95 The MFPTs satisfy a
first-step relation,22

TAj = τj +
∑
γ /∈A

TγjTAγ. (3.3)

Therefore, in principle, the MFPTs TAj ∀j /∈ A can be determined by solving Eq. 3.3 using
any appropriate linear algebra method, such as Gauss-Seidel iteration96 or successive over-
relaxation.97 The MFPT for a transition from an initial set B ⊆ Ac, associated with a
specified initial occupation probability distribution vector p(0), is then obtained simply as
a weighted average,

TAB =
∑
b∈B

pb(0)TAb. (3.4)

However, for Markov chains exhibiting metastability, the linear system of equations in Eq. 3.3
can be severely ill-conditioned, so that standard dense linear algebra methods may experience
a severe propagation of numerical error arising from finite precision,76,77 and Krylov subspace
methods45,98 may fail to converge.42,99
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3.2.2 Stochastic complements and the graph transformation algorithm

In this section, we summarize relevant theory of censored Markov chains and the GT
algorithm that was introduced in Chapter 1. The A ← j MFPT for a transition from a
particular node j /∈ A can be computed robustly using stochastic complementation.100–102

Let us partition the transition probability matrix as

T =
TZZ TZN
TNZ TNN

 , (3.5)

where Z ≡ A ∪ {j} and N ≡ Zc ≡ Q \ {j}. In Eq. 3.5, TZN contains the probabilities for
transitions from nodes of the set N to the set Z, and the other blocks are defined similarly.
The diagonal blocks TZZ and TNN are therefore square substochastic matrices.91,103 The
stochastic complement for the nodes in Z is defined as100–102

T′ZZ ← TZZ + TZN (INN −TNN )−1TNZ , (3.6)

where INN is the |N | × |N |-dimensional identity matrix. Eq. 3.6 defines renormalized
transition probabilities for the nodes in Z. This transformed system is sometimes referred to
as a censored Markov chain, because the renormalized probabilities correspond to the values
that would be observed if the transitions within N were obscured (see Fig. 3.1).104–106 With
Z ≡ A ∪ {j}, the only remaining transitions associated with node j in the renormalized
network are to nodes of the set A, and the j ← j self loop. If the waiting times of the nodes
in the set Z, contained in the |Z|-dimensional vector τZ , are renormalized according to78,107

τ ′Z ← τZ + τN (INN −TNN )−1TNZ , (3.7)

then the MFPT for the A ← j transition after eliminating the |Q| − 1 nodes of set N is
given by76

TAj = [τ ′Z ]j (1− [T′ZZ ]jj)
∞∑
n=1

n[T′ZZ ]n−1
jj

= [τ ′Z ]j
1− [T′ZZ ]jj

. (3.8)

Here, we have used the fact that (1− [T′ZZ ]jj)−1 is the expected number of j ← j transitions
before node j is exited plus one for the final escape step.18

The renormalization of the mean waiting (or lag) times (Eq. 3.7) accounts for the expected
number of transitions within the set of nodes to be eliminated, N . That is, the updated
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Figure 3.1: Illustration of a renormalization operation performed on the stochastic matrix T to
yield the censored Markov chain T′. To eliminate the block of nodes N , the renormalized transition
probabilities (Eq. 3.6) in the resulting censored Markov chain (or stochastic complement100) must
account for transitions that proceed via N in the original network. Hence, the renormalized
stochastic matrix includes a direct γ ← β transition that is not present in the original network,
which corresponds to the collective probabilities of all possible γ ← N ← β paths. By the same
reasoning, the stochastic complement contains nonzero probabilities for β ← β, β ← γ, γ ← γ, and
γ ← δ transitions. The probability for the δ ← γ transition does not increase with renormalization,
and likewise there is no δ ← β transition in the derived stochastic complement, since there are
no such indirect transitions proceeding via N in the original Markov chain. The waiting times
associated with all three of the retained nodes are increased in the censored Markov chain (Eq. 3.7),
since the transition probabilities to N are nonzero for each of these nodes.

waiting time for the j-th node, j /∈ N , includes a contribution corresponding to the average
of all N c ← N ← j paths that leave j, enter N , and exit to N c. Because this contribution
is not specific to which node N c is hit upon leaving N , the GT algorithm (Eqs. 3.6 and 3.7)
preserves the average MFPT to the set of absorbing nodes A, and not the individual MFPTs
to particular absorbing nodes a ∈ A.76,107 The renormalized i ← j transition probabilities
do preserve the probabilities of the (censored) paths to individual absorbing nodes, because
the updated transition probabilities exactly account for the probability to transition from j

to i via N .73–75,100

The mean first passage path length for the A ← j /∈ A transition can be derived by direct
analogy to the MFPT. In general, the two are not related for a CTMC parameterized by the
branching probability matrix P, because the mean waiting times for nodes are nonuniform.88

For a path on the original Markov chain, an i← j transition increments the path length by
one, and so the initial mean number of steps to exit node j, `j, are all unity. When nodes
of the set N are eliminated, an i ← j transition on the renormalized network also includes
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steps taken within the censored region N . Hence, the {`j} can be renormalized by analogy
with Eq. 3.7, and the mean A ← j path length is then given by a relation analogous to
Eq. 3.8, again with `j replacing τj.

We can also apply GT renormalization analogous to Eqs. 3.6 and 3.7 to eliminate nodes
n = 1, 2, . . . , |Q|−1 one at a time, where n /∈ A.73–78 In a variation of this iterative procedure,
where all |Q| transient nodes are now to be eliminated, the network of the (n−1)-th iteration
can be related to the network of the n-th iteration via

T
(n−1)
ij = T

(n)
ij − LnjUin, (3.9)

where the matrix L has elements

Lnj = T
(n−1)
nj /(1− T (n−1)

nn ), (3.10)

and the matrix U has elements

Uin = T
(n−1)
in − δin, (3.11)

with δin the Kroenecker delta. In practice, the equivalence 1− Tnn ≡
∑
γ 6=n Tγn is exploited

to avoid subtraction operations and thus maintain numerical stability.61–64 This iterative
version of the GT algorithm can be thought of as a LU decomposition of a stochastic
matrix.90,108 The LU decomposition formulation of the GT algorithm (Eqs. 3.9-3.11) gives
T

(n)
nj = 0 and T (n)

in = T
(n−1)
in /(1−T (n−1)

nn ), thereby removing transitions to the eliminated node,
n, and renormalizing the i← n transition probability to account for self-transitions. Hence,
renormalization using Eqs. 3.9-3.11 preserves transitions from eliminated to noneliminated
nodes, but not vice versa. Comparing Eqs. 3.7 and 3.10, the renormalized waiting time for
the j-th node in the censored Markov chain at the n-th iteration can be written as

τ
(n)
j = τ

(n−1)
j + τ (n−1)

n Lnj. (3.12)

The A ← j MFPT for the j ≡ |Q|-th (transient) node, i.e. the last node to be eliminated,
is therefore obtained straightforwardly as the associated renormalized waiting time in the
censored Markov chain for which only the |A| absorbing nodes remain noneliminated. Although
the preservation of transitions from eliminated nodes is not necessary to compute the A ← j

MFPT, the formulation of the GT algorithm in Eqs. 3.9-3.11 can be used to compute other
dynamical quantities such as committor probabilities, as we show in the following section.
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3.2.3 Committor and absorption probabilities from graph transformation

If we define an initial macrostate B ⊂ Ac, the transition probabilities for the renormalized
Markov chain where all nodes of the intervening set I ≡ (A ∪ B)c have been eliminated
by the LU decomposition formulation of the GT algorithm relate straightforwardly to the
committor probabilities. Recall from Chapter 1 that the A ← B committor probability for
the j-th node, q+

j , is defined as the probability that a trajectory at node j first hits the target
macrostate A before returning to the initial macrostate B.79–82 By definition, q+

a∈A = 1 and
q+
b∈B = 0.93 The committor probabilities of all other nodes satisfy a first-step relation,77,96

q+
j =

∑
γ /∈B

Tγjq
+
γ . (3.13)

For the renormalized Markov chain where all nodes of the set I have been eliminated
according to Eqs. 3.9-3.11, with transition probabilities T ′ij, the only transitions from nodes
of the set I are directly to either of the endpoint macrostates A or B. The A ← B committor
probability for the j-th node is therefore given straightforwardly by

q+
j =

∑
a∈A

T ′aj ≡ T ′Aj = 1− T ′Bj. (3.14)

An analogous expression yields the committor probabilities for the reverse (B ← A) direction.
The definition of the committor probability in Eq. 3.14 is readily extended to the case

where there are multiple taboo macrostates that are forbidden to be visited.83,84 Let us define
the set of macrostates H ≡ {H1∪ . . .∪HN} ⊂ S, which forms a subset of the complete state
space. We wish to determine the probability of hitting a particular target macrostate Hk

before hitting any of the taboo nodes of the setH\Hk, when the process is initialized at node
j ∈ Hc. The j-th node is associated with separate committor probabilities corresponding
to each of the first passage processes defined by permuting the state Hk that is considered
to be the target. We denote by qHkj the committor probability for the Hk ← Hc transition,
with all nodes of the set H \ Hk considered taboo. These committor probabilities satisfy
qH1
j + . . . + qHNj = 1 ∀ j. The committor probabilities of all nodes with respect to all first
passage processes can be determined efficiently by solving a single system of linear equations
using the GT approach. That is, the transition probabilities of the renormalized network for
which all nodes of the set Hc have been eliminated using the LU decomposition formulation
of the GT algorithm (Eqs. 3.9-3.11) yield the various committor probabilities via Eq. 3.14.
We can then define a net reactive flux to the target state along an i← j edge for each first
passage process.109–113 Specifically, for an irreducible Markov chain at equilibrium, the i← j
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net flux to the target macrostate Hk when all nodes of the set H \Hk are taboo is

fHkij =

πjTij(q
Hk
i − q

Hk
j ), if qHki > qHkj ,

0, otherwise,
(3.15)

where πj is the stationary (equilibrium occupation) probability of node j.
For an A ← B transition, if we also eliminate the nodes b ∈ B of the initial macrostate

according to Eqs. 3.9-3.11, thus leaving only the nodes of the absorbing macrostate A, then
the final renormalized transition probabilities are

T ′′aj = T ′aj + T ′ajT
′
jj/(1− T ′jj) = T ′aj/T

′
Aj ≡ Baj. (3.16)

Here, we have denoted the absorption (hitting) probability, i.e. the probability that trajectories
initialized at the j-th transient node, j ∈ Q, will be absorbed at the a-th absorbing node,
a ∈ A, by Baj. The sum over absorbing nodes a ∈ A for Baj is unity for all nodes j.

3.2.4 Extension of graph transformation with a backward pass phase

Following |Q| − 1 renormalization steps of the standard formulation of the GT algorithm
(Eqs. 3.6 and 3.7) to eliminate a single node at each iteration, the network only has a single
noneliminated transient node j ≡ |Q| /∈ A, and the A ← j MFPT is given by

TAj =
τ

(j−1)
j

1− T (j−1)
jj

. (3.17)

Working backwards to undo the GT procedure, in the previous iteration the first-step relation
(Eq. 3.3) gives

TA,j−1 = τ
(j−2)
j−1 + TA,j−1T

(j−2)
j−1,j−1 + TAjT (j−2)

j,j−1 ,

so TA,j−1 =
τ

(j−2)
j−1 + TAjT (j−2)

j,j−1

1− T (j−2)
j−1,j−1

, (3.18)

and we can therefore determine TA,j−1 from TAj if we save the necessary quantities from
iteration j − 2. In general, we have the following expression to compute the MFPT for the
A ← n transition, where n is the node that was eliminated at the n-th iteration of the
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forward pass phase:

TAn = τ (n−1)
n +

∑
n≤γ≤|Q|

TAγT (n−1)
γn ,

or TAn =
τ (n−1)
n +

∑
n<γ≤|Q|

TAγT (n−1)
γn

1− T (n−1)
nn

. (3.19)

Hence, we can work backwards and compute TAn from TAγ with γ = n+1, n+2, . . . , |Q| if we
save τ (n−1)

n and T (n−1)
γn for n ≤ γ ≤ |Q| during the forward pass phase. An analogous scheme

can be written for the committor probabilities, which obey a first-step relation (Eq. 3.13) of
the same form as that for MFPTs (Eq. 3.3).93

Using the LU decomposition formulation of the GT algorithm (Eqs. 3.9-3.11), we can
write a more concise expression for the A ← nMFPT, where node n was eliminated at the n-
th iteration of the forward pass phase. This expression requires the renormalized probabilities
for transitions from, and waiting time for, the n-th node at the iteration where this node
was eliminated, as well as the MFPTs for transitions from nodes that were eliminated after
node n in the forward pass phase:

TAn = τ (n)
n +

∑
γ /∈A
TAγT (n)

γn . (3.20)

This equation follows from the fact that the γ ← n transition probabilities for eliminated
nodes γ ≤ n vanish in T(n) by construction from Eq. 3.9.

The above derivation shows that we can calculate the MFPTs for all nonabsorbing nodes
in a backward pass phase of the GT algorithm, by iteratively undoing the steps of the
renormalization procedure and computing the MFPT for the newly restored node. This is
the idea behind the extended GTH (EGTH) algorithm of Hunter.94,114 As we have shown,
it is not necessary to store the complete transition matrices at each iteration in the course
of the forward (elimination) phase of the algorithm, and instead only a subset of waiting
times and transition probabilities are required. Another convenient way to implement the
backward pass phase of the algorithm that avoids excessive memory usage is to exploit
the analogy between the GT algorithm and LU decomposition (Eq. 3.9), in which case the
MFPTs for restored nodes are computed via Eq. 3.20. This procedure has the advantage of
simultaneously yielding the committor and absorption probabilities via Eqs. 3.14 and 3.16,
respectively. The overall procedure is given as pseudocode in Algorithm 5 and illustrated in
Fig. 3.2. The steps of the GTH algorithm66,67 to compute the stationary distribution of an
irreducible Markov chain can also be readily incorporated into this procedure.

92



Numerical analysis of first passage processes in finite Markov chains exhibiting
metastability

There are numerous practical factors to consider in optimizing the efficiency and memory
usage of state reduction algorithms. Prioritizing renormalization of nodes with the lowest
number of connections can speed up the calculation significantly.76 The GT procedure in
our PATHSAMPLE program uses a compressed row storage scheme at the start of a calculation
for the MFPT, when the transition matrix is sparse. The GT renormalization adds non-zero
probabilities as nodes are eliminated, and the program switches to dense storage when more
than 2% of the elements became non-zero, if there are fewer than 11,000 remaining nodes.
Our DISCOTRESS software86 is designed similarly, employing a sparse data structure to keep
memory requirements manageable and avoid unnecessary floating point operations when the
network is large.

3.3 Expected number of node visits and node visitation
probabilities for first passage and transition paths

3.3.1 Fundamental matrix of an absorbing Markov chain

Consider the substochastic |Q|×|Q|-dimensional matrix TQQ whose elements are the probabilities
for transitions within the set Q ≡ Ac. All nodes represented in TQQ must be transient. That
is, it must be possible to reach the absorbing set of nodes A from any node in Q. Then
the inverse NQQ = IQQ + TQQ + T2

QQ + . . . = (IQQ − TQQ)−1 exists, and is called the
fundamental matrix of the absorbing Markov chain.21 Since the fundamental matrix of a
reducible Markov chain with |Q| transient nodes is always a |Q| × |Q|-dimensional square
matrix, in the following we will use the notation N for brevity. Note that the fundamental
matrix NQQ is distinct from the |S| × |S|-dimensional fundamental matrix of an irreducible
Markov chain, Z, introduced in Chapter 1, and that the interpretations of the elements of
these matrices are not the same.

The element Nij of the fundamental matrix is the expected number of times that the i-th
node is visited along a first passage path initialized from node j.115 Many more dynamical
properties of interest can be written straightforwardly in terms of N.18 For example, the
variance in the number of times that node i is visited prior to absorption when trajectories
are initialized from node j is given by the relevant element of the matrix18

N(2) = N(2Nd − I)− (N ◦N), (3.21)

where ◦ again denotes the Hadamard (i.e. element-wise) product, and Nd is the matrix
whose only nonzero elements are the diagonal elements of N. A general expression for the
n-th moment of this distribution, N(n), is derived in Ref. 18. The probabilities Hij that the
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Figure 3.2: Illustration of the LU decomposition formulation of the graph transformation (GT) algorithm
with a backwards pass phase (Algorithm 5), which computes the committor probabilities and MFPTs for all
transient nodes, as well as the absorption probabilities. The steps of the GTH algorithm66, 67 to compute
the stationary distribution can also be incorporated into this procedure. Nodes that have been eliminated
by renormalization (see Fig. 3.1) are shown as transparent. LU decomposition (Eqs. 3.9-3.11) is used to
renormalize transition probabilities, so that transitions from eliminated to noneliminated nodes are preserved
(such connections are indicated by a transparent, dashed line). (i) A Markov chain for which the state space
S is divided into the set of absorbing nodes A and the set of transient nodes Q. The set of transient
nodes is further divided into an initial macrostate, B, and the set of intervening nodes, I. (ii) In the first
stage of the forward pass phase of the algorithm, all nodes of the state I are iteratively eliminated by
renormalization (Eqs. 3.9-3.11), with the mean waiting (or lag) times for nodes renormalized according to
Eq. 3.12. In the censored Markov chain where only nodes of the set A∪B remain noneliminated, the sum of
transition probabilities from the j-th transient node to absorbing nodes is the A ← B committor probability
for node j, q+

j (Eq. 3.13). (iii) In the remainder of the forward pass phase, the nodes of the initial state B
are iteratively eliminated. In the censored network where only absorbing nodes remain noneliminated, the
renormalized i← j transition probabilities from transient to absorbing nodes are the absorption probabilities
Bij (Eq. 3.16). The MFPT for the A ← b transition, where b ∈ B was the last node to be eliminated, is equal
to the renormalized waiting time for the b-th node in the final censored Markov chain. (iv) In the backwards
pass phase, eliminated nodes are iteratively restored using the L and U matrices that were constructed during
the forward pass phase, and the MFPTs for transitions from transient nodes are computed by a recursive
formula (Eq. 3.20). The figure shows the first step of this phase, in which the final node to be eliminated, b,
for which the A ← b MFPT has previously been calculated, is restored. The A ← b′ MFPT, where b′ is the
node that was eliminated before b, has two contributions. The first term is the renormalized mean waiting
(or lag) time for the b′-th node in the censored Markov chain of the b′-th iteration. The second contribution
corresponds to transitions to noneliminated transient nodes (here, b ← b′) of the relevant renormalized
network. 94
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i-th node is visited along first passage paths initialized from the j-th node, excluding the
initial occupation of j, also follow directly from the Nij elements. The mean number of visits
to node i for such first passage paths, Nij, must be equal to the probability of hitting node
i, multiplied by the mean number of visits to i prior to absorption for paths starting from i,
plus one if i is the initial node:

Nij = δij +HijNii ⇒ Hij = (Nij − δij)/Nii. (3.22)

In matrix form, the above condition is

H = N−1
d (N− I). (3.23)

The absorption probabilities Bij are the elements of the matrix B = TAQN, where TAQ
is the matrix of probabilities for transitions from Q to A. The absorption probabilities are
nonzero only for i ∈ A, j /∈ A.

