106 research outputs found

    Electrophysiological findings in cortical blindness. Report of a case,

    Full text link
    Spontaneous cerebral activity and visual evoked responses have been described in a patient with post-traumatic cortical blindness who was studied over a period of 4 weeks. The resting occipital pattern was extremely small in amplitude but composed of frequencies largely within the normal alpha range. No evidence of light-induced alpha blocking could be detected. Averaged evoked responses derived from leads placed over the occipital poles were abnormal, in that they were rudimentary and inconsistent, none of the normal initial 5 waves being identifiable with certainty. The presence of a light-evoked, prominent vertex wave, dissimilar from that evoked by sound, was noteworthy in view of the virtual absence of an occipital response and severity of visual deficit.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33470/1/0000875.pd

    How Bodies and Voices Interact in Early Emotion Perception

    Get PDF
    Successful social communication draws strongly on the correct interpretation of others' body and vocal expressions. Both can provide emotional information and often occur simultaneously. Yet their interplay has hardly been studied. Using electroencephalography, we investigated the temporal development underlying their neural interaction in auditory and visual perception. In particular, we tested whether this interaction qualifies as true integration following multisensory integration principles such as inverse effectiveness. Emotional vocalizations were embedded in either low or high levels of noise and presented with or without video clips of matching emotional body expressions. In both, high and low noise conditions, a reduction in auditory N100 amplitude was observed for audiovisual stimuli. However, only under high noise, the N100 peaked earlier in the audiovisual than the auditory condition, suggesting facilitatory effects as predicted by the inverse effectiveness principle. Similarly, we observed earlier N100 peaks in response to emotional compared to neutral audiovisual stimuli. This was not the case in the unimodal auditory condition. Furthermore, suppression of beta–band oscillations (15–25 Hz) primarily reflecting biological motion perception was modulated 200–400 ms after the vocalization. While larger differences in suppression between audiovisual and audio stimuli in high compared to low noise levels were found for emotional stimuli, no such difference was observed for neutral stimuli. This observation is in accordance with the inverse effectiveness principle and suggests a modulation of integration by emotional content. Overall, results show that ecologically valid, complex stimuli such as joined body and vocal expressions are effectively integrated very early in processing

    From upright to upside-down presentation: A spatio-temporal ERP study of the parametric effect of rotation on face and house processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While there is a general agreement that picture-plane inversion is more detrimental to face processing than to other seemingly complex visual objects, the origin of this effect is still largely debatable. Here, we address the question of whether face inversion reflects a quantitative or a qualitative change in processing mode by investigating the pattern of event-related potential (ERP) response changes with picture plane rotation of face and house pictures. Thorough analyses of topographical (Scalp Current Density maps, SCD) and dipole source modeling were also conducted.</p> <p>Results</p> <p>We find that whilst stimulus orientation affected in a similar fashion participants' response latencies to make face and house decisions, only the ERPs in the N170 latency range were modulated by picture plane rotation of faces. The pattern of N170 amplitude and latency enhancement to misrotated faces displayed a curvilinear shape with an almost linear increase for rotations from 0° to 90° and a dip at 112.5° up to 180° rotations. A similar discontinuity function was also described for SCD occipito-temporal and temporal current foci with no topographic distribution changes, suggesting that upright and misrotated faces activated similar brain sources. This was confirmed by dipole source analyses showing the involvement of bilateral sources in the fusiform and middle occipital gyri, the activity of which was differentially affected by face rotation.</p> <p>Conclusion</p> <p>Our N170 findings provide support for both the quantitative and qualitative accounts for face rotation effects. Although the qualitative explanation predicted the curvilinear shape of N170 modulations by face misrotations, topographical and source modeling findings suggest that the same brain regions, and thus the same mechanisms, are probably at work when processing upright and rotated faces. Taken collectively, our results indicate that the same processing mechanisms may be involved across the whole range of face orientations, but would operate in a non-linear fashion. Finally, the response tuning of the N170 to rotated faces extends previous reports and further demonstrates that face inversion affects perceptual analyses of faces, which is reflected within the time range of the N170 component.</p

    Do prefrontal midline electrodes provide unique neurophysiologic information in Major Depressive Disorder?

    Full text link
    Brain oscillatory activity from the midline prefrontal region has been shown to reflect brain dysfunction in subjects with Major Depressive Disorder (MDD). It is not known, however, whether electrodes from this area provide unique information about brain function in MDD. We examined a set of midline sites and two other prefrontal locations for detecting cerebral activity differences between subjects with MDD and healthy controls. Resting awake quantitative EEG (qEEG) data were recorded from 168 subjects: 47 never-depressed adults and 121 with a current major depressive episode. Individual midline electrodes (Fpz, Fz, Cz, Pz, and Oz) and prefrontal electrodes outside the hairline (Fp1, Fp2) were examined with absolute and relative power and cordance in the theta band. We found that MDD subjects exhibited higher values of cordance (p = 0.0066) at Fpz than controls; no significant differences were found at other locations, and power measures showed trend-level differences. Depressed adults showed higher midline cordance than did never-depressed subjects at the most-anterior midline channel. Salient abnormalities in MDD may be detectable by focusing on the prefrontal midline region, and EEG metrics from focused electrode arrays may offer clinical practicality for clinical monitoring

    Molluscan mitochondrial genomes break the rules

    Get PDF
    The first animal mitochondrial genomes to be sequenced were of several vertebrates and model organisms, and the consistency of genomic features found has led to a 'textbook description'. However, a more broad phylogenetic sampling of complete animal mitochondrial genomes has found many cases where these features do not exist, and the phylum Mollusca is especially replete with these exceptions. The characterization of full mollusc mitogenomes required considerable effort involving challenging molecular biology, but has created an enormous catalogue of surprising deviations from that textbook description, including wide variation in size, radical genome rearrangements, gene duplications and losses, the introduction of novel genes, and a complex system of inheritance dubbed 'doubly uniparental inheritance'. Here, we review the extraordinary variation in architecture, molecular functioning and intergenerational transmission of molluscan mitochondrial genomes. Such features represent a great potential for the discovery of biological history, processes and functions that are novel for animal mitochondrial genomes. This provides a model system for studying the evolution and the manifold roles that mitochondria play in organismal physiology, and many ways that the study of mitochondrial genomes are useful for phylogeny and population biology. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'

    Patterns of seizure occurence in catamenial epilepsy

    No full text
    The pattern of seizure occurrence was analysed over 44 menstrual cycles in 12 epileptic women who considered they had menstrually related seizures. Two peaks in the daily seizure rate were apparent. A significant increase in seizures occurred during the days of menstrual flow and the two days preceding it, with a second peak in the four days at midcycle. The lowest seizure rate was in the late phase of the menstrual cycle. Daily salivary progesterone levels were assayed in 11 women, and 12 ovulatory and eight anovulatory cycles were identified on this basis. No increase in seizures occurred at midcycle if ovulation did not occur, but the perimenstrual increase took place irrespective of ovulatory status
    • …
    corecore