663 research outputs found
Anomalous population of He states in reactions with Li
Structure with the lowest energy observed in the He spectrum populated
in the proton knockout reaction with Li beam has a peak at
MeV. This peak is usually interpreted as a resonant ground state of
He. Our theoretical calculations indicate that this peak is likely to be
a pileup of , , and excitations with very similar shapes. %We
predict a very specific nature of the excitation in He. Moreover,
the ``soft'' excitation appears to be the lowest one in energy. Such an
anomalous continuum response is traced to the halo structure of Li
providing extreme low energy shift to all the expected continuum excitations.
Competitions of the initial state structure (ISS) and the final state
interaction (FSI) effects on the spectrum and three-body correlations in
He are discussed. Analogous effect of the extreme low-energy shift could
also be expected in other cases of emitters populated in reactions with
halo nuclei. Simplified example of the He spectrum in knockout
from Be, is given. We also discuss limits on the properties of He
stemming from the observed He spectrum.Comment: 10 pages, 13 figure
Pauli-principle driven correlations in four-neutron nuclear decays
Mechanism of simultaneous non-sequential four-neutron () emission (or
`true' -decay) has been considered in phenomenological five-body approach.
This approach is analogous to the model of the direct decay to the continuum
often applied to - and -decays. It is demonstrated that -decay
fragments should have specific energy and angular correlations reflecting
strong spatial correlations of `valence' nucleons orbiting in their
-precursors. Due to the Pauli exclusion principle, the valence neutrons are
pushed to the symmetry-allowed configurations in the -precursor structure,
which causes a `Pauli focusing' effect. Prospects of the observation of the
Pauli focusing have been considered for the -precursors H and O.
Fingerprints of their nuclear structure or/and decay dynamics are predicted
Hadronic Regge Trajectories: Problems and Approaches
We scrutinized hadronic Regge trajectories in a framework of two different
models --- string and potential. Our results are compared with broad spectrum
of existing theoretical quark models and all experimental data from PDG98. It
was recognized that Regge trajectories for mesons and baryons are not straight
and parallel lines in general in the current resonance region both
experimentally and theoretically, but very often have appreciable curvature,
which is flavor-dependent. For a set of baryon Regge trajectories this fact is
well described in the considered potential model. The standard string models
predict linear trajectories at high angular momenta J with some form of
nonlinearity at low J.Comment: 15 pages, 9 figures, LaTe
Phytoplankton of the delta of the Mekong River during the dry season
Human activity has disturbed the functioning of river ecosystems all around the globe. The current global climatic fluctuations and local anthropogenic impact lead to rearrangement in the structure and functioning of aquatic communities. One of the most important components of aquatic ecosystems is phytoplankton as the main primary producer of the organic matter, the basis for trophic relations and indicator of changes in the environment. This article presents the first results of a study concerning the peculiarities of quantitative distribution of biomass and species composition of phytoplankton in the delta of the Mekong River at the beginning of the dry season (December of 2018). Diatoms dominated according to biomass practically in all the stations of selection of samples. The total biomass of phytoplankton on average accounted for 0.049 ± 0.007 mg/L at the abundance of 40 ± 7 103 ind./L. In practically all the studied plots, according to biomass, the dominating diatoms were first of all Aulacoseira granulata, A. islandica, Cyclotella meneghiniana, Cyclotella spp., and Oxyneis binalis. Among Chlorophyta, most often we found Chlorella sp. and Scenedesmus quadricauda, but their biomass was insignificant. We determined statistically significant correlation relationships between biomass of phytoplankton and hydrological parameters. Based on the Spearman’s rank correlation coefficient, we determined negative relations between the total biomass of phytoplankton with salinity and pH. Positive correlation was seen between the biomass of diatoms and turbidity, and also between the temperature and the biomass of chlorophytes and Dinophyta. The biomass of golden algae (Chrysophyceae) and Dinophyta positively correlated with the mineralization. Quantitative regression analysis confirmed the close relationship between the total biomass of phytoplankton, hydrophysical and hydrochemical parameters. Besides the importance of scientific data on biological diversity and ecology of plankton algae, the results we obtained are necessary for organizing biological monitoring in the delta of the Mekong River in the future
Optical novae: the major class of supersoft X-ray sources in M 31
We searched for X-ray counterparts of optical novae detected in M 31 and M
33. We combined an optical nova catalogue from the WeCAPP survey with optical
novae reported in the literature and correlated them with the most recent X-ray
catalogues from ROSAT, XMM-Newton and Chandra, and - in addition - searched for
nova correlations in archival data. We report 21 X-ray counterparts for novae
in M 31 - mostly identified as supersoft sources (SSS) by their hardness ratios
- and two in M 33. Our sample more than triples the number of known optical
novae with supersoft X-ray phase. Most of the counterparts are covered in
several observations allowing us to constrain their X-ray light curves.
Selected brighter sources were classified by their XMM-Newton EPIC spectra. We
use the well determined start time of the SSS state in two novae to estimate
the hydrogen mass ejected in the outburst to ~10^{-5}M_sun and ~10^{-6}M_sun,
respectively. The supersoft X-ray phase of at least 15% of the novae starts
within a year. At least one of the novae shows a SSS state lasting 6.1 years
after the optical outburst. Six of the SSSs turned on between 3 and 9 years
after the optical discovery of the outburst and may be interpreted as recurrent
novae. If confirmed, the detection of a delayed SSS phase turn-on may be used
as a new method to classify novae as recurrent. At the moment, the new method
yields a ratio of recurrent novae to classical novae of 0.3 which is in
agreement (within the errors) with previous works.Comment: 16 pages, 7 figures, A&A revised version, 1 nova in M33 added,
restructured discussion, summary and conclusion
Minigap, Parity Effect and Persistent Currents in SNS Nanorings
We have evaluated a proximity-induced minigap in the density of states (DOS)
of SNS junctions and SNS nanorings at an arbitrary concentration of
non-magnetic impurities. We have demonstrated that an isotropic energy minigap
in the electron spectrum opens up already at arbitrarily weak disorder, while
angle resolved DOS at higher energies can remain strongly anisotropic. The
minigap value can be tuned by passing a supercurrent through an
SNS junction or by applying a magnetic flux to an SNS ring. A
non-monotonous dependence of on has been found at weak
disorder. We have also studied persistent currents in isolated SNS nanorings.
For odd number of electrons in the ring we have found a non-trivial
current-phase (current-flux) relation which -- at relatively high disorder --
may lead to a -junction state and spontaneous currents in the ground state
of the system.Comment: 7 pages, 8 figure
Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics
Protein filaments are used in myriads of ways to organize other molecules within cells. Some filament-forming proteins couple the hydrolysis of nucleotides to their polymerization cycle, thus powering the movement of other molecules. These filaments are termed cytomotive. Only members of the actin and tubulin protein superfamilies are known to form cytomotive filaments. We examined the basis of cytomotivity via structural studies of the polymerization cycles of actin and tubulin homologs from across the tree of life. We analyzed published data and performed structural experiments designed to disentangle functional components of these complex filament systems. Our analysis demonstrates the existence of shared subunit polymerization switches among both cytomotive actins and tubulins, i.e., the conformation of subunits switches upon assembly into filaments. These cytomotive switches can explain filament robustness, by enabling the coupling of kinetic and structural polarities required for cytomotive behaviors and by ensuring that single cytomotive filaments do not fall apart
- …