The A ← B MFPT can be obtained from N via

TAB =
∑
j∈Q

∑
b∈B

pb(0)Njbτj, (3.24)

for an initial probability distribution p(0) localized in B, ∑b∈B pb(0) = 1. Higher moments of
the FPT distribution can also be determined given the elements of the fundamental matrix.
For a DTMC, the waiting times for nodes are fixed and equal to the lag time τ . It can
be shown that the vector with elements VAj, i.e. the variance of the FPT distribution for
transitions from the j-th (transient) node, is69

VA =
(
(2N> − I)`− (` ◦ `)

)
τ 2, (3.25)

where ` = N>1Q is the vector of mean first passage path lengths, with 1Q the |Q|-dimensional
column vector with all elements equal to unity. See Ref. 18 for a derivation. In the
continuous-time case, Eq. 3.25 gives the variances of the FPT distributions for transitions
from nodes of the Markov chain parameterized by the linearized transition probability
matrix108 Tlin(τ) = I + τK, where τ ≤ min{−K−1

jj : ∀ j}, for which the mean waiting
times are uniform, τj ≡ τ ∀ j.115
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3.3.2 Fundamental matrix of an absorbing Markov chain computed using
state reduction

Inversion of the Markovian kernel IQQ−TQQ, which is required to compute the fundamental
matrix N of an absorbing Markov chain, is numerically unstable when the transition matrix
features metastable macrostates. Therefore, as for the computation of MFPTs and committor
probabilities in Markov chains exhibiting rare event dynamics (Sec. 3.2), we wish to devise
an inherently stable algorithm to robustly compute N, and hence many additional dynamical
properties of interest. To this end, we define the augmented matrix

N∗ =


TQQ IQQ
IQQ 0QQ
TAQ 0AQ

 , (3.26)

where 0QQ is the |Q| × |Q|-dimensional null matrix. Evidently, N∗ does not relate to a
stochastic matrix, since the column sums corresponding to transition probabilities from
transient nodes necessarily exceed unity. Nonetheless, if we proceed to compute the analogue
of the stochastic complement (Eq. 3.6) corresponding to the remaining network when all
nodes represented in TQQ are eliminated from N∗, then we obtain the fundamental matrix
N.

Specifically, the proposed state reduction algorithm to compute the fundamental matrix
N of an absorbing Markov chain is as follows. For each of the transient nodes in the network,
of the set Q, we introduce a dummy partner node. Thus we have the augmented state space
S∗ ≡ S ∪ Q∗, where Q∗ denotes the set of dummy nodes, with |Q∗| ≡ |Q|. Each dummy
node is connected to its transient partner by forward and reverse edges, both with weights
equal to unity (cf. Eq. 3.26). When all of the transient nodes have been eliminated, via
the analogue of a stochastic complement (Eq. 3.6), the weights of the i ← j edges in the
remaining network that correspond to transitions between dummy nodes are the elements
Nij of the fundamental matrix N. In the nodewise iterative formulation of this procedure,
upon eliminating a single transient node n, the edge weights for transitions between all
remaining nodes in the augmented network are updated according to

N∗ij ← N∗ij +
N∗inN

∗
nj∑

γ∈S\{n}N∗γn
∀ i, j ∈ S∗ \ {n}. (3.27)

This state reduction procedure is illustrated in Fig. 3.3 and given as pseudocode in Algorithm 6.
Eq. 3.27 shows the advantage of including the absorbing nodes in the augmented state
space. In particular, if the probabilities for transitions from transient to absorbing nodes are
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renormalized in the course of the algorithm, then the total probabilities for transitions from
transient to non-dummy nodes remain conserved, and equal to unity. Hence, since only the
transient nodes are eliminated, all subtraction operations can be avoided by exploiting the
relation 1− Tnn = ∑

γ 6=n Tγn, where T denotes the stochastic matrix of the censored Markov
chain comprised by the noneliminated nodes of the state space S. Using this trick, the state
reduction algorithm described above is numerically stable.61–64

The theory of stochastic complements presented in Sec. 3.2.2 and reviewed in Chapter 1
can be leveraged to design a block formulation of this state reduction algorithm, wherein
multiple nodes are eliminated simultaneously.100 Let us consider the elimination of a set
of transient nodes N ⊆ Q, and denote the set of all remaining nonabsorbing nodes in the
augmented state space as Z ≡ S∗ \ (A ∪ N ). The augmented matrix (Eq. 3.26) is then
updated according to (cf. Eq. 3.6)

N∗ZZ ← N∗ZZ + N∗ZN (INN −TNN )−1N∗NZ , (3.28)

where we have used the notation N∗ZZ to explicitly indicate the dimensionality of the
augmented network. For N ≡ {n}, Eq. 3.28 reduces to Eq. 3.27. After eliminating all
transient nodes, the resulting matrix N∗ZZ is the fundamental matrix N. This procedure
is numerically stable if the blocks of nodes to be eliminated, N , correspond to metastable
macrostates, so that the matrix inversion operations for the Markovian kernels INN −TNN
are not associated with significant numerical error. This formulation of the algorithm
therefore requires a careful partitioning of the nodes into appropriate communities, but
leads to improved time complexity.107,116

3.3.3 Reactive and nonreactive segments of the first passage path ensemble

Knowledge of the committor probabilities, {q+
j } (Eq. 3.14), and the fundamental matrix of

the absorbing Markov chain, N (Sec. 3.3.1), can be exploited to divide the A ← B first
passage path ensemble (FPPE) into nonreactive (B ← B) and reactive (direct A ← B)
segments (Fig. 3.4a).17 This division allows for a more detailed analysis of the FPPE at a
nodewise level of detail, beyond the results outlined in Sec. 3.3.1. The reactive segments of
the FPPE, which correspond to the transition path ensemble (TPE),109–113 are particularly
insightful to understand the characteristics of the productive A ← B process. In Sec. 3.3.4,
we will derive novel analytical results for key dynamical properties characterizing the influence
of individual nodes on direct A ← B transitions, such as the probability that a particular
node is visited along a reactive (transition) path (Eq. 3.44). Since we have shown that both
the {q+

j } and N can be computed robustly by state reduction methods (Secs. 3.2.3 and
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Figure 3.3: Illustration of the numerically stable state reduction procedure to compute the
fundamental matrix N for an absorbing Markov chain, effectively performing a matrix inversion
operation on the Markovian kernel IQQ − TQQ. (i) The state space S ≡ Q ∪ A of the Markov
chain is divided into sets of transient and absorbing nodes, denoted Q and A, respectively. The
substochastic matrix TQQ only includes transition probabilities between transient nodes (blue),
and does not include absorbing nodes (red). (ii) Dummy nodes (yellow), of the set Q∗, are
partnered with transient nodes via forward and reverse edges with weights equal to unity. (iii)
State reduction (cf. Eq. 3.6) is used to eliminate transient nodes either iteratively (Eq. 3.27) or in
blocks (Eq. 3.28). The updated i← j edge weights account for paths that proceed via the eliminated
nodes. Transitions from dummy to absorbing nodes do not have a meaningful interpretation and
are not required in the algorithm, so can be ignored. (iv) The i ← j edge weights in the network
where only the dummy nodes remain are the elements Nij of the fundamental matrix N.
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3.3.2, respectively), we can likewise compute the derived properties by a numerically stable
route. In the remainder of the current section, we formally introduce the factorization of
first passage paths into reactive and nonreactive trajectory segments.

The expected number of times that a nonabsorbing node is visited along a first passage
path is simply an average of the mean number of visits when starting from the initial state
B ⊆ Q, taken over the initial occupation probability distribution localized within this set:

θj =
∑
b∈B

pb(0)Njb ∀ j ∈ Q, (3.29)

with ∑
b∈B pb(0) = 1. Absorbing nodes can only be visited once along a particular first

passage path, with probability Baj, and the average over the initial distribution is

θa =
∑
j /∈A

pj(0)Baj ∀ a ∈ A. (3.30)

The first-step relation for the elements of the fundamental matrix of the absorbing Markov
chain, which includes only transient nodes of the set Q, is18

Nij = δij +
∑
γ∈Q

[TQQ]γjNiγ. (3.31)

Note that this expression does not have the same form as the first-step relations for the
MFPTs, committor probabilities, or absorption probabilities (cf. Eq. 3.3), and therefore the
state reduction algorithms presented in Secs. 3.2.2-3.2.4 cannot be used to compute the {θj}.
Since TQQN = NTQQ, which follows from writing N as a geometric progression in TQQ, we
can rewrite the first-step relation (Eq. 3.31) and sum over the initial distribution within B
to obtain

∑
b∈B

pb(0)Njb =
∑
b/∈B

pb(0)δjb +
∑
γ∈Q

[TQQ]jγ
∑
b∈B

pb(0)Nγb

so θj = pj(0) +
∑
γ∈Q

[TQQ]jγθγ ∀ j ∈ Q. (3.32)

The absorption probability matrix is B = TAQN, so for absorbing nodes we have

θa =
∑
b∈B

pb(0)Bab =
∑
γ∈Q

[TAQ]aγ
∑
b∈B

pb(0)Nγb

=
∑
γ∈Q

[TAQ]aγθγ ∀ a ∈ A. (3.33)
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Hence, the {θj} satisfy the following system of linear equations

θj = pj(0) +
∑
γ∈Q

Tjγθγ ∀ j ∈ S, (3.34)

where pj(0) = 0 for j /∈ B. Eq. 3.34 can be solved directly by standard linear algebra
methods, but the {θj} are most robustly determined via Eqs. 3.29 and 3.30 when N is
computed using the state reduction algorithm described in Sec. 3.3.2.

We can now break down properties of the FPPE into contributions from reactive and
nonreactive path segments.17,112,117 Recall that nodes not belonging to endpoint states are
members of the intervening set I ≡ (A ∪ B)c. A reactive path from B is one that leaves B
and reaches A without returning to B.110 Nonreactive paths contain nodes from B ∪ I in
first passage path segments starting in B up to the final escape from B before reaching A.
The average numbers of visits to the j-th node along nonreactive and reactive paths, θ̄j and
θ̃j, respectively, are given by17

θ̄j = θj(1− q+
j ), (3.35a)

θ̃j = µj + θjq
+
j , (3.35b)

where
µj = 1B(j)θ̄j

∑
γ

Tγjq
+
γ , (3.36)

is the probability that a reactive path left the initial state B from node j ∈ B. Here, 1B(j) is
the indicator function for the initial region, equal to unity for j ∈ B and zero otherwise, which
ensures that the initial probability distribution in Eq. 3.36 is contained within B. Let ∂B ⊆ B
denote the boundary nodes of the initial set, i.e. nodes of the initial set for which a direct
transition to a node of the set Bc exists. Then ∑b∈∂B µb = 1 and µj = 0 ∀ j /∈ ∂B. Eq. 3.35b
simply states that the expected number of times that a reactive trajectory, beginning at
the boundary ∂B of the initial state B, visits a node j /∈ B is the product of the expected
number of times that any first passage trajectory visits the j-th node and the probability
that a trajectory initialized from node j is reactive.

The decomposition of the FPPE into reactive and nonreactive segments allows for analysis
of the individual nodes and edges of the Markovian network that make significant and
productive contributions to the A ← B process. The flux along the i ← j edge of the
network is defined as Jij = θjTij.17 This flux can also be split into nonreactive and reactive
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contributions J̄ij and J̃ij, respectively,

Jij ≡ θjTij = J̄ij + J̃ij, (3.37)

where the reactive flux along the i← j edge is given by17

J̃ij = θ̃jTijq
+
i∑

γ Tγjq+
γ

, (3.38)

for i ∈ I ∪ A, j ∈ I, and when the set A is reachable from both nodes i and j. Here,
‘reachable’ means that a path to A exists that passes through the I set without hitting
B. Other than this condition, the derivation of Eqs. 3.34-3.38 does not assume that the
Markov chain is ergodic.17 J̃ij is essentially the nonequilibrium analogue of the stationary
(i.e. equilibrium) reactive flux f+

ij (Eq. 3.15) that we first introduced in Chapter 1. In
Chapter 2, we factorized the total reactive flux in the equilibrium TPE into contributions
from simple transition flux-paths, and determined the dominant flux-paths using a shortest
paths algorithm with edge weights based on the {f+

ij }. We can perform the same analysis
for the nonequilibrium case using edge weights based on the {J̃ij} (Eq. 3.38).

3.3.4 Analysis of reactive paths

A further key dynamical property characterizing the ensemble of A ← B transition (i.e.
reactive) paths112 is the conditional probability that the i-th node is visited along a trajectory
initialized from node j when the trajectory is reactive. We shall denote this quantity by H̃ij.
To simplify the notation in deriving this probability, we assume that there are no nodes in
the set I from which the absorbing macrostate A is not reachable, since such nodes do not
contribute to the reactive segment of the FPPE. Similarly, it is not necessary to consider
nodes of the set B \ ∂B. If there are no such internal initial nodes, so that ∂B ≡ B, then
we have |Q| nodes in the relevant set of transient nodes ∂B ∪ I ⊆ Q. For brevity, we shall
assume this to be the case, and we therefore consider the |Q|×|Q|-dimensional substochastic
matrix TQQ.

To derive the H̃ij probabilities, we introduce the substochastic transition probability
matrix for the reactive process on the set of (relevant) transient nodes, T̃QQ.117 We also
define the |Q|-dimensional vector of committor probabilities for the relevant transient nodes,
q+
Q, and the modified committor probability vector q+′

Q , for which the elements corresponding
to initial boundary nodes are non-zero, equal to q+′

b∈∂B = ∑
γ /∈B Tγbq

+
γ . This probability is the

probability that a trajectory is absorbed before hitting any node of the set B (cf. Eq. 3.13).76
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Then the reactive transition probability matrix for transient nodes is17

T̃QQ = diag(q+
Q)TQQdiag(q+′

Q )−1, (3.39)

and can be evaluated robustly by using a state reduction algorithm to compute the committor
probabilities (Sec. 3.2.3). We note again that internal initial nodes are discarded in this
representation, since such nodes do not contribute to the reactive segment of the FPPE, i.e.
q+′
b∈B\∂B = 0. The corresponding fundamental matrix for the reactive process is

ÑQQ = (IQQ − T̃QQ)−1, (3.40)

and can be computed using the numerically stable state reduction algorithm derived in
Sec. 3.3.2. We shall henceforth omit the dimensionality subscripts from Ñ for notational
simplicity. The fundamental matrix for the reactive process provides a natural means to
express the expected number of visits to a transient node along a reactive path:

θ̃j =
∑
b∈∂B

µbÑjb ∀ j ∈ Q. (3.41)

Recall that for absorbing nodes we simply have θ̃a = θa ∀ a ∈ A. By analogy with the
visitation probability matrix H associated with the FPPE (Eq. 3.23), we can calculate H̃ij,
the probability that a reactive trajectory will ever visit node i if it starts at node j for
i, j ∈ Q, not counting the occupancy of the initial node:

Ñij = δij + H̃ijÑii. (3.42)

Hence, we obtain the matrix H̃:

H̃ = Ñ−1
d (Ñ− I). (3.43)

Thus the reactive visitation probabilities H̃ij can be determined robustly by using state
reduction algorithms to compute the committor probability vector, q+

Q, and the fundamental
matrix for the reactive process, Ñ.

We can similarly define a substochastic transition matrix corresponding to the nonreactive
process on the set of transient nodes. This Markov chain is constructed so that ‘absorption’
corresponds to the first passage trajectory hitting a node at the boundary of the initial state
for the final time, after which point the trajectory proceeds to be reactive.17 Fundamental
and visitation probability matrices for the nonreactive segment of the FPPE then follow by
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an analogous argument to the reactive case.
The probability that the j-th non-initial transient node is visited along a reactive A ← B

transition path,118 r+
j , is an average of the H̃jb elements with respect to the initial occupation

probability distribution for reactive trajectories µ (Eq. 3.36),

r+
j =

∑
b∈∂B

µbH̃jb ∀ j ∈ Q \ ∂B. (3.44)

For initial boundary nodes b ∈ ∂B, H̃bj = 0 ∀ j, since initial nodes cannot be revisited along
reactive paths by definition. The probability that a node at the boundary of the initial state
appears along a reactive path is therefore simply r+

b = µb. The probability that an absorbing
node a ∈ A appears along a reactive path is an average of the elements of the absorption
probability matrix (Eq. 3.16) weighted by the µ distribution; r+

a = ∑
b∈∂B µbBab.

The reactive visitation probability r+
j provides detailed characterization of the FPPE

at a microscopic level of detail. Nodes that have a high probability of being visited along
reactive trajectories are those that mediate the dominant pathways for the overall productive
transition. For an effective two-state system, nodes that are associated with a high r+

j

probability, and which also have values for the committor probability q+
j close to 0.5,

represent the dynamical bottleneck region of the network.119–121 That is, these nodes constitute
the transition state ensemble (TSE).122 Global dynamical quantities, including the A ← B
MFPT,123 are most sensitive to perturbations in the transition probabilities associated with
these bottleneck nodes.124,125 Therefore the reactive visitation and committor probabilities
are the central objects in understanding how the local dynamics at a small subset of nodes,
namely the TSE, modulate the slow, macroscopic dynamics. In general, for systems exhibiting
multiple metastable macrostates, there are multiple TSEs that are the boundary regions
between the metastable states, across which the committor probability changes sharply.

The visitation probability of the j-th node along reactive trajectories in Eq. 3.44 corresponds
to the nonequilibrium TPE.17 If the set of initial boundary nodes ∂B contains more than
one node, then Eq. 3.44 differs from the result when the system is at a steady state, i.e.
corresponding to the equilibrium TPE.112 The two path ensembles are illustrated schematically
in Fig. 3.4. The reactive component of the steady state TPE is the object of study in
transition path theory (Chapter 1). In the steady state regime, which exists if the Markov
chain is irreducible,100 the A ← B path ensemble has relaxed to equilibrium. The probability
µSS
j that the reactive portion of trajectories began after the nonreactive trajectory segment
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(𝒂) (𝒃)

𝓑 𝓐
Figure 3.4: Schematic depiction of the nonequilibrium and equilibrium (i.e. steady state) A ← B
first passage and transition path ensembles (FPPE and TPE, respectively). (a) Trajectories of the
nonequilibrium FPPE start within the initial state B and are absorbed upon hitting the target state
A. The TPE (solid line) is the portion of the FPPE that transitions directly to A from B without
revisiting B. (b) For an irreducible Markov chain, we can also consider the equilibrium FPPE
and TPE, which result from considering an infinitely long trajectory that continually transitions
between the B and A states. The steady state A ← B TPE is the set of path segments that
transition directly from B to A at equilibrium. The steady state MFPT is the inverse of the rate
at which trajectories that last visited the initial state hit the target state.

hit node j is therefore dependent on the stationary distribution,17

µSS
j ∝ 1B(j)πj

∑
γ

Tγjq
+
γ . (3.45)

Similar to the nonequilibrium case (Eq. 3.36), this initial distribution for reactive trajectories
at steady state satisfies ∑b∈∂B µ

SS
b = 1 and µSS

j = 0 ∀ j /∈ ∂B. That is, this distribution is
localized at the boundary of the initial state. The visitation probability of the j-th non-initial
transient node along reactive trajectories for the equilibrium TPE is a weighted average of
the elements of the H̃ matrix (Eq. 3.43) with respect to this initial occupation probability
distribution,

r+, SS
j =

∑
b∈∂B

µSS
b H̃jb ∀ j ∈ Q \ ∂B. (3.46)

In addition, r+, SS
b = µSS

b ∀ b ∈ ∂B and r+, SS
a = ∑

b∈∂B µ
SS
b Bab ∀ a ∈ A. Similarly, the average

number of times that the transient node j is visited along reactive trajectories at steady
state is a weighted average of the elements of the Ñ matrix (Eq. 3.40) with respect to the
µSS distribution,

θ̃SS
j =

∑
b∈∂B

µSS
b Ñjb ∀j ∈ Q, (3.47)

and for absorbing nodes we have θ̃SS
a = ∑

b∈∂B µ
SS
b Bab ∀ a ∈ A.

