450 research outputs found

    Kohn Anomalies in Superconductors

    Full text link
    I present the detailed behavior of phonon dispersion curves near momenta which span the electronic Fermi sea in a superconductor. I demonstrate that an anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's dispersion curves when the frequency of the phonon spanning the Fermi sea exceeds twice the superconducting energy gap. This anomaly occurs at approximately the same momentum but is {\it stronger} than the normal-state Kohn anomaly. It also survives at finite temperature, unlike the metallic anomaly. Determination of Fermi surface diameters from the location of these anomalies, therefore, may be more successful in the superconducting phase than in the normal state. However, the superconductor's anomaly fades rapidly with increased phonon frequency and becomes unobservable when the phonon frequency greatly exceeds the gap. This constraint makes these anomalies useful only in high-temperature superconductors such as La1.85Sr.15CuO4\rm La_{1.85}Sr_{.15}CuO_4.Comment: 18 pages (revtex) + 11 figures (upon request), NSF-ITP-93-7

    A Network of Neutral Current Spherical TPC's for Dedicated Supernova Detection

    Full text link
    The coherent contribution of all neutrons in neutrino nucleus scattering due to the neutral current offers a realistic prospect of detecting supernova neutrinos. As a matter of fact. for a typical supernova at 10 kpc, about 1000 events are expected usinga spherical gaseous detector of radius 4 m andemploying Xe gas at a pressure of 10 Atm. We propose a world wide network of several such simple, stable and low cost supernova detectors with a running time of a few centuries.Comment: 17 LaTex pages, 9 PostScript figure

    Instrumentation progress at the Giant Magellan Telescope project

    Get PDF
    Instrument development for the 24m Giant Magellan Telescope (GMT) is described: current activities, progress, status, and schedule. One instrument team has completed its preliminary design and is currently beginning its final design (GCLEF, an optical 350-950 nm, high-resolution and precision radial velocity echelle spectrograph). A second instrument team is in its conceptual design phase (GMACS, an optical 350-950 nm, medium resolution, 6-10 arcmin field, multiobject spectrograph). A third instrument team is midway through its preliminary design phase (GMTIFS, a near-IR YJHK diffraction-limited imager/integral-field-spectrograph), focused on risk reduction prototyping and design optimization. A fourth instrument team is currently fabricating the 5 silicon immersion gratings needed to begin its preliminary design phase (GMTNIRS, a simultaneous JHKLM high-resolution, AO-fed, echelle spectrograph). And, another instrument team is focusing on technical development and prototyping (MANIFEST, a facility robotic, multifiber-feed, with a 20 arcmin field of view). In addition, a medium-field (6 arcmin, 0.06 arcsec/pix) optical imager will support telescope and AO commissioning activities, and will excel at narrow-band imaging. In the spirit of advancing synergies with other groups, the challenges of running an ELT instrument program and opportunities for cross-ELT collaborations are discussed

    Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab-initio Hamiltonians

    Full text link
    Unscreened Hartree-Fock approximation (HFA) calculations for metallic Fe, Co, Ni, and Cu are presented, by using a quantum-chemical approach. We believe that these are the first HFA results to have been done for crystalline 3d transition metals. Our approach uses a linearized muffin-tin orbital calculation to determine Bloch functions for the Hartree one-particle Hamiltonian, and from these obtains maximally localized Wannier functions, using a method proposed by Marzari and Vanderbilt. Within this Wannier basis all relevant one-particle and two-particle Coulomb matrix elements are calculated. The resulting second-quantized multi-band Hamiltonian with ab-initio parameters is studied within the simplest many-body approximation, namely the unscreened, self-consistent HFA, which takes into account exact exchange and is free of self-interactions. Although the d-bands sit considerably lower within HFA than within the local (spin) density approximation L(S)DA, the exchange splitting and magnetic moments for ferromagnetic Fe, Co, and Ni are only slightly larger in HFA than what is obtained either experimentally or within LSDA. The HFA total energies are lower than the corresponding LSDA calculations. We believe that this same approach can be easily extended to include more sophisticated ab-initio many-body treatments of the electronic structure of solids.Comment: 11 papes, 7 figures, 5 table

    Mushy Zone Morphology During Directional Solidification of Pb-5.8 Wt Pct Sb Alloy

    Get PDF
    The Pb-5.8 wt pet Sb alloy was directionally solidified with a positive thermal gradient of 140 K cm(-1) at a growth speed ranging from 0.8 to 30 mu m s(-1), and then it was quenched to retain the mushy zone morphology. The morphology of the mushy zone along its entire length has been characterized by using a serial sectioning and three-dimensional image reconstruction technique. Variation in the cellular/dendritic shape factor, hydraulic radius of the interdendritic region, and fraction solid along the mushy zone length has been studied. A comparison with predictions from theoretical models indicates that convection remarkably reduces the primary dendrite spacing while its influence on the dendrite tip radius is not as significant

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Some Consequences of Thermosolutal Convection: The Grain Structure of Castings

    Get PDF
    The essential principles of thermosolutal convection are outlined, and how convection provides a transport mechanism between the mushy region of a casting and the open bulk liquid is illustrated. The convective flow patterns which develop assist in heat exchange and macroscopic solute segregation during solidification; they also provide a mechanism for the transport of dendritic fragments from the mushy region into the bulk liquid. Surviving fragments become nuclei for equiaxed grains and so lead to blocking of the parental columnar, dendritic growth front from which they originated. The physical steps in such a sequence are considered and some experimental data are provided to support the argument

    Spatially Modulated Silicon Interface Energetics Via Hydrogen Plasma Assisted Atomic Layer Deposition of Ultrathin Alumina

    Get PDF
    Atomic layer deposition ALD is a key technique for the continued scaling of semiconductor devices, which increasingly relies on scalable processes for interface manipulation of structured surfaces on the atomic level. While ALD allows the synthesis of conformal films with utmost control over the thickness, atomically defined closed coatings and surface modifications are challenging to achieve because of 3D growth during nucleation. Here, a route is presented toward the sub nanometer thin and continuous aluminum oxide AlOx coatings on silicon substrates for the spatial control of the surface charge density and interface energetics. Trimethylaluminum in combination with remote hydrogen plasma is used instead of a gas phase oxidant for the transformation of silicon dioxide SiO2 into alumina. Depending on the number of ALD cycles, the SiO2 can be partially or fully transformed, which is exploited to deposit ultrathin AlOx layers in selected regions defined by lithographic patterning. The resulting patterned surfaces are characterized by lateral AlOx SiO2 interfaces possessing 0.3 nm step heights and surface potential steps exceeding 0.4 V. In addition, the introduction of fixed negative charges of 9 1012 cm amp; 8722;2 enables modulation of the surface band bending, which is relevant to the field effect passivation of silicon and low impedance charge transfer across contact interface

    Current assessment of the Red Rectangle band problem

    Full text link
    In this paper we discuss our insights into several key problems in the identification of the Red Rectangle Bands (RRBs). We have combined three independent sets of observations in order to try to define the constraints guiding the bands. We provide a summary of the general behavior of the bands and review the evidence for a molecular origin of the bands. The extent, composition, and possible absorption effects of the bands are discussed. Comparison spectra of the strongest band obtained at three different spectral resolutions suggests that an intrinsic line width of individual rotational lines can be deduced. Spectroscopic models of several relatively simple molecules were examined in order to investigate where the current data are weak. Suggestions are made for future studies to enhance our understanding of these enigmatic bands

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    • …
    corecore