Recall that within the state reduction formalism, a single linear system of equations can
be solved to obtain the set of committor probabilities {qH1 , . . . ,qHN} robustly, where each
committor probability vector qHk is associated with a different target macrostate Hk ∈ H,
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conditioned on all nodes of the set H \ Hk being taboo (Sec. 3.2.3). This formulation
allows us to compute all the dynamical properties that we have derived relating to the
reactive segments of the FPPEs for alternative Hk ← Hc transitions. This result is useful if,
for example, we want to analyze transition paths associated with a particular sequence
of events, which form a subset of the ensemble of all paths transitioning to the target
state. This analysis can be achieved by setting states that are not involved in the paths
of interest to be taboo. For instance, a Markov chain representing the folding transition of
a protein may feature several competing mechanisms that can be distinguished on the basis
of the intermediate metastable states that are visited.27,126–128 By designating a particular
intermediate state to be taboo, we can investigate the TPE specifically for transitions that
proceed via alternative intermediate states.

3.4 Numerical results

We demonstrate the methodology outlined in Secs. 3.2 and 3.3 with numerical results for
a kinetic network representing a structural transition for a cluster of 38 atoms bound by
the Lennard-Jones potential (LJ38).129,130 Specifically, we consider the transition from a
structure based on an incomplete Mackay icosahedron (Ih) to a face-centered cubic (F )
geometry, which was also analyzed in Ref. 38. The network model was constructed by
mapping the local minima and transition states of the underlying potential energy landscape
to the nodes and edges of a CTMC, which consists of 885 nodes and 1126 bidirectional
edges. The face-centered cubic (F ) state is represented by the single node of the Markov
chain with the largest stationary probability (lowest free energy), and the icosahedral (Ih)
state is represented by the single node with lowest free energy belonging to a separate funnel
on the landscape. Because these two competing low-energy nodes are separated by a large
energy barrier, the F ← Ih solid-solid transition becomes an increasingly rare event59 with
decreasing temperature. We employ standard reduced units for the LJ potential in the
following analysis.129,130

We analyze the Markov chain parameterized at a temperature of T = 0.12, which
approximately coincides with the start of the regime where the kinetic network exhibits
significant metastability. At this temperature, the number of internode transitions in F ← Ih

first passage paths is typically 108 or 109, precluding the use of the standard kinetic Monte
Carlo131 (kMC) algorithm to sample the FPPE (see also Chapter 4). Moreover, dense
linear algebra methods to perform an eigendecomposition of the Markov chain, to invert
the Markovian kernel IQQ −TQQ (required to compute the fundamental matrix N and the
stochastic complement (Eq. 3.6)), or to solve relevant linear systems of equations (Eqs. 3.3,
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3.13, and 3.34) suffer from a severe propagation of numerical error arising from finite
precision.116 Similarly, iterative sparse linear algebra methods42 fail to converge, as discussed
in Chapter 1. Computational analysis of this Markov chain is therefore intractable without
employing the state reduction algorithms described in Secs. 3.2 and 3.3.

Fig. 3.5 shows the results of various state reduction calculations to robustly compute
the salient dynamical properties associated with individual nodes of the kinetic network,
for the F ← Ih transition. The Markov chain is visualized as a disconnectivity graph,132

where the interconvertibility of sets of nodes in the network is considered at decreasing
threshold increments representing the available energy. A fork in the graph indicates that
a transition between the sets of nodes requires energy exceeding the threshold, and the
branches terminate at the energies of the corresponding nodes. MFPTs to the F state
and committor probabilities were computed by the iterative LU decomposition formulation
of the GT algorithm with a backward pass phase (Algorithm 5). The expected number
of node visits along reactive paths, θ̃j (Eq. 3.41), were obtained from the fundamental
matrix for the reactive process (Eq. 3.40), computed using the state reduction procedure
given in Algorithm 6. The reactive visitation probabilities for nodes were determined from
the elements of the reactive fundamental matrix and from the committor probabilities
via Eqs. 3.39-3.44. The exact results from the state reduction calculations were verified
numerically by comparison with kinetic path sampling (kPS) simulations,108,133 an advanced
method to sample the numbers of internode transitions along trajectories that is unaffected
by metastability.118 A detailed account of kPS was given in Chapter 1.

Inspection of the committor probabilities (Fig. 3.5a) reveals that the network is effectively
a two-state system, with the Ih and F nodes representing strong attractors that characterize
the respective regions of the state space. That is, there are relatively few nodes with
intermediate values for the committor probability (q+

j ≈ 0.5), and instead the vast majority
of nodes are strongly associated with relaxation to either the Ih or the F state (indicated
by committor probabilities q+

j ≈ 0 and q+
j ≈ 1, respectively). The MFPTs to the F state

are TF←j ≈ 109 for most nodes j, although there are a small number of nodes associated
with extreme values for TF←j. In particular, nodes separated from the F state by small
energy barriers relax to the F state comparatively rapidly (TF←j ≈ 104), but there are nodes
that constitute kinetic traps, for which transitions to F correspond to very long timescales
(TF←j ≈ 1018).

A striking feature of the network is the localization of the reactive dynamics to a small
subset of nodes, demonstrating that there are strongly preferred pathways for the F ← Ih

transition at this temperature. On average, only around 10% of nodes are visited more than
once along a reactive F ← Ih path, and the average number of visits is θ̃j < 10−4 for around
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half of the nodes j (Fig. 3.5c). The localization of the transition path ensemble is also evident
from the reactive visitation probabilities r+

j for nodes (Fig. 3.5d): less than 10% of nodes
are associated with values r+

j > 0.1, and only around half of the nodes have r+
j > 10−5. The

reactive visitation probabilities for the 10% of nodes with the highest stationary probabilities
are essentially negligible (r+

j < 10−10). With decreasing temperature, the number of nodes
associated with non-negligible values for the reactive visitation probability becomes even
smaller.118 Moreover, the expected number of times that nodes are visited along F ← Ih

transition paths represents only a small fraction of the expected number of times that nodes
are visited along first passage paths. This result confirms that the majority of the MFPT
is accounted for by unproductive ‘flickering’108 within nodes that have a strong tendency to
relax back to the Ih attractor node.

It is often insightful to closely examine the properties of specific nodes that play a
critical role in the reactive dynamics. In Fig. 3.5, we highlight two metastable intermediate
structures,M1 andM2, that are particularly relevant to the F ← Ih transition. TheM1 state
is a somewhat disordered structure that is highly likely to be visited along a reactive F ← Ih

transition path (r+
M1 ≈ 0.9), although trajectories at this node have a high probability of

returning to the initial Ih state (q+
M1 ≈ 10−3). The M1 state therefore represents a structure

that (usually) must be located to successfully transition to the F from the Ih state, but
this is an early step that does not modulate the slow dynamics. Large perturbations to the
transition probabilities associated with the M1 node would significantly affect the MFPT,
but the global dynamics are not overly sensitive to small perturbations of this node, since the
state does not constitute a limiting step in the rare event.124,125 TheM2 state, a configuration
that retains some of the symmetry of the incomplete icosahedral Ih state, is a true dynamical
bottleneck node in the network. Around half of the reactive trajectories proceed to F via
M2 (r+

M2 ≈ 0.47). Furthermore, the M2 node is a member of the transition state ensemble122

(TSE) of nodes dividing the effective regions of attraction characterized by the Ih and
F states. That is, trajectories reaching the M2 state then have an approximately equal
probability of first hitting either Ih or F , with the latter state slightly favoured (q+

M2 ≈ 0.63).
Since the M2 node is likely to be visited along reactive paths and corresponds to a limiting
step of the overall slow transition, the global dynamics, including the MFPT, are highly
sensitive even to small perturbations of the transition probabilities corresponding to this
node.123

The principles that we have used in our analysis of the LJ38 system can be applied to yield
insight into the dynamics of an abritrary discrete- or continuous-time Markov chain. It is
particularly useful to identify the nodes that comprise the TSE, for which the local dynamics
have a critical effect in determining the global dynamics,118 and to identify the favoured nodes
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that mediate the dominant pathways for the productive transition between two endpoint
states. For Markov chains where the transition probabilities or rates depend on an external
parameter,134 such as the temperature in physical systems, perturbations may significantly
alter the dynamical behaviour. For instance, a switching effect may be observed in systems
with alternative competing mechanisms for a given A ← B transition, with different reactive
pathways and dynamical bottlenecks being favoured in separate parameter regimes. When
the system exhibits rare event dynamics, the origins of switching behaviour can likely be
traced to a small number of influential states. The quantities discussed in this chapter, and
especially the reactive visitation probability118 derived herein, provide a convenient means
to rigorously assess which regions of the state space are kinetically relevant with respect to
a particular A ← B process of interest. Our proposed methodology, which allows for the
treatment of models with metastable states, is therefore essential for analyzing the features
of a general Markov chain, and for understanding differences in the dynamical behaviour of
related models.

3.5 Conclusions

In this chapter, we have described state reduction algorithms for the numerically stable
analysis of first passage processes in finite discrete- and continuous-time Markov chains
exhibiting metastability, for which the systems of linear equations to be solved are severely
ill-conditioned.41–44 Since a separation of characteristic timescales is a ubiquitous feature of
Markov chains representing realistic dynamical processes,38,46–59 our methodology provides
a valuable approach to analyze complex systems in practical applications. The limiting
factor affecting the viability of the state reduction procedures presented here is the available
computer memory. Nonetheless, the methodology remains feasible for sparse networks
comprising several thousand nodes.108 For larger networks, metastability can be exploited
to lump18,135–137 the nodes of the Markov chain without introducing significant error in the
representation of the slow dynamics.38 We have illustrated our approach with numerical
results for a CTMC representing a structural transition in a model atomic cluster at low
temperature, which is difficult to analyze by standard linear algebra methods.38

We have presented an iterative formulation of the graph transformation (GT) algorithm73–78

(Sec. 3.2.2) that incorporates a backward pass phase, which enables the MFPTs for transitions
from all nonabsorbing nodes to the absorbing state to be determined simultaneously (Sec. 3.2.4).
The procedure requires storing a subset of elements of the transition probability matrix,
and (optionally) waiting times for nodes, during the forward pass phase. If the MFPTs for
transitions from all nonabsorbing nodes of the Markov chain are of interest, then our proposed
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Figure 3.5: Disconnectivity graphs132 showing the dynamical properties of nodes in the Markov chain for the
transition of the LJ38 cluster from an incomplete icosahedron (Ih) to a face-centered cubic (F ) structure, computed
using state reduction algorithms as described in Sec. 3.4. The vertical axis represents the potential energy, and the
threshold increment is ∆E = 0.5 (in reduced units). (a) Committor probabilities q+

j for nodes j. (b) MFPTs TF←j
for transitions to the F state. (c) Expected numbers of node visits along reactive paths that leave Ih and reach F
without returning to Ih, θ̃j (Eq. 3.41). (d) Reactive visitation probabilities r+

j (Eq. 3.44). Nodes M1 and M2 both
have high visitation probabilities, but only the latter has a committor probability close to 0.5. The M2 structure is
therefore a dynamical bottleneck that has a critical role in modulating the overall transition.
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variation of the GT algorithm (Algorithm 5) is preferable to previous formulations76,107 that
compute the MFPT for a single transition from a particular node. For example, the new
version is particularly advantageous when computing the optimal coarse-grained transition
probabilities or rates for a given partitioning of the Markov chain,8,138,139 which requires
the matrix of MFPTs for all pairwise transitions between nodes.116 We have also proposed
a numerically stable state reduction algorithm to compute the committor probabilities79–82

(Sec. 3.2.3), which can be incorporated into the above procedure for computing MFPTs.
Accurate calculation of the committor probabilities is required to determine the edge weights
in the shortest paths analysis proposed in Chapter 2, where the total productive flux is
decomposed into contributions from simple transition flux-paths.

We then derived a state reduction algorithm to compute the fundamental matrix of an
absorbing Markov chain (Sec. 3.3.2), the elements of which are the expected number of
node visits along first passage paths. This procedure provides a numerically stable route to
compute the variance of the FPT distribution (Eq. 3.25), a key global dynamical property
that is otherwise challenging to obtain in a robust manner.69 Together with the committor
probabilities, the expected number of node visits allows for the straightforward evaluation
of key dynamical properties that characterize the direct transition process to the absorbing
state at a nodewise level of detail (Sec. 3.3.3). In particular, we have derived expressions
for the reactive visitation probabilities of nodes (Sec. 3.3.4), that is, the probability that
a node is visited along a trajectory that hits the absorbing state without first re-entering
the initial state (cf. Fig. 3.4). We considered reactive visitation probabilities for both the
nonequilibrium17 and equilibrium112 (i.e. steady state) path ensembles (Eqs. 3.44 and 3.46,
respectively), thus extending the results of transition path theory outlined in Chapter 1.
The expected number of times that nodes are visited along reactive paths (Eqs. 3.41 and
3.47) can be obtained similarly.

The methodology presented herein can be used to gain fundamental insight into dynamical
processes on finite Markov chains, including when there are metastable states. The separation
of the first passage path ensemble into nonreactive and reactive components17 allows for the
individual nodes and edges that are critical in facilitating the productive transition process
to be readily identified. This nodewise analysis complements the flux-pathwise analysis
proposed in Chapter 2. In particular, nodes with intermediate values for the committor
probability and large reactive visitation probabilities constitute the dynamical bottlenecks
for the dominant transition pathways. We utilize the definition of a reactive visitation
probability again in Chapter 4, where we show that kPS can be used to efficiently obtain
simulation estimates for the reactive visitation and committor probabilities associated with
nodes or groups thereof.
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input : discrete-or continuous-time transition probability matrix T with state space S ≡ Q ∪A
set of absorbing nodes A and set of transient nodes Q ≡ Ac

set of initial nodes B ⊆ A (note that nodes of the set I ≡ (A ∪ B)c are prioritized for elimination)
|Q|-dimensional vector of mean waiting (or lag) times τ for nodes j ∈ Q

output: |Q|-dimensional vector of A ← j MFPTs T A for nodes j ∈ Q
|Q|-dimensional vector of A ← B committor probabilities q+ for nodes j ∈ Q
|A| × |Q|-dimensional matrix B of i ∈ A ← j /∈ A absorption probabilities Bij
|S|-dimensional stationary distribution vector π for all nodes (exists if the chain is irreducible)

initialize T A,q+,B,π,L,U;
T(0) ← T, n← 1;
/* forward pass phase to eliminate all transient nodes by renormalization */
while n ≤ |Q| (i.e. n /∈ A) do

for i ∈ S, j /∈ A do
Lnj ← T

(n−1)
nj /(1− T (n−1)

nn ), Uin ← T
(n−1)
in − δin; // LU decomposition of transition

matrix
T

(n)
ij ← T

(n−1)
ij + LnjUin; // eliminate node by graph transformation

τ
(n)
j ← τ

(n−1)
j + τ

(n−1)
n Lnj ; // renormalize waiting times

n← n+ 1;
if all nodes of the set I ≡ (A ∪ B)c have been eliminated with this iteration then

q+
b ← 0 ∀ b ∈ B;

/* compute committor probabilities for all intermediate nodes */
for j ← n, n+ 1, . . . , |Q| (i.e. j ∈ I) do

q+
j ←

∑
a∈A T

(n)
aj ;

Bij ← T
(n)
ij ∀ i ∈ A, j /∈ A; // compute absorption probabilities

/* If the Markov chain is irreducible, eliminate and then restore all but one of the
absorbing nodes, needed to compute the stationary distribution (GTH algorithm) */

while |Q| < n < |S| (i.e. n ∈ A \ |S|) do
Lnj ← T

(n−1)
nj /(1− T (n−1)

nn ), Uin ← T
(n−1)
in − δin;

T
(n)
ij ← T

(n−1)
ij + LnjUin; // eliminate node by graph transformation

n← n+ 1;
πn ← 1, µ← 1; // at this point, only the |S|-th node remains
while |Q| < n < |S| (i.e. n ∈ A \ |S|) do

T
(n−1)
ij ← T

(n)
ij − LnjUin; // restore node (i.e. undo graph transformation)

n← n− 1;
πn ← Ln,|S| +

∑|S|−1
k=n+1 πkLnk, µ← µ+ πn; // GTH step

/* compute MFPT and stationary probability for the |Q|-th node, which was the last transient
node to be eliminated */

TAn ← τ
(n)
n ;

/* backward pass phase to compute MFPTs and stationary probabilities for all other transient
nodes */

while n ≥ 1 (i.e. n /∈ A) do
T

(n−1)
ij ← T

(n)
ij − LnjUin; // restore node (i.e. undo graph transformation)

τ
(n−1)
j ← τ

(n)
j − τ (n−1)

n Lnj ;
n← n− 1;
TAn ← τ

(n)
n +

∑
γ /∈A TAγT

(n)
γn ; // compute MFPT for restored node

πn ← Ln,|S| +
∑|S|−1

k=n+1 πkLnk, µ← µ+ πn; // GTH step
πj ← πj/µ ∀ j; // renormalization of the stationary distribution
deallocate L, U;
return T A,q+,B,π;

Algorithm 5: State reduction algorithm to simultaneously compute the MFPTs, committor
probabilities, and absorption probabilities for all transient (i.e. nonabsorbing) nodes in a DTMC
or CTMC. This algorithm is illustrated in Fig. 3.2. The steps of the Grassmann-Taksar-
Heyman (GTH) algorithm66,67 are also incorporated into this procedure, so that the stationary
distribution is computed if the Markov chain is irreducible.
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input : discrete-or continuous-time transition probability matrix T with state space
S ≡ Q ∪A
set of transient nodes Q ⊂ S
set of absorbing nodes A ⊂ S
set of dummy nodes Q∗, where |Q∗| = |Q|

output: |Q| × |Q|-dimensional fundamental matrix N associated with the absorbing
Markov chain

/* define a network with augmented state space S∗ that includes transient,
absorbing, and dummy nodes */

S∗ ← S ∪Q∗;
/* set the initial i← j edge weights, N∗ij, of the augmented network with

state space S∗ */
N∗ij ← Tij ∀ i ∈ S, j ∈ Q;
N∗ij ← 1 ∀ i ∈ Q∗, j ∈ Q;
N∗ij ← 1 ∀ i ∈ Q, j ∈ Q∗;
N∗ij ← 0 ∀ i ∈ S, j ∈ A;
N∗ij ← 0 ∀ i, j ∈ Q∗;
/* eliminate all transient nodes of the augmented network by

renormalization */
E ← ∅; // set of nodes that have been eliminated (initially empty)
for n ∈ Q do

E ← E ∪ {n};
N∗n ←

∑
γ∈S\E N

∗
γn (≡ 1−N∗nn); // confers numerical stability

for i, j ∈ S∗ \ E do
N∗ij ← N∗ij + (N∗inN∗nj/N∗n); // renormalization preserves∑
γ∈S\E N

∗
γn = 1 ∀n ∈ Q \ E

/* once all transient nodes have been eliminated, the edge weights for
transitions between dummy nodes in the remaining network are the
elements of the fundamental matrix N */

initialize N;
Nij ← N∗ij ∀ i, j ∈ Q∗;
return N;

Algorithm 6: State reduction algorithm to robustly compute elements Nij , the expected
number of times that the i-th node is visited along a first passage path initialized at node
j prior to absorption, for all transient nodes i, j ∈ Q. This procedure is illustrated in Fig. 3.3.
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Chapter 4

Efficient and exact sampling of
transition path ensembles on
Markovian networks

The problem of flickering trajectories in standard kinetic Monte Carlo (kMC) simulations
prohibits sampling of the transition path ensembles (TPEs) on Markovian networks representing
many slow dynamical processes of interest. In this chapter, we overcome this problem using
knowledge of the metastable macrostates, determined by an unsupervised community detection
algorithm, to perform enhanced sampling kMC simulations. We implement two accelerated
kMC methods to simulate the nonequilibrium stochastic dynamics on arbitrary Markovian
networks, namely weighted ensemble (WE) sampling and kinetic path sampling (kPS). WE-
kMC utilizes resampling in pathway space to maintain an ensemble of representative trajectories
covering the state space, and kPS utilizes graph transformation to simplify the description
of an escape trajectory from a trapping energy basin. Both methods sample individual
trajectories governed by the linear master equation with the correct statistical frequency.
We demonstrate that they allow for efficient estimation of the time-dependent occupation
probability distributions for the metastable macrostates, and of TPE statistics, such as committor
probabilities and first passage time distributions. kPS is particularly attractive, since its
efficiency is essentially independent of the degree of metastability, and we suggest how the
algorithm could be coupled with other enhanced sampling methodologies. We illustrate our
approach with results for a network representing the folding transition of a tryptophan zipper
peptide, which exhibits a separation of characteristic timescales. We highlight some salient
features of the dynamics, most notably, strong deviations from two-state behaviour, and the
existence of multiple competing mechanisms.
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4.1 Introduction

The stochastic dynamics of many complex systems can be formulated as a continuous-time
Markov chain (CTMC),1 with dynamics governed by the master equation (Sec. 4.2.1).2–5 In
molecular and condensed matter systems, the construction of kinetic networks circumvents
the timescale problem,6,7 which precludes the use of unbiased molecular dynamics (MD)
simulations for systems exhibiting rare event dynamics.8–10 One approach to constructing
a master equation representation is to map the stationary points of the potential energy
landscape onto the nodes and edges of a network,11–13 as in discrete path sampling (DPS).14,15

This strategy avoids explicit simulation of the dynamics, and is therefore especially useful for
modeling systems featuring broken ergodicity.16 Moreover, the resulting network representation
of the underlying energy landscape preserves the full dimensionality of the configuration
space. Both of these considerations are often important for biomolecular systems,17 since a
suitable low-dimensional projection of the energy landscape does not necessarily exist.18

Projection of the energy landscape onto inappropriate reaction coordinates is liable to
misrepresent the transition state ensemble (TSE) region19 that is crucial to the description
of the rare events.20

Many alternative methods for constructing kinetic networks representing the dynamics
of continuous-state systems have been developed,21–41 and we do not aim to review them
all here. Kinetic networks described by a linear master equation also appear in social and
economic models.42 Kinetic networks for which the dynamics are governed by a nonlinear
master equation, where higher-order terms arise due to interactions of species with discrete
populations, are common in systems biology,43–46 for example in the modeling of gene
regulatory networks,47–51 as well as in epidemiology52 and ecology,53 and can be mapped
to linear kinetic networks.51,54,55

In this chapter, we describe efficient and exact methods for explicit simulation of the
nonequilibrium stochastic dynamics for arbitrary Markov chains. In particular, we are
interested in performing a detailed analysis of the transition path ensemble (TPE),47 the
set of A ← B transition paths from initial to absorbing macrostates, denoted B and A,
respectively. Key properties characterizing the global A ← B dynamics, such as mean first
passage times1 (MFPTs) and committor probabilities,19 can be calculated robustly by state
reduction methods, as described in the previous chapters.56–61 Here, our aim is to describe
methods that can elucidate how these quantities are encoded in the ensembles of pathways
from which they are computed. The MFPT alone is not particularly informative, and the full
FPT distribution may have a complex form. The moments of the probability distributions
for path properties in the first passage path ensemble can in principle be calculated from the
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fundamental matrix of an irreducible (Chapter 1) or a reducible (Chapter 3) Markov chain.
However, this approach requires inverting a square matrix of order |S| or |Q|, respectively.
To obtain information on the sequence of events for a typical A ← B transition, the dominant
first passage paths can in principle be determined by k shortest paths algorithms with
appropriate edge weights (Chapter 2).62,63 In the metastable regime, however, the dominant
first passage paths account for only a small fraction of the A ← B flux,64 and therefore
analysis of the shortest paths alone may be misleading. For these reasons, to gain rigorous,
detailed, and quantitative insight into an A ← B dynamical process, it is often necessary to
sample the TPE explicitly.

There are various numerical methods for obtaining detailed trajectory information. Direct
solution of the master equation by linear algebra methods54,55 (Chapter 1) rapidly becomes
intractable with increasing system size.65 In strongly metastable stochastic networks, the
global dynamical behaviour is dominated by the rare fluctuations across the boundaries
between the long-lived states. Separation of characteristic timescales is a ubiquitous feature
of realistic models for dynamical processes, including biophysical8–10,26,66 and biochemical47–51

systems. In this regime, linear algebra methods are numerically unstable,60,65 as discussed in
the previous chapters, and mean-field methods based on deterministic ordinary differential
equations (ODEs) may severely misrepresent the dynamics.43,52,67–70 Therefore, the most
generally applicable approach to analyze the time-dependent occupation probability distribution
on kinetic networks is to use kinetic Monte Carlo (kMC) simulation71–76 to sample the
solution to the master equation, either exactly or approximately, by the generation of
individual realizations of trajectories.

The problem of ‘flickering’ trajectories within metastable macrostates77–80 seriously limits
the efficiency of standard rejection-free75,81,82 exact kMC algorithms (Sec. 4.2.2), such as
the Bortz-Kalos-Lebowitz (BKL) algorithm83 extended herein, and the equivalent Gillespie
algorithm68,84–86 for stochastic reaction networks. Hence there is a need to employ some
enhanced sampling methodology6,7 to accelerate the observation of rare events in kMC
simulations. Many solutions have been proposed to the timescale problem associated with
standard kMC simulations.87 Strategies to ensure that the entire state space is representatively
sampled include biasing the simulations and reweighting trajectories,88,89 perturbing existing
transition paths,19 and repeatedly simulating portions of transition paths in parallel based
on a division of the state space.8,90–94

As discussed in Chapter 1, one class of accelerated kMC methods is based on the
formulation of the escape of a trajectory from a metastable trapping basin as an absorbing
Markov chain, as in the Monte Carlo with absorbing Markov chains (MCAMC) algorithm.95,96

The master equation of the absorbing Markov chain can be solved exactly by first passage
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time analysis (FPTA).70,97–99 Alternatively, the master equation can be solved approximately
by the mean rate method70,77,99,100 or by assuming a local equilibrium within the active basin.
The metastable macrostates may be specified in advance or can be determined on-the-fly.70,99

A basin that is being actively sampled may be built up as a Markovian web101,102 of explored
nodes. Methods based on absorbing Markov chains, especially those utilizing FPTA, incur a
significant computational overhead that severely limits the feasible size of the trapping basins,
and hence the potential computational gains achievable by such methods.95,99 Employing
the approximate alternatives to FPTA, or solving the dynamics within metastable sets of
nodes using ODEs,70 forfeits a statistically exact description of the trajectories within the
metastable basins. The graph transformation method56–61 can be leveraged to keep the
number of nodes in a trapping basin small, by iteratively eliminating nodes from the kinetic
network, and renormalizing the transition probabilities and waiting times in the reduced
network to preserve the mean of the escape time distribution.78

An efficient approximate approach to facilitate the escape of trajectories from metastable
macrostates is provided by accelerated superbasin kMC (AS-kMC).103 In AS-kMC, the
repeated observation of a transition between a pair of nodes triggers a search to determine
the complete metastable basin to which the pair belongs. This neighbour search determines
a subnetwork of nodes that are internally connected by fast transition rates, according to
a given threshold. Then, the rates of all internode transitions within the basin are raised
by a scale factor, in a way that maintains the accuracy of the kMC trajectory within a
specified error tolerance. This biasing of the individual transition rates eventually encourages
escape from a metastable basin. Many other approaches to accelerating kMC simulations
exist, including strategies based on an importance function,104,105 ‘leapfrog’ moves,56 tau-
leaping,106,107 multi-level algorithms,108–111 sliding windows,112 uniformization,113 stochastic
complements,114 waste recycling,115–117 and more.118–131

Here, we analyze two complementary enhanced sampling methods, which facilitate efficient
kMC simulations for arbitrary discrete- and continuous-time Markov chains of varying dimensionality
and metastability. The first method that we consider is weighted ensemble (WE) sampling,
originally proposed in Ref. 132 and pioneered by Zuckerman and co-workers.93,133–137 The
WE methodology has been discussed primarily in the context of stochastic MD simulations,
including applications to biomolecular conformational transitions,138–144 but has also been
applied to kMC simulations of stochastic network models, specifically to the solution of
nonlinear master equations in systems biology.48–51 WE sampling belongs to a family of
enhanced sampling methods where the state space is partitioned into non-overlapping bins
and an ensemble of trajectories are simulated in parallel.137 Each trajectory is associated
with a statistical weight, and the ensemble of trajectories is maintained by resampling in
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the pathway space. The simulation of trajectory segments for transitions between the bins
facilitates the simulation of complete reactive trajectories between two defined endpoint
macrostates of interest A and B.145 We describe WE-kMC in more detail in Section 4.2.4.
The WE method is exact in sampling the path probability distribution for Markovian
dynamics, and can be highly efficient in accelerating the observation of rare events.93 Since
the WE method utilizes multiple trajectories, it provides a natural approach for identifying
multiple pathway ensembles.146 This capability is desirable in the present context, since
Markovian networks representing realistic dynamical processes, such as biomolecular conformational
transitions,9,10 frequently contain competing sets of pathways.64

The second approach to enhanced sampling of the dynamics on arbitrary finite Markov
chains that we consider is kinetic path sampling (kPS),147,148 which provides a powerful
alternative to methods based on the explicit kMC simulation of trajectories. kPS leverages
graph transformation56–61 to generate a stochastic escape path from a defined trapping basin
to an absorbing boundary, along with an associated trajectory time, that is exactly consistent
with the master equation. The order of internode transitions in the escape path is not
computed, but nodes at the absorbing boundary are sampled with the correct probability
distribution. The kPS method, which is close in spirit to the MCAMC algorithm,95,96 is
described in more detail in Section 4.2.5.

The WE-kMC and kPS methods have some complementary desirable features. The
time complexity of the kPS algorithm is essentially independent of the metastability of
the kinetic network, and therefore the method is effectively immune to kinetic trapping.
However, the cost of generating an escape path from a trapping basin B, comprising |E|
nodes that are eliminated in the graph transformation stage of the algorithm, scales roughly
as O(|E|3). Hence, there is a significant computational overhead associated with the method
if the trapping basins are large.147 The memory requirements of a single iteration of the
kPS algorithm likewise scales strongly with the size of the community. In its simplest
form, the kPS algorithm does not simulate ordered trajectories on the kinetic network,
but instead computes a non-Markovian trajectory on the coarse-grained network defined
by the partitioning of the state space. Although kPS can be extended to compute the
order of transition events along a detailed escape trajectory on the network, the time
complexity is then adversely affected by metastability.147 In WE-kMC, there is no such
restriction on the size of communities, but it is essential that the communities reflect all
uncoupled slow dynamical modes of the system, since dynamical modes orthogonal to the
bin coordinates must be sampled by standard rejection-free kMC.48 For this reason, WE-
kMC is less efficient for more strongly metastable Markov chains.149 However, the method
is highly parallelizable,93 and in the context of simulating the dynamics on kinetic networks,
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where the bins to which nodes belong are identified simply by labels, the computational
overhead associated with the trajectory resampling procedure is negligible. Moreover, by
utilizing a protocol to accelerate the establishment of a steady state, WE-kMC can also be
used to conduct equilibrium simulations.134

Both WE-kMC and kPS are based on a partitioning of the state space into disjoint sets
of nodes, although this division need not be known a priori. Here we propose the use of an
unsupervised stochastic community detection algorithm, namely multi-level regularized150–152

Markov clustering153–155 (MLR-MCL), to identify the metastable sets of nodes in a kinetic
network,156 which are then used as the fixed bins for the WE-kMC and kPS simulations.
Strategies for the choice of metastable macrostates, which can also be performed adaptively,
are discussed in more detail in Section 4.2.3. We present results for a kinetic network
representing the folding of the trytophan zipper peptide TZ1,157 constructed by the DPS
methodology,14,15 which is high-dimensional and exhibits a separation of characteristic timescales
(Sec. 4.3.2). We show that both WE-kMC and kPS provide efficient and exact methods
for sampling nonequilibrium TPEs in discrete-state stochastic systems. Estimation of the
time-dependent occupation probability distributions, committor probabilities,19 and reactive
visitation probabilities for the states of interest, and of the A ← B first passage time
distribution, is tractable even for systems that exhibit strong metastability (Sec. 4.3.3). We
highlight some salient features of the dynamics for the TZ1 kinetic network. In particular,
we note deviations from simple two-state behaviour that arise from the presence of metastable
intermediate states, the existence of multiple competing kinetically relevant pathway ensembles,
and the increased localization of the TPE in the state space with decreasing temperature.

4.2 Methodology

4.2.1 Master equation dynamics

The simulation methodology and theory that we present in the current work are applicable
to an arbitrary discrete- or continuous-time finite Markov chain. We illustrate our approach
with a kinetic network constructed using geometry optimization methods158 to locate the
stationary points on a potential energy landscape. Here, local minima and transition states
are mapped to the nodes and weighted, bidirectional edges, respectively, of a CTMC.11–13

The set of nodes S constitutes the (finite) state space. The edge weights are minimum-to-
minimum rate constants, usually estimated by harmonic transition state theory,159 although
any unimolecular rate theory, including methods based on explicit dynamics, may be used.
Formally, the partition function can be written as a weighted sum of contributions from local
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minima,160,161 and so all thermodynamic properties can be extracted from the discretized
representation of the energy landscape if the local densities of states are known. In practice,
the equilibrium occupation probabilities associated with the nodes are usually approximated
assuming a locally harmonic density of states.16,161 Kinetic networks constructed by geometry
optimization typically contain tens to hundreds of thousands of nodes, and are sparse.64

Further details of the discrete path sampling14,15 (DPS) methodology for the construction
and analysis of kinetic networks can be found in recent reviews.160,162,163

Markovian dynamics on a kinetic network are described by the linear master equation,2–5

dpi(t)
dt

=
∑
j 6=i

(
Kijpj(t)−Kjipi(t)

)
, (4.1)

which can be written in matrix notation,

dp(t)
dt

= Kp(t). (4.2)

Here, p(t) = (p1(t), p2(t), . . . , p|S|(t))> is the time-dependent occupation probability vector
for the nodes of the kinetic network, and K is the transition rate matrix, as in previous
chapters. The off-diagonal elementsKij of K are the rates for the i← j internode transitions.
The diagonal elements are set so that the columns of the matrix sum to zero, Kjj =
−∑γ 6=jKγj. At equilibrium, the occupation probability vector is equal to the stationary
probability vector π. In kinetic networks derived from stationary point databases, the
detailed balance condition, Kijπj = Kjiπi ∀ i 6= j, is necessarily satisfied if the densities
of states for minima and transition states are assumed to be locally harmonic.58

Typical numerical methods for the linear algebra solution of the master equation, p(t) =
exp(Kt)p(0), have time complexity O(|S|3), and this direct approach is therefore intractable
for kinetic networks of relatively high dimensionality.54,55 Moreover, for systems exhibiting
rare event dynamics, numerical instability is a pervasive problem in methods to calculate the
matrix exponential, and propagation of numerical error similarly affects dense linear algebra
methods to calculate the MFPT between two endpoint macrostates.59,60,65 It is the aim of
the present chapter to sample the exact solution to the linear master equation (Eqs. 4.1 and
4.2), for transitions between two endpoint macrostates of interest A and B, by the explicit
simulation of trajectories using accelerated kMC.

Let an a ← b first passage trajectory on a kinetic network (i.e. a discrete path14,15)
connecting nodes a ∈ A and b ∈ B, where B is the initial and A the absorbing macrostate,
respectively, be denoted by the ordered sequence of visited nodes ξ(a←b) = (a← in ← in−1 ←
. . . ← i1 ← b). Here, i is used to denote nonabsorbing nodes, i ∈ Ac. The probability
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P [ξ(a←b)] of this A ← B first passage path is simply a product of branching probabilities
Pij = Kij/

∑
γ 6=jKγj for the internode transitions along the path, weighted by the probability

of a trajectory starting from the initial node b, πb/
∑
b′∈B πb′ . The contribution of a discrete

path to the A ← B steady state rate constant59,164 is the path probability P [ξ(a←b)] weighted
by the inverse of the mean waiting time τb = 1/∑γ 6=bKγb for the initial node b. Thus, if
the weights associated with i ← j edges are chosen to be − lnPij, the set of first passage
paths that make the dominant contributions to the steady state rate constant for a kinetic
network with a single source node can be extracted using k shortest path algorithms.62–64

The contribution of an individual first passage path to the A ← B MFPT is given by the
product of the path probability P [ξ(a←b)] and the sum of mean waiting times for nodes along
the path, excluding the absorbing node a. The A ← B MFPT, and hence the steady state
and non-steady state phenomenological rate constants,59,164 can be calculated robustly by
the graph transformation method.56–61 The kMC methods described below sample paths
of the A ← B TPE in proportion to their probabilities P [ξ(a←b)], and therefore yield an
unbiased estimate for the A ← B MFPT.

4.2.2 Rejection-free kinetic Monte Carlo

The BKL (or n-fold way) algorithm,83 which we introduced in Chapter 1, is a rejection-
free75,82,165 formulation of the kMC simulation method. In this section, we briefly outline
the algorithm in the context of simulating the solution to the master equation for a kinetic
network described by the rate matrix K (Eq. 4.2). Internode transitions i ← j, associated
with rates Kij, are assumed to be independent Poisson processes associated with average
transition times equal to the waiting time for the j-th node, τj. For each node j, a list of
possible transitions is constructed, and at each iteration of the algorithm a transition event is
selected randomly with probability equal to the branching probability Pij = Kij/

∑
γ 6=jKγj.

The move is always accepted, and the simulation clock is incremented by drawing a random
value from the exponential distribution of waiting times between transitions, with rate
parameter τ−1

j , p(∆t) = τ−1
j exp(−τ−1

j ∆t).82 The exponential form for the distribution
of waiting times follows from the fact that the competing independent Poisson processes for
the i ← j transitions together generate a new Poisson distribution. Advancing the system
clock by ∆t is achieved in practice by drawing a uniform random number r ∈ (0, 1] and
setting ∆t = −τj ln r; a formal derivation of this algorithm is presented in Refs. 71 and 84.

Since the BKL algorithm uses the branching probabilities for transition events, the
algorithm produces realizations of trajectories governed by the linear master equation (Eq. 4.2)
with the exactly correct statistical frequency. Many independent trajectories are required
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to achieve proper sampling of p(t) and hence produce a converged solution of the master
equation. Although rejection-free kMC methods eliminate the possibility of self-transitions,
and therefore of becoming trapped in any single node associated with a small escape rate,
standard simulations can be very inefficient for kinetic networks featuring a separation of
characteristic timescales.77–80 In the following sections, we discuss how the standard BKL
algorithm can be extended and modified to incorporate enhanced sampling methods based on
a specification of disjoint sets of nodes, which enables this timescale problem to be overcome.

4.2.3 Identifying metastable states of a kinetic network

Both WE-kMC (Sec. 4.2.4) and kPS (Sec. 4.2.5) require a specified partitioning of the state
space, or a criterion for defining the metastable macrostates on-the-fly. This partitioning
is an essential consideration that strongly affects the efficiency of the algorithms.156 The
community structure must faithfully represent the coordinates corresponding to the independent
slow dynamical modes of the system, which describe the rare transition events between
metastable states. Hence, the partitioning should appropriately reflect the progress of the
overall reactive transition between the two specified endpoint macrostates A and B.

Here we propose the use of multi-level regularized150–152 Markov clustering153–155 (MLR-
MCL) to efficiently characterize the metastable sets of nodes in high-dimensional and ill-
conditioned kinetic networks, at an adjustable level of timescale resolution. MLR-MCL
is a stochastic unsupervised community detection algorithm that uses heuristic operations
on a coarse-grained transition probability matrix to obtain a clustering that characterizes
the average behaviour of random walks on the network. The partitioning determined by
MLR-MCL should therefore characterize the metastable sets of nodes, and hence provides
appropriate predefined and fixed bins for use in WE-kMC and kPS simulations.167 We
have found that partitionings of the network obtained using MLR-MCL typically provide an
accurate representation of the metastable macrostates,156 as indicated by widely used graph-
theoretic metrics, such as the weighted normalized cut and the conductance.168 Furthermore,
the partitioning can be subsequently refined by variational optimization of the dominant
nonzero eigenvalue of the transition rate matrix.169 Additional detail concerning MLR-
MCL and the variational optimization procedure is provided in Appendices 4.A and 4.B,
respectively.

The resolution of the community detection can be directly controlled via the choice of
input parameters to MLR-MCL, namely the granularity parameter, the number of iterations
of the multi-level graph coarsening algortihm, and the lag time at which the initial transition
probability matrix is estimated.150,151 The tuning of these parameters allows flexibility in
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the timescale at which the determined macrostates appear metastable. This feature is highly
desirable, as the efficiency of WE-kMC is strongly affected by the average escape time from
the macrostates, since coordinates that are not correlated with the bins must effectively be
sampled by brute force.48 Similarly, the efficiency of kPS is strongly affected by the size
of the macrostates. For this reason, it is favourable that MLR-MCL penalizes overly large
communities, thereby addressing a deficiency of the original MCL algorithm.150,151 Because
MLR-MCL is an unsupervised learning algorithm, the overall workflow for the WE-kMC
and kPS simulations does not require any prior knowledge of the system. This feature
addresses one of the key problems with enhanced sampling methods based on a division
of the state space, namely that determination of an appropriate partitioning is a highly
non-trivial problem.17–19,93,137

Neither WE-kMC nor kPS require that the metastable macrostates are pre-defined or
fixed throughout the simulation. We therefore also investigate defining the macrostates
adaptively, using a search protocol similar to that employed in AS-kMC.103 Beginning with
the currently occupied node, a breadth-first search procedure is used to build up a group of
nodes that are mutually interconnected by transition rates that exceed a specified threshold,
thereby ensuring that the resulting subnetwork is ‘well-knit’. The search is terminated when
the size of the macrostate exceeds a specified limit, or when all transitions to neighbouring
nodes of the subnetwork are associated with small transition rates.

4.2.4 Weighted ensemble kinetic Monte Carlo (WE-kMC)

The weighted ensemble (WE) algorithm93 is a method for resampling6,170,171 the path probability
distribution in pathway space. The procedure can simulate exact nonequilibrium132 or
equilibrium134 dynamics for a variety of stochastic processes, including Langevin dynamics136

and dynamics of stochastic reaction networks.48–51 TheWEmethod employs a partitioning of
the state space into bins, which can be performed adaptively,133,172 and a set of independent
trajectories (‘walkers’), each associated with a statistical weight. A stochastic splitting and
culling procedure, carried out at regular time intervals τR, maintains a target number of
trajectories in each bin throughout the simulation, thus ensuring representative sampling
of the entire state space. This resampling procedure is exact for Markovian dynamics, and
generates an unbiased sample of the path ensemble for a A ← B transition.132–134 The
independence of the simulated trajectories leads to linear parallel scaling.

To employ the WE methodology for nonequilibrium A ← B stochastic dynamics, we
define a set of non-overlapping bins, and specify target numbers of walkers, Mξ, for each bin,
which are not necessarily equal and which can be updated on-the-fly. We also specify a time
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interval τR for conducting the walker resampling procedure. The WE simulation begins by
spawning a specified number of weighted trajectories, where the sum of the weights is unity.
The starting trajectories can be set up according to any desired initial condition, including
spawning many trajectories in multiple different bins and with non-uniform weights. The
stochastic dynamics are propagated independently for each of the trajectories, and when all
trajectories have exceeded the time interval for resampling, all populated bins are checked for
the total numbers of trajectories that they contain. If the number of trajectories in a given
bin is less than the target number, then trajectories occupying the bin are chosen randomly,
in proportion to their relative weights, to be split. The newly-spawned trajectories each
inherit an equal share of the weight of the parent trajectory, and they all share the history
of the parent. This procedure is repeated until the number of trajectories in the bin exceeds
the target value. If the number of trajectories in a bin is greater than the target number,
then trajectories are culled by randomly selecting one of the two trajectories of lowest weight
in the bin to survive, in proportion to their relative weights, and breaking ties arbitrarily.
The surviving trajectory inherits the weight of the culled trajectory, and this procedure is
repeated until the target number of trajectories is met. Then the walkers of the new set
of trajectories are again propagated independently until the time for the next resampling
operation is reached. The times and weights of walkers hitting the absorbing macrostate A
are recorded, yielding the FPT distribution and an estimate for the MFPT straightforwardly.
An overview of the WE-kMC algorithm is illustrated in Fig. 4.1. Because the WE simulation
distributes resources to sampling the entire state space, including the crossing of dynamical
bottlenecks,173 the simulation can yield the pathway ensemble even for transitions associated
with timescales that are far too long to be accessible by brute force.93 The WE simulation
is repeated many times to achieve sufficient sampling.

The legitimacy of resampling the trajectory ensemble is justified by a simple factorization
of the path probability.133 Let ξ(n←m) = (n ← n − 1 ← . . . ← m + 1 ← m) be a trajectory
initially at node m and terminating at node n. The path probability P [ξ(n←m)] can be
factorized as

P [ξ(n←m)] = pm(0)
n−1∏
k=m

Pk+1,k

= pm(0)
m′−1∏
k=m

Pk+1,k

n−1∏
k=m′

Pk+1,k

= P [ξ(m′←m)]
n−1∏
k=m′

Pk+1,k. (4.3)

Here, p(0) specifies the initial probability distribution over nodes, and Pij is the branching
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probability for the i ← j transition. Consider resampling the path probability distribution
at a timestep when a particular trajectory ξ(m′←m) currently occupies the arbitrary node m′.
From Eq. 4.3, any resampling procedure that exactly preserves the probability distribution of
trajectories at that time, such as the splitting and culling procedure outlined above, exactly
yields the correct probability distribution in pathway space at all future times, provided that
members of the new set of trajectories inherit the histories of the trajectories from which
they were derived. That is, if the path probabilities associated with any daughter trajectories
ξ(n←m) spawned from ξ(m′←m) are weighted by an equal share of the weight of the parent
trajectory, then the correct path probability distribution is preserved. This factorization
argument holds for both Markovian and non-Markovian dynamics.

Although the WE method generates an unbiased sample of the pathway ensemble, the
correlated histories of the trajectories is problematic when attempting to make accurate
statistical estimates of dynamical properties fromWE simulation data.134,135,174 For instance,
although the committor probabilities19 can in principle be computed by tracing the A ← B
paths,47 in practice, reliable estimation requires averaging over the results of many independent
WE simulations, to mitigate the effect of the correlated histories of the trajectories within
a given WE run. This feature means that WE sampling, and other methods that simulate
complete A ← B trajectories by piecing together trajectory segments, such as forward flux
sampling,47,91,116,175–179 are not ideal for the estimation of committor probabilities.

For completeness, we note that WE-kMC can also be used to sample the equilibrium
TPE. A steady state must eventually be reached if, when a walker reaches the endpoint
macrostate A in the course of the WE simulation, it is placed back in the initial macrostate
B with its current weight.180 Let the total weight of trajectories in bin I at the steady state
be denoted by wSS

I . The steady state bin weights {wSS
I } satisfy48

dwss
I

dt
=
∑
J 6=I

(
KJIw

SS
I −KIJw

SS
J

)
= 0, (4.4)

where KIJ denotes the rate for the I ← J inter-community transition (note the use of
capital letter indices to denote macrostates, as opposed to nodes). Eq. 4.4 suggests an
iterative scheme, where, by comparing the measured inter-bin fluxes with the expression
FIJ = KIJwJ , the transition rates KIJ can be inferred, and then the weights of individual
trajectories within the bins can be rescaled so that the {wI} are consistent with Eq. 4.4. It
has been demonstrated empirically that this protocol can greatly accelerate the convergence
of the system to the true steady state.134 When the ensemble of walkers has equilibriated,
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the A ← B steady state rate constant is given by135,174

kSS
AB =

∑
J 6=A

FAJ , (4.5)

where we have used the well-known Hill relation181 for the MFPT.We only consider nonequilibrium
simulations in the present chapter, and hence we do not obtain the MFPT via Eqs. 4.4 and
4.5. Instead, the MFPT is computed directly as an average over FPTs for the weighted first
passage paths.

4.2.5 Kinetic path sampling (kPS)

Kinetic path sampling147,148 (kPS) is a method for sampling the solution to the linear master
equation (Eq. 4.2) without requiring explicit kMC simulation of trajectories. We described
kPS in detail in Chapter 1, and we give an overview of the key features of the procedure in the
following. The kPS algorithm uses graph transformation56–61 to reduce the representation
of an escape trajectory from the active metastable macrostate. An overview of the stages of
the kPS algorithm is illustrated in Fig. 4.2. To generate an escape path from the currently
occupied trapping basin, we first define the sets of nodes that constitute the basin B and
the absorbing macrostate A ≡ Bc. A subset of |E| nodes of the trapping basin E ⊆ B
are marked for elimination and queued. The remaining nodes of the trapping basin, which
constitute the set T ⊂ B, where B ≡ E ∪ T, are the retained transient nodes. The nodes
∂A ⊆ A at the boundary of the absorbing state A, i.e. directly connected to at least one
node of the set B, are identified. The graph transformation algorithm56–60 is then used to
construct the set of transition probability matrices {T(n)(τ)}, 0 ≤ n ≤ |E|. That is, the set
of matrices {T(n)} are formed by the iterative elimination of the |E| nodes in the set E ⊆ B
from the subnetwork B∪ ∂A, where renormalization of the transition probabilities preserves
the individual path probabilities and the MFPT for the set of escape trajectories from the
current node to the absorbing boundary ∂A.61 The initial stochastic matrix, T(0), may be
the linearized transition matrix82 estimated at a lag time τ , or the branching probability
matrix. In the latter case, the mean waiting times associated with individual nodes are, in
general, non-uniform.

A stochastic path from the currently occupied node ε ∈ B to an absorbing node α ∈ ∂A
at the boundary of the metastable basin is randomly generated by repeatedly drawing new
nodes according to a probability distribution defined from T(0) and T(|E|). Concomitantly, a
count matrix H(n)(τ), containing the number of internode transitions observed for dynamics
based on T(n)(τ), is recorded for n = |E|. The elements of the matrices T(n) and H(n),
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Figure 4.1: An overview of the WE-kMC algorithm. To facilitate sampling the A ← B path
ensemble for the transition between two endpoint macrostates of interest, the network is divided
into communities characterizing the metastable sets of nodes. Each community is associated with
a target number of trajectories, Mξ. A number of walkers, associated with statistical weights
that sum to unity, are spawned according to a specified initial distribution. In the above figure,
four walkers with uniform weights are spawned at a particular node (highlighted) of the initial
macrostate B. The walkers are propagated independently, and a resampling procedure, carried
out at time intervals of τR, maintains the weighted set. In the example above, after a time τR,
one of the walkers has transitioned to another community. The target number of walkers for this
community is Mξ = 4, and so the single walker that currently occupies the community is split into
four. Each of the daughter trajectories inherits the history of the parent trajectory and an equal
share of the weight. To maintain the target number of trajectories in the initial community B, for
which Mξ = 4, one of the walkers currently occupying B is selected, with probability proportional
to its weight, and split into two. After time 2τR, one walker reaches the absorbing macrostate A,
and its (weighted) contribution to the A ← B MFPT is recorded. Also at this time, two walkers
transition from B to reach a new community. The target number of walkers for this community
is Mξ = 1. Therefore one walker currently occupying this community is chosen to survive, with
probability proportional to its statistical weight. The other walker is culled, and the surviving
walker, which retains its history, inherits the weight of the culled walker.
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for which the n-th node has been eliminated compared to T(n−1) and H(n−1), subsume all
indirect internode transitions that proceed with n as an intermediate node, where n is visited
an arbitrary number of times. Modeling the dynamics using one of the reduced transition
matrices therefore greatly reduces the complexity of a sampled escape path. An escape
trajectory from a node ε ∈ B based on T(|E|) contains only a single step, notwithstanding
any transitions involving nodes of the set T, if T 6= ∅. The kPS algorithm then exploits the
fact that H(n−1) can be generated stochastically from H(n) given T(n) and T(n−1), without
explicit simulation of the dynamics using T(n−1). Note that the sampling rules do not allow
self-loop transitions for nodes of the set T, and the kPS algorithm reduces to standard
rejection-free kMC83 in the case where E = ∅ and therefore B ≡ T.

The result of the repeated application of the iterative reverse randomization procedure is
the hopping matrix H(0), for which the elements are the numbers of internode kMC moves
along a detailed stochastic path within the trapping basin. This matrix can therefore be used
to generate a time associated with the trajectory escaping to the sampled absorbing node
α ∈ ∂A, by sampling from a Gamma distribution. kPS produces escape paths to absorbing
nodes that are exactly consistent with the linear master equation (Eq. 4.1), and does not
necessarily require a priori knowledge of the metastable basins. Since the number of kMC
moves along the sampled escape path is calculated within the kPS algorithm, the simulation
can always revert to the standard BKL algorithm on-the-fly when it is favourable to do so.

4.3 Results

4.3.1 Simulation setup and performance

We illustrate the sampling methods described above with results for a kinetic network
representing the folding of the tryptophan zipper peptide TZ1,157 constructed by discrete
path sampling (DPS).14,15 The system was modeled using an atomistic potential and implicit
solvent. Further details of the force field and the DPS procedures employed, and some
preliminary analysis of the dynamics, for instance using Dijkstra’s algorithm with appropriate
edge weights62–64 to determine the transition path that makes the dominant contribution to
the steady state rate constant (Sec. 4.2.1), can be found in Ref. 157. The stationary point
database for TZ1 contains 68780 minima and 99935 transition states, and the corresponding
network constitutes a single fully connected component.

In the present chapter, we simulate the nonequilibrium dynamics when the probability
density is initially localized at an unfolded node for which the peptide chain is extended
(with no native or non-native contacts), and the native fold is treated as an absorbing
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Figure 4.2: An overview of the stages of the kPS algorithm. (i) The network is divided into two
sets, the trapping basin B, containing the currently occupied node ε ∈ B, and the absorbing state
A ≡ Bc. A subset of the trapping basin, E ⊆ B, comprising nodes to be eliminated by graph
transformation, is identified, and the set of remaining nodes is denoted T ≡ B \ E. The subset
of nodes of the absorbing macrostate that are directly connected to the trapping basin constitute
the absorbing boundary, ∂A ⊆ A. The initial transition probability matrix for the subnetwork of
interest, B∪∂A, is denoted T(0). (ii) The |E| nodes of the set E are eliminated iteratively by graph
transformation, which involves removing transitions to eliminated nodes and renormalization of the
transition probabilities to preserve path probabilities for trajectories from the trapping basin to the
absorbing boundary. The resulting transition matrices, {T(n)}, 0 < n ≤ |E|, are stored. (iii) A path
from the currently occupied node ε ∈ B to a node of the absorbing boundary α ∈ ∂A is sampled
according to a probability distribution based on T(0) and T(|E|). The number of internode i ← j
transitions along this reduced representation of the stochastic escape trajectory thus generated
are the elements of the hopping matrix H(|E|). (iv) An iterative reverse randomization procedure,
exploiting the fact that H(n−1) can be sampled from H(n) using a probability distribution based on
T(n) and T(n−1), is used to generate the elements of the hopping matrix H(0), the elements of which
are the numbers of i ← j kMC moves on the original subnetwork T(0). From this information, a
time associated with the α ∈ ∂A← ε ∈ B trajectory can be sampled.
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macrostate. Besides these unfolded (U) and folded (F) states, we identify two intermediate
states of interest, I1 and I2. The I1 macrostate comprises partially folded conformations,
which may include on- or off-pathway intermediate states with non-native contacts. The I2
macrostate comprises low-energy conformations for which the backbone is ordered similarly
to the native state, but rearrangements of the side chains are required to transition to the
native fold. Note also that the macrostate of unfolded structures (U) includes not only
high energy extended structures such as the initial node, but also disordered structures
that are collapsed (U′). The U, I1, and I2+F macrostates used in the analysis of the
time-dependent occupation probability distributions are determined by MLR-MCL at a
low resolution, and the folded macrostate F comprises only a small number of the lowest
potential energy nodes that are interconnected by fast transition rates, identified manually.
The WE-kMC and kPS simulations are based on 390 communities determined by MLR-
MCL at a higher resolution, with the manually-chosen nodes of the set F designated as the
absorbing macrostate. Further information on the community structure detection is included
in Appendix 4.C. We compare the results from low (300K) and high (330K) temperature
simulations. The kinetic network models in each case are obtained by calculating the
transition rates and stationary probabilities at the chosen temperature, assuming locally
harmonic densities of states for the minima and transition states on the potential energy
landscape (Sec. 4.2.1).

The results from the kPS and WE-kMC simulations, each obtained from 20000 first
passage paths, are nearly identical, and the MFPTs estimated from the simulation data
are consistent with the exact values calculated using graph transformation56–61 (Table 4.1).
Note that the FPTs reported here are not directly comparable with experiment; to analyze
folding rates would require extended definitions of the endpoint sets of nodes to reflect the
experimental states. Our principal interest here is in the diagnosis of alternative pathways
and convergence of sampling algorithms. We do not provide a detailed performance comparison
of the two methods, since their efficiency is strongly affected by the simulation setup, which
is highly flexible, and the optimal parameter choices are system-dependent and can only
be discovered empirically through extensive testing. We simply note that it is essential
to incorporate appropriate considerations into the design of the simulation protocol, and
that both accelerated kMC methods considered here are many orders of magnitude faster
than brute-force kMC. In kPS simulations, it is essential that the communities are not
too large, since the graph transformation procedure then incurs a significant computational
overhead, and that the simulation reverts to the standard rejection-free kMC algorithm
when it is favourable to do so. In the present chapter, a fixed number of rejection-free
kMC steps are taken after each kPS basin escape, to ensure that the trajectory moves away
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from the boundaries between communities, thereby avoiding the computation of expensive
kPS iterations for trivial recrossings between communities. We use the same communities,
determined by MLR-MCL, for the kPS and WE-kMC simulations, but the optimal choices
for the communities in each case could be rather different,156 owing to the various factors
affecting the efficiency of the methods. The simulation parameters are described in Appendix 4.C.

The kPS simulation data presented below were obtained in approximately 200 CPU hours
using Intel Core i7-5820K 3.30GHz processors. The CPU time was the same for simulations
at temperatures of T = 300K and T = 330K, since the time complexity of kPS is largely
independent of the metastability of the kinetic network.60,147 The WE-kMC simulation
data were obtained in approximately 1000 CPU hours for a temperature of 300K, and in
around 840 CPU hours for a temperature of 330K. In contrast, simulation of a single folding
trajectory at 330K by the BKL algorithm (Sec. 4.2.2) requires, on average, around 10 hours
of CPU time, and low-probability paths at the tail of the FPT distribution require much
more CPU time. Brute-force kMC simulation is therefore unfeasible. Both kPS and WE-
kMC simulations employing an adaptive definition of the communities were slower than
simulations based on predefined communities determined by MLR-MCL, which suggests
that the MLR-MCL communities accurately characterize the metastable macrostates and
are appropriately balanced in size. Therefore the additional computational time associated
with the breadth-first search procedure to identify communities on-the-fly is an unnecessary
computational expense for this system.

The superior performance of kPS compared to WE-kMC in this particular instance can be
ascribed to the presence of strong kinetic traps in the kinetic network, for which a very large
number of kMC steps (sometimes more than 1012) are required to escape the corresponding
community. The computational time for a kPS iteration is essentially agnostic to the number
of kMC steps for internode transitions, which are the elements of the hopping matrices
{H(n)}, and are not explicitly simulated. Instead, these values only enter the calculation as
parameters in the binomial and negative binomial distributions from which the elements of
the next hopping matrix H(n−1) are drawn, and in the Gamma distribution from which the
time associated with the basin escape trajectory is sampled.147,148 In WE-kMC, these kMC
steps must be explicitly taken in order to escape from the community, and therefore the
flickering problem,77–80 while not as serious as in standard kMC, may still hinder the WE-
kMC calculation. Hence, the required CPU time for the WE-kMC simulation is adversely
affected by decreasing temperature. We anticipate that with alternative computational
resources or refinement of the WE-kMC simulation protocol, for instance by dividing the
state space into more communities, and increasing the target numbers of walkers for particular
communities, significant gains in the efficiency of the WE-kMC calculation could be achieved.

135



Efficient and exact sampling of transition path ensembles on Markovian networks

Table 4.1: MFPTs for the folding transition of TZ1 calculated by various methods. The graph
transformation result is exact.56–61 The values from WE-kMC and kPS explicit simulation
data were calculated from 20000 first passage paths, and are associated with a standard error.
The simulations were performed using a predefined and fixed partitioning of the network into
communities determined by MLR-MCL.

MFPT ×1011 / ns
Method T = 300K T = 330K
Graph transformation 9.1275 3.3386
WE-kMC 8.8 ±0.4 3.1 ±0.3
kPS 8.9 ±0.3 3.2 ±0.2

4.3.2 Folding mechanism for the TZ1 peptide

To characterize the mechanistic features of the folding transition for TZ1, we calculate the
vector p(t) containing the time-dependent occupation probabilities for the four states of
interest, U, F, I1, and I2, described above (Fig. 4.3). Representative trajectories from the
explicit simulations are shown in Fig. 4.4, alongside the transition path that makes the single
largest contribution to the F ← U steady state rate constant,63,64,164 where the transition
times are chosen to be the mean waiting times associated with the individual nodes along this
shortest path. It is immediately apparent from these calculations that the F← U transition
of TZ1 does not conform to a simple two-state model of the dynamics, since the macrostate
I1 may persist on appreciable timescales (Fig. 4.3).

There is a rapid collapse of the initially occupied node of the state U, the extended
conformation, to a more compact state (denoted U′), which similarly contains no native or
non-native contacts. These conformations are therefore grouped into the same macrostate
U in the calculation of the occupation probabilities for the key states, and this unfolded
macrostate has a lifetime of around 106 ns (nanoseconds). Following escape from the unfolded
macrostate U, around 70% of the paths avoid becoming trapped in the I1 state, and subsequently
the I2 state, and therefore there is a relatively steep increase in the occupation probability of
the native folded state F, on a timescale of around 108 ns. The remaining ∼ 30% of the first
passage paths do not follow this simple fast-folding mechanism, but instead become trapped
in the I1 state, with a lifetime of around 1012 ns, before rapidly proceeding to the native state
F via the I2 state. The latter folding mechanism becomes slightly more favoured at the lower
temperature (Fig. 4.3). The kinetic traps in the TZ1 kinetic network that have a significant
effect on the folding dynamics therefore correspond to partially folded conformations where
the backbone is not properly arranged (I1). Kinetic traps corresponding to low-energy states
with an ordered backbone but improperly positioned side chains (I2) are not as strongly
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metastable, and have a low probability to appear along a transition path. They therefore
have only a small effect on the folding dynamics (Fig. 4.3). Hence, once the peptide backbone
adopts a conformation similar to the native state, the peptide almost always proceeds rapidly
to the native fold.

The single path that makes the dominant contribution to the steady state rate constant,164

determined using Dijkstra’s algorithm with appropriate edge weights,62–64 is clearly not
representative of explicitly simulated trajectories (Fig. 4.4). We made the same observation
for a model system in Chapter 2. While the sequence of conformational change events along
this shortest path is consistent with the family of simulated first passage paths corresponding
to fast downhill folding, the shortest path contains no useful temporal information for this
system. That is, it is not possible to identify the states that, in practice, are associated
with long lifetimes. For kinetic networks featuring metastability, realistic transition paths
feature a large number of flickers.77–80 For the shortest path at 300K, the first passage time is
tFPT ≈ 103.5 ns, but the path probability of folding trajectories with tFPT < 105 ns is negligible
(Fig. 4.5). Therefore the set of shortest paths, which can be determined by an appropriate
k shortest paths algorithm,63,64 make a negligible contribution to the folding flux for TZ1.
Moreover, because the number of kMC steps along the second family of folding trajectories,
which become trapped in the I1 state, is even larger than for the first family, the path
probability for any one member of this family of longer-timescale trajectories is exceedingly
small. Therefore these transition paths cannot feasibly be identified using a k shortest paths
algorithm,64 even though the paths collectively make an important contribution to the MFPT
(Fig. 4.5). These observations demonstrate the value of explicitly simulating trajectories to
obtain dynamical information.

Evidently, the folding energy landscape for TZ1 clearly does not satisfy the criteria
outlined by Zwanzig in Ref. 182 that ought to be satisfied for the folding transition to
exhibit simple two-state kinetics. It is true that there is effectively a single well-defined
native folded node (the global potential energy minimum) and a large number of unfolded
nodes, such that any one individual unfolded node makes only a very small contribution
to the partition function for the unfolded macrostate. However, sets of unfolded nodes
can be grouped into metastable clusters. The folding landscape therefore violates a vital
condition required for the observation of two-state kinetics: relatively high energy barriers
separate metastable unfolded, misfolded, and partially folded states, and so the full ensemble
of non-native structures is not in overall local equilibrium. The existence of metastable
on-pathway partially folded and off-pathway misfolded states complicates the dynamical
behaviour of the peptide by acting as strong kinetic traps, and their effect is clear in the
complex form of the FPT distribution (Fig. 4.5). The effect of some of the features of the
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Figure 4.3: Time-dependent occupation probability distribution for the four key states in the course
of the F← U transition at (a) T = 300K and (b) T = 330K, obtained from 20000 transition paths
simulated using the kPS algorithm with a priori communities determined by MLR-MCL. The
areas under the curves corresponding to the occupation probabilities of initial (U) and absorbing
(F) states are shaded, to aid visualization of the progress of the folding transition.

folding landscape on the observed dynamics may be exacerbated by finite sampling of the
database of stationary points on the potential energy landscape. However, the existence of
deviations from a single-funnel energy landscape, and the consequent appearance of complex
features in TPE statistics contrasting with simple fast-folding behaviour expected for single-
funnel folding landscapes (Sec. 4.3.3), are not a result of sampling error. A two-state kinetic
model oversimplifies the folding dynamics of TZ1, even though it is a small peptide that
folds rapidly in experiments.157

4.3.3 Transition path ensemble statistics

The complete FPT distributions for the F ← U transition at temperatures of 300K and
330K are shown in Fig. 4.5. Notably, the FPT distribution for the folding transition of TZ1
does not follow a simple Poissonian form, but is instead double-peaked. The complex form of
the FPT distribution reflects the fact that there exist multiple competing mechanisms that
are kinetically relevant. In particular, the existence of two peaks in the FPT distribution, one
corresponding to a much longer timescale, suggests that the paths can be broadly classified
into two families, as noted in Sec. 4.3.2. The first family of paths, which constitute around
70% of the simulated transition paths, correspond to fast ‘downhill’ folding to the native
state F. In contrast, members of the second family of paths become trapped in one or more
metastable partially folded intermediate states, collectively represented by the macrostate
I1. The separation of the first passage path ensemble into two competing sets of paths
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U
U' I1
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Figure 4.4: Representative trajectories for the F ← U transition. The path that makes the single
largest contribution to the steady state rate constant62–64 at a temperature of 300K is shown
in blue. Two representative trajectories, corresponding to each of the two major mechanisms
for the folding transition, obtained from WE-kMC simulations at 300K, are also shown. The
trajectory marked in red corresponds to a straightforward folding mechanism in which the peptide
is trapped in a collapsed unfolded state (U′) on a timescale of around 106 ns, and then rapidly folds
to the native state (F). The trajectory shown in green corresponds to the second, more complex,
mechanism in which the peptide becomes trapped in an intermediate partially folded state I1,
with a lifetime of around 1012 ns. The existence of two separate kinetically relevant mechanisms,
where one mechanism is associated with a significantly longer timescale, is evident from the FPT
distribution in Fig. 4.5. The tryptophan residues, which arrange to form an interlocking zipper-like
motif of aromatic rings in the native state, are coloured in cyan in the TZ1 structures.
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that each make a substantial contribution to the MFPT, one corresponding to fast downhill
transitions and the other corresponding to longer-timescale pathways that become trapped
in a metastable intermediate state, has been observed in other simulation studies on the
folding of simple peptides183–186 and nucleic acid oligomers.187,188 Both local maxima of
the FPT distribution are shifted to longer timescales with decreasing temperature, and the
difference in the MFPTs at the two temperatures is around half an order of magnitude
(Table 4.1). The shorter-timescale peak in the FPT distribution is much sharper at the
lower temperature, suggesting that a small number of transition paths in the subensemble
of pathways corresponding to the fast-folding mechanism become increasingly dominant
with decreasing temperature. Curiously, the longer-timescale peak of the FPT distribution
actually becomes slightly broader at the lower temperature, owing to the increased influence
of the kinetic traps.

There are a very small number of paths giving rise to a tail in the FPT distribution, with
tFPT ≈ 1014 ns, collectively accounting for around 0.01% of the transition path probability.
These paths become trapped in a metastable cluster of nodes corresponding to low-energy
misfolded structures. From this kinetic trap, the peptide must largely unfold before transitioning
to the native state is possible. It is relatively common for the FPT distributions in realistic
kinetic networks to be fat-tailed, so that extremal values for the FPT make a non-negligible
contribution to the MFPT.48,189 For such systems, brute-force simulations are inefficient,
since inadequate computational resources are used for representative sampling of the tail
region of the FPT distribution, and it may be desirable to employ a trajectory reweighting
scheme.89

To characterize the features of the TPE at a microscopic level of detail, we calculate the
A ← B committor probability q+

j and the A ← B (reactive) visitation probability r+
j for the

nodes j of the network. The A ← B committor probability for the j-th node is defined as the
probability that a trajectory initially at node j will reach the absorbing macrostate A before
returning to the initial set B.19,47,59,60 By definition, q+

b∈B = 0 and q+
a∈A = 1. The A ← B

(reactive) visitation probability for the j-th node is defined as the conditional probability
that a trajectory visits node j, given that the trajectory is a direct A ← B transition path.190

We introduced the reactive visitation probability in Chapter 3, and derived an expression for
the {r+

j } that can be evaluated straightforwardly from the committor probabilities and from
the fundamental matrix of the reducible Markov chain corresponding to the reactive process.
The committor probability is an ‘ideal’ one-dimensional reaction coordinate characterizing
the progress of the A ← B transition, and is especially useful for identifying the transition
state ensemble (TSE) region, defined by nodes associated with values for the committor
probability close to 0.5.47 The TSE essentially defines the boundary between the effective
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basins of attraction associated with the endpoint macrostates A and B.19 The reactive
visitation probability is a measure of the extent to which the TPE is localized in the state
space, and provides a convenient metric for identifying sets of kinetically relevant pathways
that are separated in the state space.

The committor and reactive visitation probabilities for nodes j, with r+
j ≥ 0.01, for the

F ← U transition at T = 330K are shown in the form of potential energy disconnectivity
graphs191,192 in Fig. 4.6. At a temperature of 330K, there are 7818 nodes with r+

j ≥ 0.01
and 2008 nodes with r+

j ≥ 0.1, compared to 68780 nodes in total. Thus the reactive
visitation probability is quite localized in the state space. This is especially true at the
lower temperature of 300K, for which there are 4046 nodes with r+

j ≥ 0.01 and 1541 nodes
with r+

j ≥ 0.1. The increased localization of the TPE in pathway space with decreasing
temperature has also been observed in kinetic networks for peptide folding transitions constructed
from replica exchange MD simulation data.183 There are a very small number of nodes of
the I2 state for which the values of the reactive visitation probability are close to unity,
r+
j ≈ 1 (Fig. 4.6b), and hence there exists a well-defined region of the state space through
which the vast majority of folding transition paths are channeled. However, these nodes
do not correspond to a dynamical bottleneck (i.e. to the TSE), since they are associated
with committor probabilities close to unity, q+

j ≈ 1. That is, the transition from these
nodes to the native folded state F is largely irreversible. In fact, the folding transition
almost always proceeds very rapidly once the I2 state is reached (Fig. 4.3). Another notable
feature of the reactive visitation probability in the state space is the cluster of nodes
for which r+

j ≈ 0.3, which comprise a subset of the I1 macrostate. This observation is
consistent with the simulated time-dependent occupation probabilities (Fig. 4.3) and the
FPT distribution (Fig. 4.5), which show that around 30% of transition paths become trapped
in the I1 macrostate and hence are of a comparatively long timescale. Although these nodes
correspond to relatively high-energy partially folded structures, their associated committor
probabilities are q+

j ≈ 1, and therefore the peptide is strongly committed to folding at this
point.

Inspection of the distribution of committor probabilities demonstrates that the folding
transition of TZ1 exhibits multi-state kinetics (Fig. 4.6a). For an ideal two-state system, the
vast majority of nodes are associated with committor probabilities q+

j ≈ 0 or q+
j ≈ 1, and

can therefore be divided into two well-defined sets. The small number of nodes for which
q+
j ≈ 0.5 constitute the TSE, and have a dominant effect on the global dynamical properties
of the A ← B transition, including the MFPT.19 Conversely, for a system exhibiting diffusive
dynamics, there is a continuous spread of committor probabilities for nodes. Clearly, the
distribution of the committor probabilities for nodes for the F ← U transition of TZ1 does
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Figure 4.5: Histogram of the FPT distribution for the F← U transition at (a) T = 300K and (b)
T = 330K, obtained from 20000 transition paths simulated using the kPS algorithm with a priori
communities determined by MLR-MCL.

not correspond to either of these dynamical regimes. Instead, it is possible to identify
clusters of nodes with similar intermediate values for the committor probability, and the
nodes comprising the TSE are not localized in the state space. Furthermore, and perhaps
counterintuitively, the committor probabilities do not correlate strongly with the potential
energy. There are some nodes associated with potential energy values similar to that of the
native state, but have committor probabilities q+

j < 0.5, and, conversely, there are many
high-energy nodes with committor probabilities q+

j ≈ 1.

4.4 Discussion

4.4.1 Features of the methodology

We have discussed two accelerated kinetic Monte Carlo (kMC) algorithms, weighted ensemble93,132–137

kMC (WE-kMC) and kinetic path sampling147,148 (kPS), which sample trajectories in exact
accordance with the linear master equation (Eq. 4.1) that governs the Markovian dynamics
on arbitrary kinetic networks. In particular, we have considered the problem of sampling the
nonequilibrium A ← B transition path ensemble (TPE) between two endpoint macrostates
of interest, A and B. The choice of enhanced sampling kMC methods employed herein
is motivated by their desirable complementary features. WE-kMC is highly parallelizable
and can be adapted to sample the equilibrium TPE, while the time complexity of kPS is
essentially independent of the metastability of the kinetic network. Both methods overcome
the ‘flickering’ problem that precludes the application of standard kMC to metastable kinetic
networks.77–80 They also both require a division of the state space, and their efficiency
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Figure 4.6: Disconnectivity graph191,192 with leaves coloured according to (a) A ← B committor
probabilities q+

j and (b) A ← B visitation probabilities r+
j for nodes j of the kinetic network, for

the F ← U transition at a temperature of 330K. Only nodes of the network for which r+
j ≥ 0.01

are included in the tree. The data were obtained from 20000 transition paths simulated using the
kPS algorithm with a priori communities determined by MLR-MCL. The vertical axis corresponds
to potential energy, with an incremental value of 3 kcal mol−1 for the superbasin analysis.191
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is affected by the extent to which this partitioning faithfully characterizes the metastable
macrostates. The choice of the disjoint sets is therefore a crucial consideration, and indeed is
often the most challenging aspect in the implementation of enhanced sampling methods.93,137

Here, we address this problem by employing a fast and numerically stable stochastic community
detection algorithm, namely multi-level regularized Markov clustering (MLR-MCL),150–155

to identify metastable sets of nodes on the kinetic network (Sec. 4.A). The MLR-MCL
algorithm is unsupervised, and therefore our simulation strategy is fully automated. An
initial partitioning can also be refined by an unsupervised variational optimization scheme
(Sec. 4.B). Construction of a kinetic network by DPS (Sec. 4.2.1) does not require a low-
dimensional projection of the underlying energy landscape, which might obscure features
that have a dominant effect on the dynamics,17–20 and so sampling paths on such networks
is a powerful method to understand transition mechanisms in complex and high-dimensional
systems.

The O(|E|3) time complexity for a single kPS iteration to simulate an escape trajectory
from a trapping basin B, where |E| nodes of the basin are eliminated in the graph transformation
stage of the algorithm, leads to problems when a metastable macrostate is naturally large.
This issue may be alleviated by allowing for a number of retained transient nodes, so that
T 6= ∅, thereby keeping the number of eliminated nodes |E| manageable, and effectively
transforming the kPS iteration into a hybrid BKL-kPS scheme.147 However, depending on
the choice of nodes belonging to the set T, this approach may reintroduce the problem
of flickering trajectories, requiring the explicit simulation of a large number of standard
rejection-free kMC steps. Alternatively, the network can be preprocessed by one of a number
of methods, although we then forfeit exact sampling of the original kinetic network. Use of
a recursive regrouping scheme16 to subsume nodes interconnected by fast transition rates,
according to a specified threshold, can be highly effective in removing the effects of the
groups of nodes that are primarily responsible for the flickering.189 Preprocessing of the
network by graph transformation,56–61 which preserves the path probabilities in their reduced
representation, and which introduces renormalized waiting times for nodes to preserve the
MFPT from any given node to a set of absorbing nodes, can also be used to avoid any one
trapping basin becoming too large. This idea has been used to limit the size of trapping
basins when using the FPTA method70,95–99 to solve the master equation for an absorbing
Markov chain in Ref. 78, and is an interesting possible direction for further work.

144



Efficient and exact sampling of transition path ensembles on Markovian networks

4.4.2 Comparison to alternative enhanced sampling methods

There are several other exact enhanced sampling methods that are closely related to WE-
kMC, in the sense that they employ a division of the state space to simulate complete
trajectories between two endpoint macrostates of interest in a piecewize fashion, and maintain
a set of ‘walkers’ on the state space that are simulated in parallel.137,193 We expect them to
perform similarly, but there are some factors that may make a particular enhanced sampling
method more favourable for a given system. We conclude this chapter by giving a brief
overview of popular exact enhanced sampling methods alternative to those implemented in
the present chapter. We highlight relative advantages and disadvantages of the methods,
and draw attention to how the methods could be adapted and optimized for the problem of
sampling the TPE on arbitrary Markovian kinetic networks, as opposed to the more common
problem of performing simulations on a continuous state space. In particular, we suggest
how some of these methods may be coupled with the kPS147,148 (or, in the same way, the
MCAMC95,96) algorithm.

Milestoning31,38,92,194 utilizes a partitioning of the state space into disjoint sets, each
characterized by an ‘anchor’ node. Short trajectories are initialized at so-called milestones,
which are hypersurfaces at the interfaces between the states, with probabilities reflecting the
equilibrium distribution. The flux across a milestone is measured from the first passage time
distributions of incident trajectories initialized from neighbouring milestones. The MFPTs
between all pairs of milestones can be computed from this information. In a kinetic network,
the analogue of a hypersurface is a set of boundary nodes separating a pair of communities.
The communities could be determined by any appropriate community detection algorithm,
such as MLR-MCL.168 Since the complete trajectory time distribution for inter-milestone
transitions is an ingredient in the estimation of the coarse-grained MFPT matrix, milestoning
provides a natural method for the estimation of reduced Markov chains.194 Furthermore,
milestoning does not depend on a separation of timescales, and therefore the choice of
partitioning of the state space is less crucial, and the method remains effective when applied
to highly diffusive dynamical processes.193

Nonequilibrium umbrella sampling90,195–197 (NEUS) and the related tilting algorithm94

likewise employ a partitioning of the state space into arbitrary nonoverlapping sets to achieve
distributed sampling, and aim to calculate the flux across interfaces. Again, for discrete-
state systems, this partitioning can be obtained using MLR-MCL, as in the present work.
In these methods, each state is assigned a number of walkers and an initial weight. Every
time a walker reaches an interface, an incremental amount of weight is transferred from the
state to the neighbouring state associated with the interface. The walker is then moved to
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a new interface of the original state, with probability in proportion to the associated flux.
Eventually the bin weights converge to steady state values, and the A ← B flux can be
inferred from the number of trajectories crossing individual interfaces per unit time.197 The
tilting algorithm94 variant of NEUS allows for more rapid convergence to the steady state.
Despite its relatively high computational cost,197 the flexibility in defining the states, and in
the distribution of computational resources via specification of the numbers of walkers for
each state, makes NEUS a powerful method for sampling TPEs at a steady state.

If it is more natural to divide the state space by nonintersecting interfaces, which for
kinetic networks could be achieved automatically by the repeated application of minimum-cut
algorithms,64 then it may be preferable to employ forward-flux sampling (FFS),47,91,116,175–179

which can be thought of as a particular case of NEUS. In FFS, trajectory segments are
simulated starting from a distribution at the current interface. The trajectory pieces either
reach the next interface, in which case the incident points are stored for use in the initial
distribution of trajectories starting from this succeeding interface, or return to the initial
macrostate B. Note that, unlike milestoning, FFS does not employ the equilibrium probability
distribution at the interfaces, and therefore simulates nonequilibrium, instead of equilibrium,
TPEs. Coordinates orthogonal to the reaction coordinate that defines the nesting of interfaces
must effectively be sampled by brute force. Therefore FFS is most useful for simulating rare
event systems that can be projected onto a single dimension without significant loss of
information, in which case the comparably small computational overhead of FFS makes
the method attractive.197 The treatment of the successive trajectory pieces in a serial
fashion leads to a propagation of errors,91 and significant computational effort is expended
simulating trajectories that do not reach the next interface but instead return to the initial
macrostate, especially if there are intermediate states acting as strong kinetic traps.116

Recent advances are focussed on addressing these issues.198 Enhanced sampling methods
based on the parallel simulation of multiple trajectory segments share many of the same
shortcomings. In particular, the correlated histories of trajectories necessitate that rigorous
statistical tests be employed to evaluate the quality of the simulation data.137

In milestoning and FFS, trajectory segments are simulated from one hypersurface (in
discrete state space, a set of boundary nodes) to another, and unlike NEUS (or WE-kMC),
there is not continual ‘feedback’ between adjacent hypersurfaces, although FFS must be
carried out in a serial fashion. This feature means that milestoning and FFS are well-suited
for use in conjunction with kPS (or MCAMC) using only modest computational resources,
since the calculation can be ran by focussing on individual communities of nodes in turn.
Therefore, the graph transformation stage of the kPS simulation,147,148 and the spectral
decomposition of the transition matrix in the MCAMC algorithm,70,95,96,99 which are the

146



Efficient and exact sampling of transition path ensembles on Markovian networks

computational bottlenecks of the respective methods, need only be carried out once for each
community. After storing the relevant information to undo the graph transformation in kPS,
the iterative reverse randomization procedure147,148 can be repeated to generate the desired
number of sample trajectory segments within the community. Similarly, the eigenspectrum
of a community can be used to repeatedly generate sample trajectory segments within a
MCAMC simulation. Since kPS and the FPTA70,99 variant of the MCAMC algorithm
correctly preserve the FPT distribution, and sample nodes at the absorbing boundary of
the currently occupied community with the exactly correct probabilities, the milestoning
and FFS methods used in conjunction with kPS or FPTA will yield unbiased estimates for
MFPTs. These hybrid methods will also yield an unbiased sample of the TPE, albeit with
reduced resolution of the pathways, since information on the dynamics within communities is
lost. This loss is fairly inconsequential, since the communities ought to reflect the metastable
states within which the trajectories flicker unproductively.

4.5 Conclusions

The advanced kMC methods employed in this chapter, weighted ensemble93,132–135,137 kMC
(WE-kMC) (Sec. 4.2.4) and kinetic path sampling147,148 (kPS) (Sec. 4.2.5), allow for a
detailed quantitative analysis of the A ← B path ensembles on arbitrary finite discrete-
and continuous-time Markov chains, and remain efficient even for networks that are strongly
metastable and of high dimensionality. We have demonstrated our simulation workflow, in
which the MLR-MCL150–155 (Sec. 4.A) unsupervised community detection algorithm is used
to define a priori fixed bins in the accelerated kMC simulations, with optional refinement of
the partitioning by a variational optimization procedure (Sec. 4.B), with results for a kinetic
network representing the folding of the TZ1 peptide157 (Sec. 4.3.2) constructed by discrete
path sampling (Sec. 4.2.1).14,15 The folding transition for TZ1 exhibits complex multi-state
and multi-pathway kinetics (Sec. 4.3.3), and simulation of the folding transition by brute-
force kMC is unfeasible. The choice of partitioning of the state space is a crucial consideration
that strongly affects the efficiency of enhanced sampling algorithms,17–19,93,137 and any
appropriate community detection168 algorithm could be used to obtain this partitioning
in a kinetic network. Our proposed variational optimization scheme (Sec. 4.B) to refine
the initially determined communities of nodes ensures that the metastable macrostates are
accurately characterized, and therefore makes our automated simulation workflow robust.
Future work could discuss the choice of community detection algorithm for the purpose of
determining an initial approximation to the metastable sets of nodes, which can subsequently
be used to guide accelerated kMC simulations, as in the present work, or to determine a
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reduced Markov chain.199

Another avenue for further investigation is to implement and benchmark alternative
enhanced sampling methods, such as those described in Sec. 4.4.2, for accelerating kMC
simulations on arbitrary kinetic networks. In particular, it is desirable to have access
to methods that are well-suited to sampling the equilibrium TPE, a problem to which
the protocol for establishing a steady state in WE sampling134 does not provide an ideal
solution. Hybrid algorithms combining kPS or FPTA70,95,96,99 with milestoning38,92,194 and
with forward flux sampling (FFS)47,91,116,175–179 are particularly promising approaches for
efficient and exact sampling of equilibrium and nonequilibrium TPEs, respectively. We
have developed the DISCOTRESS (DIscrete State COntinuous Time Rare Event Simulation
Suite) software to perform enhanced sampling simulations on arbitrary Markovian networks.
Application of these advanced kMCmethods to a variety of systems will yield insight into how
features of the TPE, such as the existence of multiple competing mechanisms, arise from the
topology of the kinetic network. The identification of archetypal classes200,201 of stochastic
dynamics and corresponding network topologies will provide fundamental understanding
concerning how dynamical observables such as the MFPT arise from microscopic features of
the TPE, and therefore of how these macroscopic dynamical properties are encoded in the
underlying energy landscape.

4.A Multi-level regularized Markov clustering

The basic Markov clustering (MCL) algorithm153–155 is a deterministic method for the
unsupervised detection of community structure in weighted and directed networks, by performing
operations on a stochastic matrix to artificially simulate the properties of an average random
walk on the network. The main loop of the MCL algorithm iterates the following three
operations until convergence is achieved. Firstly, the expansion operation, where the product
of the transition matrix with itself is computed. The expansion operation effectively lengthens
the timescale of the average random walk characterized by the updated transition matrix,
and thus allows for probability flow between different regions of the network. Secondly, the
inflation operation, where the Hadamard power of the transition matrix is computed, given
a granularity parameter r > 1. The inflation operation effectively augments the probability
current for transitions between regions of the network where the flow is strong, and diminishes
the probability current where it is already weak. Lastly, elements of the matrix with
values below a threshold are pruned, and the columns of the matrix are renormalized.
With the repeated application of this sequence of operations, the transition matrix becomes
increasingly sparse, since the probability distribution of flows becomes progressively more
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localized. At convergence, each node appears in only a single column of the transition matrix.
Thus the output of the MCL algorithm is a matrix that is doubly idempotent with respect
to the expansion and inflation operations. The converged matrix can be interpreted as a
clustering, where nodes corresponding to nonzero elements in particular rows of the final
stochastic matrix belong to the same community. Each community is characterized by an
attractor node in the output matrix, namely the nodes associated with rows containing one or
more nonzero transition probabilities, with the interpretation that there is a net flow from all
nodes of a given community to the corresponding attractor. The resolution of the community
detection can be increased by increasing the value of the granularity parameter r. The
capability to tune the resolution of the clustering, i.e. to adjust the timescales characterized
by the community structure, by a direct choice of input parameter is a desirable feature for
the present purpose.

For generic networks, the input matrix in the MCL procedure is usually obtained naïvely
by simple renormalization of the columns of the network adjacency matrix (after adding self-
loops), and possibly employing weight transformation heuristics to improve the quality of the
output clustering.150,151 In the present context, where we have a CTMC parameterized by a
transition rate matrix, we require a stochastic matrix that properly represents the dynamics
on the kinetic network. To ensure that the resulting stochastic matrix includes nonzero
probabilities for self-loop transitions, we use the linearized transition probability matrix,147

Tlin(τ) = I+τK, where I is the identity matrix, instead of the branching probability matrix.
Provided that τ ≤ min{−(Kjj)−1 : ∀ j ∈ S}, then the linearized transition matrix is column-
stochastic, as required (with uniform mean waiting times, τj, for all nodes j). The lag time
provides another input parameter that governs the resolution of the community detection.
In fact, it may be preferable to control the resolution of the clustering via the lag time τ
rather than through the granularity parameter r, since the MCL algorithm is highly sensitive
to r.150,151

There are a number of issues with the MCL algorithm in its simplest form. One problem
is scalability: the expansion operation has time complexity O(|S|2) for dense matrices, and
is therefore prohibitively expensive for large networks. A solution to this problem is to pre-
process the network by using heavy edge matching (HEM) to iteratively determine coarsened
networks that retain the topological features of the original network. In the HEM procedure,
nodes are randomly selected in turn, and matched to a currently unmatched neighbour, if
such a node exists, according to the shared edge of greatest weight. Each pair of matched
nodes is contracted into a ‘supernode’, for which the set of edges is the union of the edges
involving the corresponding nodes of the refined graph. The HEM procedure is repeated until
the most coarse network comprises a number of nodes below a given threshold. Of course,
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the number of iterations of the HEM procedure affects the resolution of the clustering, and so
this threshold must be chosen carefully. Within this multi-level framework, a small number of
iterations of MCL are run for a coarsened transition matrix, after which the flow is projected
onto the next refined transition matrix, according to the mapping of nodes required to undo
the HEM procedure.150,151 Since the coarse transition matrices are of low dimensionality, the
expansion operations in the early stages of the MLR-MCL procedure are fast. It is desirable
that the coarse network retains the attractor nodes associated with the communities of the
original network. Hence, in our implentation of the HEM procedure for Markov chains, which
have bidirectional edges, the unmatched node corresponding to the shared edge of greatest
incoming weight is mapped to each randomly selected node. In the final stage of the multi-
level MCL algorithm, a large number of MCL iterations are performed on the projected
transition matrix representing the complete network. Since the transition matrices become
more sparse as the algorithm progresses, these later iterations can be achieved efficiently
by exploiting a compressed sparse row data structure and parallelizble sparse matrix-matrix
multiplication algorithms. Thus within the multi-level framework, the expansion operation
should at no point become prohibitively slow.

A second issue concerns the quality of the output community structure. In particular,
the standard MCL algorithm has a tendency to produce a large number of clusters. This
overfitting effect arises since there is no penalty associated with divergence of columns of
the transition matrix that correspond to neighbouring nodes. The proposed solution to this
problem is to replace the expansion step with a regularization step, in which the product
of the transition matrix with a regularisation matrix is computed.150,151 In the simplest
case, the regularization matrix is the initial transition matrix at each step of the multi-
level refinement. It can be shown that this is the optimal choice of regularization matrix for
smoothing the distribution of probability flow out of nodes,150 thereby preventing overfitting.
That is, columns of the transition matrix corresponding to neighbouring nodes tend to remain
similar, and hence the corresponding nodes tend to be associated with the same attractor,
provided that transitions between the nodes have high probability. The regularization effect
can be tuned by constructing a regularization matrix at every iteration according to a
specified balance parameter, b.151 A balance parameter of b = 1 corresponds to the simplest
form of regularization, described above. Multi-level regularised MCL (MLR-MCL), which
incorporates the aforementioned modifications, scales more favourably than, and yields fewer
and more balanced communities compared to, the basic MCL algorithm.150,151
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4.B Variational optimization procedure to refine metastable
macrostates

The methodology described herein relies on a partitioning of the nodes of a finite Markov
chain into metastable macrostates. Consider the stochastic matrix T, for which the state
space S is partitioned into the set of macrostates C ≡ {X ,Y , . . .}. In practice, if the
community detection algorithm used to determine C was chosen appropriately, it is likely
that the obtained clustering characterizes the metastable sets of nodes in the Markovian
network with relatively high accuracy. However, there are liable to be misclassifications of
nodes at the intercommunity boundaries. These errors may arise since, for instance, many
community detection algorithms for generic networks are based on heuristics or objective
functions that do not precisely correspond to the aim of identifying metastable macrostates
in Markov chains. In addition, many state-of-the-art community detection algorithms,
including MLR-MCL (Sec. 4.A), are stochastic.168 Although only a small fraction of nodes
may be misclassified, the states at the intercommunity boundaries typically have a dominant
effect on the slow dynamics. Hence, any misclassifications are likely to have a profound
effect on the resulting properties of a lumped (reduced) Markov chain obtained by the
estimation of intercommunity transition probabilities or rates, and are also detrimental to the
efficiency of advanced simulation algorithms such as WE-kMC (Sec. 4.2.4), kPS (Sec. 4.2.5)
and MCAMC.95

We now propose a procedure to refine an initial partitioning of a Markov chain into
metastable communities. Our strategy leverages the existence of a variational principle for
the second dominant eigenvalue, λ2, (or similarly, the average mixing time, ζK, introduced in
Chapter 1) of the reduced transition matrix obtained from the local equilibrium approximation
(LEA).202–204 That is, for a given community structure C associated with the stochastic
matrix T, there is an upper bound on the second dominant eigenvalue λC2 of the lumped
Markov chain TC with intercommunity transition probabilities T CXY = 1>XTXYπY ∀X ,Y ∈ C;
λC2 < λ2. Likewise, for an irreducible Markov chain, there is an upper bound on the average
mixing time (the expected time to reach the stationary distribution, which is independent of
the initial condition199) of the lumped Markov chain given by the LEA: ζCK < ζK.205 Hence,
if we employ a procedure to perturb the community structure C and thus obtain an updated
reduced transition matrix TC, then we can recompute either λC2 or ζCK and use this quantity
as a metric to test if the proposed perturbation improved the quality of the clustering. The
second dominant eigenvalue corresponds to the timescale of the slowest relaxation process,
and the average mixing time is effectively a sum of timescales for all relaxation processes.
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Hence, these properties provide rigorous and interpretable objective functions to assess the
extent to which a community structure C characterizes the metastable macrostates of a finite
Markov chain. The lumped Markov chain TC given by the LEA can be recomputed trivially
if the stationary distribution of T is known. Moreover, the second dominant eigenvalue
(or the average mixing time) only needs to be calculated for the reduced Markov chain
at each iteration. Since the number of macrostates is typically small, |C| � |S|, and the
reduced transition matrix should be well-conditioned if C approximates the true metastable
communities of nodes, the variational optimization procedure is efficient and stable.

There are many ways that this perturbation framework could be implemented in practice.
In the simplest possible refinement scheme, the assigned community is switched for only a
single boundary node at each iteration, and a queue of intercommunity edges is maintained,
with connections corresponding to fast transitions prioritized for perturbation. The proposed
switching moves are accepted greedily; that is, perturbations leading to an increase (decrease)
in λC2 or ζCK are always accepted (rejected), respectively. This basic version of the procedure,
which may be sufficient to determine the optimal partitioning when the initial community
structure C is a close approximation to the true metastable sets of nodes, is illustrated in
Fig. 4.7. More sophisticated implementations of this procedure may use stochastic criteria to
select intercommunity edges and associated nodes for reassignment, and apply a Metropolis
condition to accept proposed perturbations to the community structure. In practice, we
have found empirically that simulated annealing provides an effective means to refine the
intercommunity boundaries. Simulated annealing uses a Metropolis acceptance criterion
with an artificial temperature that decreases throughout the simulation according to a
specified protocol, so that the probability of accepting moves that decrease the objective
function becomes smaller as the simulation progresses, and the heuristic eventually reduces
to a greedy heuristic. A further possibility is to allow for the reassignment of multiple
nodes simultaneously, which may be especially useful for accelerating the convergence of
a global optimization algorithm when the initial clustering C is a poor representation of
the metastable communities. These advanced moves could be achieved using a breadth
first search procedure initialized from a chosen boundary node, incorporating only nodes
associated with an intercommunity transition probability or rate that exceeds a specified
threshold.

4.C Simulation parameters

The following simulation parameters were used to obtain the results for the kinetic network
representing the folding of the tryptophan zipper peptide described in this chapter. The

152



Efficient and exact sampling of transition path ensembles on Markovian networks

𝒳

𝒴

𝒵

𝐓

switch 
classification of a 
boundary node
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𝒞 ↑

𝝀𝟐
𝒞 ↑

Figure 4.7: Schematic illustration of a single iteration of the proposed variational optimization
procedure to refine a community structure C ≡ {X ,Y,Z} associated with a stochastic matrix T.
The edges indicate bidirectional transitions, with the intercommunity transitions highlighted in
yellow, and transition probabilities (or rates) are correlated with the edge thickness. The initial
clustering clearly does not precisely characterize the metastable sets of nodes: there is a node of the
set X for which there is a slow X ← X transition and fast Z ↔ X transitions. Hence, the average
mixing time ζCK for the lumped Markov chain estimated by the local equilibrium approximation
(LEA), with transition probabilities T CXY = 1>XTXYπY ∀X ,Y ∈ C, is erroneously fast. The
timescale of the slowest relaxation process for this reduced chain, which directly relates to the second
dominant eigenvalue λC2 , is likewise spuriously fast. In the first step of an iteration of the variational
refinement procedure, an intercommunity edge (indicated by ∗) is selected for perturbation. This
selection can be made either stochastically or deterministically, with prioritization based on the
values of the transition probabilities or rates. Next, one of the two nodes associated with the
chosen edge is selected. Again, this selection can be informed by relevant criteria - here, the blue
node, of the set X , that is associated with the chosen intercommunity edge also features a connection
corresponding to a slow intracommunity transition, which suggests that this node is misclassified.
The community assigned to this node is switched to that of a neighbouring node (here, Z), and
an updated reduced matrix is computed from the LEA. The new lumped Markov chain TC has
increased timescales for the slowest relaxation process and for the average mixing time. That is, the
lumped Markov chain better represents the slow dynamics of the original system, and the proposed
perturbation to the community structure C is thus accepted.
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simulations were performed using the DISCOTRESS software (available under the GNU
General Public License at github.com/danieljsharpe/DISCOTRESS).

4.C.1 Determination of communities

To obtain fixed a priori communities of the TZ1 kinetic network in the kPS and WE-
kMC simulations, the multi-level regularized Markov clustering (MLR-MCL) algorithm150,151

(Sec. 4.A) was used with granularity parameter r = 1.05, balance parameter b = 1, pruning
threshold ε = 10−6, maximum number of residual nodes following the heavy edge matching
procedure equal to nHEM = 800, number of curtailed MCL iterations at each stage of the
multi-level procedure Ncur = 3, and an initial transition probability matrix estimated at a lag
time 10−16 s. There were 390 resulting communities, the smallest of which was the manually
chosen absorbing state described below, comprised of 17 nodes. The largest community
comprised 5762 nodes. The majority of communities contained around 100 nodes.

To obtain communities on-the-fly, a breadth-first search procedure was used, where
neighbouring nodes with an associated transition rate corresponding to an energy barrier
height < 4 kcal mol−1 are incorporated into the current community, with a maximum size of
3000 nodes.

4.C.2 Definition of endpoint states

The three key metastable macrostates described in the main text, namely the U, I1, and
I2+F states, were identified with the MLR-MCL algorithm at a low resolution, using input
parameters r = 1.025, b = 1, ε = 10−6, nHEM = 2000, Ncur = 3, and τ = 10−13 s. The
macrostate representing the native fold, denoted F in the main text, comprised 17 nodes
chosen manually, including the global potential energy minimum, and the nodes connected
to this native node by transition rates corresponding to energy barrier heights < 1 kcal mol−1.
In both the WE-kMC and kPS simulations, the initial probability density was localized at
a particular high-energy node of the unfolded macrostate, corresponding to an extended
conformation with no native or non-native contacts. The set of folded nodes F was treated
as an absorbing macrostate in the nonequilibrium stochastic dynamics simulations.

4.C.3 Kinetic path sampling simulation parameters

The kinetic path sampling147,148 (kPS) simulations used the branching probability matrix
as the initial transition probability matrix in the graph transformation56–61 stage of the
algorithm. All nodes of the current trapping basin were always eliminated (B ≡ E and
T ≡ ∅ for all kPS iterations). 50000 rejection-free kMC82,83 moves were conducted following
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each kPS iteration, to avoid trivial recrossings at the boundaries between communities. 20000
independent first passage paths were simulated.

4.C.4 Weighted ensemble kMC simulation parameters

In the weighted ensemble48,93 kMC (WE-kMC) simulations, the target numbers of walkers for
each community were chosen to be uniform, equal to Mξ = 100. The trajectory resampling
procedure was conducted at time intervals of τR = 106 s. The 20000 simulated first passage
paths were obtained from 40 independent WE runs.
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Chapter 5

Conclusions and Outlook

We conclude the thesis by giving a brief overview of the theoretical and methodological
advances reported herein. We discuss some recent related work that is beyond the scope
of the current thesis, and suggest possible further extensions and variations of our proposed
frameworks. Finally, we highlight the significance of the novel theory and algorithms described
here by suggesting potential applications to realistic models, where our approach may lead to
new insights into the dynamical behaviour of pertinent systems.
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In this thesis we have reported various novel computational methods to analyze the
dynamics of finite Markov chains. Crucially, our strategies scale favourably and are numerically
stable, ensuring that the procedures remain applicable to the high-dimensional and ill-
conditioned Markov chains that are typically encountered in the modeling of realistic dynamical
systems.1–5 The numerical analysis of nearly reducible Markov chains, comprising a mixture
of fast and slow processes, is often intractable using conventional algorithms owing to the
propagation of error in the finite precision arithmetic.6–16 We have demonstrated the utility
of our proposed approaches with applications to numerically challenging models that are
relevant to current problems in physical science.

Before the developments of the current work, there existed robust procedures to compute
quantities characterizing the global dynamics, such as the stationary distribution (by the
Grassmann-Taksar-Heyman algorithm17,18 or uncoupling-coupling procedures19–24), mean
first passage times (MFPTs) for a transition to an absorbing state (by the graph transformation
algorithm25–28), and the average mixing time (by the FUND29,30 and REFUND31 algorithms)
(Chapter 1). We have extended the family of state reduction algorithms to compute microscopic
quantities, allowing for detailed analysis to probe the relationship between local regions of
a Markovian network and the slow, global dynamics. Specifically, we have devised efficient
algorithms to compute committor probabilities32,33 for nodes (the probability that a path
initialized at a node is a transition path, i.e. hits the absorbing state before visiting the initial
state), and the expected numbers of times that nodes are visited on paths prior to absorption
(Chapter 3). We then derived an expression for the probability that a node is visited along
a transition path, which is readily evaluated using the above information. Thus, all of the
quantities required to identify the individual nodes of a Markov chain that have a dominant
effect in modulating the overall transition can be obtained in a numerically stable manner.
In addition to this nodewise analysis, we proposed a pathwise analysis to quantitatively
assess the dynamical relevance of alternative competing mechanisms for a transition of
interest (Chapter 2). This framework uses knowledge of the committor probabilities and
stationary distribution to exactly decompose the overall reactive flux for a transition into
additive contributions from a finite set of transition flux-paths. Further extensions of the
graph transformation algorithm generalize the procedure to any path property that is a
sum of contributions from individual transitions (Chapter 2), and incorporate a backward
pass phase to compute the MFPTs for transitions from all nonabsorbing nodes in a single
computation (Chapter 3).

In Chapter 4 we proposed a framework for the efficient and exact sampling of trajectories
on a Markovian network, which avoids the problem of devoting excessive computational
resources to simulate the unproductive flickering of trajectories that are trapped in metastable
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states.34,35 This flickering issue renders standard kinetic Monte Carlo methods prohibitively
inefficient for simulating trajectories on nearly reducible Markov chains.36 Our strategy uses
the multi-level regularized37,38 Markov clustering39–41 (MLR-MCL) unsupervised community
detection algorithm to efficiently obtain an initial clustering of the network into metastable
states, which is subsequently refined by a variational optimization procedure. The resulting
communities are employed in kinetic path sampling42,43 (kPS) simulations, which uses a state
reduction algorithm to sample the numbers of internode transitions in a trajectory segment
that escapes from the currently occupied community.44

The separation of characteristic timescales that defines a nearly reducible Markov chain3,45,46

can be exploited to obtain a reduced Markovian network where the metastable macrostates
are represented by individual nodes.47–49 In related work that is beyond the scope of the
thesis, we have contributed to devising strategies for accurately determining the transition
probabilities or rates of a reduced Markov chain, for a given partitioning of the original
network. One approach to this problem uses local eigendecompositions of the respective
communities to estimate appropriate coarse-grained transition rates.50 The reduced discrete-
or continuous-time Markov chain, which is optimal in the sense of most accurately preserving
the occupation number correlation functions of the communities, can be obtained via inversion
of the matrix of pairwise MFPTs for all transitions between nodes of the original Markov
chain.51–53 To minimize numerical error in this process, the MFPT matrix can be computed
efficiently and robustly using state reduction methods.54 Another possible route to determine
a coarse-grained Markov chain is to use the simulation strategy of Chapter 4 to sample many
short-timescale trajectories efficiently.55 The probabilities or rates for transitions between
the predefined communities can then be inferred from the trajectory data using maximum-
likelihood56–59 or Gibbs sampling60–63 methods. Finally, a somewhat unorthodox approach to
the dimensionality reduction problem is to eliminate a subset of nodes from each community
by renormalization.64 This latter scheme requires that the choice of eliminated nodes does
not lead to the significant loss of information on the slow dynamics for intercommunity
transitions. Conceiving heuristics to prioritize nodes for elimination in this framework
therefore raises interesting theoretical questions on the relationship between network topology
and global dynamics.65

These advanced approaches to assigning coarse-grained transition probabilities or rates,
which accurately preserve the global dynamics of the original Markovian network, are less
sensitive to the choice of communities than simply invoking the local equilibrium approximation.54,66

Nonetheless, since nodes at the boundaries of metastable states play a critical role in
facilitating the intercommunity transitions, the choice of clustering algorithm is a pivotal
consideration in dimensionality reduction workflows. The numerical stability of uncoupling-
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coupling procedures, and of the block formulation of the graph transformation algorithm,
likewise relies on a partitioning of the network into communities that appropriately reflect
the metastable sets of nodes.1,24 Similarly, the kPS algorithm requires a suitable choice of
metastable communities in order to simulate paths efficiently.42,44 Our variational optimization
procedure to refine the boundaries of an initial clustering, described in Chapter 4, attenuates
the influence of the initial clustering method. This property is useful for improving the
reproducibility of a dimensionality reduction workflow, since state-of-the-art scalable community
detection algorithms, such as MLR-MCL, are typically stochastic.67–69 Moreover, many
popular community detection algorithms are based on heuristics or objectives that are
not necessarily appropriate in the context of Markov chains and are therefore liable to
misclassify nodes,70 especially those at the boundaries of metastable macrostates. The
proposed variational optimization procedure is based on a rigorous objective function, namely
the second dominant eigenvalue of the transition probability or rate matrix, or the Kemeny
constant. Hence, this process improves the quality of an initial clustering in a readily
interpretable way.

While the variational optimization procedure can partially correct for misclassified nodes
at the boundaries of the communities, the choice of initial clustering procedure remains
important. A suitable community detection algorithm should be scalable, numerically stable,
require no prior knowledge of the Markov chain besides the edge weights, and be based
on a heuristic or objective that explicitly considers the edge weights to be Markovian
transition probabilities or rates. Clustering algorithms that are based on the eigenvectors
of the Markov chain, such as the original71,72 and robust73,74 Perron cluster-cluster analysis
algorithms (PCCA and PCCA+, respectively), are not numerically stable,10 but could be
applied to weakly metastable Markov chains. Clustering algorithms that are based on the
modularity objective function,75 such as the Louvain algorithm,76 are efficient, but often fail
to characterize long-lived macrostates in Markov chains.77

In Chapter 4, we identified MLR-MCL as a community detection procedure having
a desirable balance of properties for application to Markov chains. A second promising
candidate procedure is the InfoMap algorithm,78 which has favourable time complexity,
yields a hierarchical clustering, and incorporates regularization via a single free parameter.
The map equation that serves as the objective function in the InfoMap algorithm,79 which
is optimized by a stochastic node reassignment procedure,76 has a rigorous interpretation
relating to the theory of random walks. An alternative approach is the BACE (Bayesian
agglomerative clustering engine) algorithm,80 where the two nodes that are associated with
the smallest pairwise Bayes factor, which indicates that the nodes share similar transition
probabilities to neighbouring states, are merged at each iteration. However, the BACE
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algorithm has cubic time complexity in the number of nodes, and is therefore not feasible
for application to Markov chains with a large number of nodes. The BACE algorithm
has the advantage that an explicit stopping criterion can be specified; either once the
desired number of communities has been reached, or when the lowest Bayes factor exceeds
a threshold. It is reasonable to suggest that the “best" community detection procedure
depends on both the system and the intended application. For instance, kPS requires that
the metastable communities are not too large,42,44 but this consideration is irrelevant for
determining a reduced Markov chain by the local equilibrium approximation or the Hummer-
Szabo relation.51,53 Extensive benchmarking of alternative clustering approaches for different
purposes would serve as an important reference to guide practitioners.

Another potential avenue to extend the methodological advances of the present work is
to use the kPS algorithm in conjunction with enhanced sampling methods for handling a set
of independent trajectories.81,82 A particularly attractive possibility is to utilize the exact
milestoning approach,83,84 wherein short trajectory segments are initialized at the boundaries
between macrostates, termed milestones, and terminate at neighbouring milestones.85 These
trajectory data can then be used to calculate MFPTs for the transitions between all pairs
of milestones.33,86 Hence, milestoning simulations provide a numerical strategy for the
dimensionality reduction of Markov chains that is scalable and offers a complementary
perspective to approaches based on estimating transition rates between communities of
nodes. Milestoning simulations are readily parallelizable by focussing on trajectory segments
between appropriately defined milestones separately. Moreover, the objects required to
estimate the first passage time distributions between milestones, i.e. the graph-transformed
networks in kPS, can be stored and subsequently recycled. Hence, combined milestoning
and kPS provides a powerful method to simulate the equilibrium path ensemble, which
is otherwise challenging to access efficiently.44 Practical aspects of milestoning, such as
suitable milestone placement, and considerations for other enhanced sampling methods,
differ significantly for the discrete- compared to the more usual continuous-state case, and
represent an interesting direction for further query.

The algorithms described in the thesis are implemented in a new software package,
DISCOTRESS (github.com/danieljsharpe/DISCOTRESS), a C++ program for the efficient simulation
and numerically stable analysis of nearly reducible discrete- and continuous-time finite
Markov chains. DISCOTRESS is freely available to download under the GNU General Public
License, and is provided with extensive documentation and tutorials. The software is highly
flexible, allowing for a variety of calculations to be performed conveniently. In addition to
the default operating mode of the program, namely to simulate the nonequilibrium first
passage path ensemble,87 there are further options to simulate: the equilibrium (i.e. steady
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state) path ensemble,88 fixed-timescale trajectories that are not necessarily conditioned on
endpoint sets of states, and many short-timescale trajectories to harvest data for estimating a
reduced Markov chain.55 Each of these methods is compatible with any chosen kinetic Monte
Carlo method. Through the specification of bins, which are distinct from the communities
leveraged in a kPS simulation, nodewise statistics, such as committor and reactive visitation
probabilities, can be estimated from trajectory data for arbitrary groups of nodes. The
software also includes special methods to conduct exact analyses using various state reduction
algorithms, and a class implementing the recursive enumeration algorithm89 to determine the
dominant transition paths and their relative importance. The code is object-oriented, and
therefore it is possible to extend the software with a custom class to handle a set of trajectories
that are propagated independently by an unspecified kinetic Monte Carlo algorithm,44 for
example to perform a milestoning simulation. The availability of advanced algorithms to
analyze ill-conditioned Markovian networks will aid researchers in diverse disciplines to
extract macroscopic and microscopic dynamical information on computationally challenging
models.

We have illustrated our proposed methodologies with applications to Markov chains
representing dynamical processes of current interest in the physical sciences. In particular,
we have analyzed the dominant pathways and key influential states for two configurational
transitions, namely, the solid-solid transition of an atomic cluster (Chapter 3) and the
folding transition of a peptide (Chapter 4). The properties of these systems, and of the
benchmark eight-state system of Chapter 2, are typical of Markov chains representing the
energy landscape of a continuous-state physical system.90 For such models, the exponential
sensitivity of transition rates to the heights of energy barriers leads to metastability and
consequent ill-conditioning.26 The numerically stable and efficient methods of the current
work, and the dimensionality reduction methods based on the extension of the concepts
presented herein, will therefore lend themselves to varied applications in analyzing the
dynamics of complex physical systems such as glassy materials91 and biomolecules.92,93

Nearly reducible Markov chains also arise naturally in many other disciplines.5 For
instance, extinction of a species is a rare event in a discrete-state population dynamics
model of an ecosystem.94–96 An extreme weather event is a low-probability transition in a
climate dynamics simulation.97 In economic models, large-scale market changes take place
on a much slower timescale than small fluctuations arising from individual trades.98 The
capability to perform computational analyses that were previously intractable could yield
new insights into the dynamics of realistic systems, including those mentioned above.

Our methodology could also lead to improved fundamental understanding of Markovian
networks, such as the complex interplay between network topology and dynamics, and how
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local features of a network are manifested in the global dynamics. In the current work,
we have found common features shared between the transition path ensembles88 for three
different systems characterized by an underlying energy landscape: a benchmark model,
an atomic cluster, and a peptide. Namely, the set of transition paths that are associated
with a non-negligible proportion of the productive flux is highly localized in the state space,
and the kinetically relevant states, which have a dominant influence on the macroscopic
dynamical properties of the Markov chain, are highly localized also. Systematic investigation
of archetypal Markovian networks could lead to the identification of universality classes for
dynamical behaviour, following similar frameworks for networks where the dynamics are
governed by deterministic ordinary differential equations.99,100
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