10 research outputs found

    A wavelet-based method to measure the toroidal mode number of ELMs

    Get PDF
    The high confinement mode regime (H-mode) in tokamaks is accompanied by the occurrence of burst of MHD activity at the plasma edge, so-called edge localized modes (ELMs). Because of the short time scales involved in the ELM crash (on JET typically 0.2 ms), standard Fourier analysis can hardly be used to extract their toroidal mode number. On the other hand, the assessment of linear stability of ELMs with the ion drift effects included, makes the identification of their toroidal mode numbers an important issue, while an accurate comparison with the theory of nonlinear evolution of ELMs requires the knowledge of the nonlinear spectrum. Compared to Fourier analysis, wavelets are suitable to study transient events on time scales comparable to the wave period. Spectral analysis based on sinusoidal wavelet functions has been applied to study the spectral properties of magnetic perturbations associated with ELMs and with their precursors, in JET plasmas with toroidal rotation driven by unbalanced NBI. It is shown that, combining wavelet analysis with statistical two-point correlation techniques, it is possible to get information on the toroidal mode number structure of magnetic perturbations during the phases that immediately precede the ELM and during the ELM crash itself

    Aerodynamic investigations of ventilated brake discs.

    Get PDF
    The heat dissipation and performance of a ventilated brake disc strongly depends on the aerodynamic characteristics of the flow through the rotor passages. The aim of this investigation was to provide an improved understanding of ventilated brake rotor flow phenomena, with a view to improving heat dissipation, as well as providing a measurement data set for validation of computational fluid dynamics methods. The flow fields at the exit of four different brake rotor geometries, rotated in free air, were measured using a five-hole pressure probe and a hot-wire anemometry system. The principal measurements were taken using two-component hot-wire techniques and were used to determine mean and unsteady flow characteristics at the exit of the brake rotors. Using phase-locked data processing, it was possible to reveal the spatial and temporal flow variation within individual rotor passages. The effects of disc geometry and rotational speed on the mean flow, passage turbulence intensity, and mass flow were determined. The rotor exit jet and wake flow were clearly observed as characterized by the passage geometry as well as definite regions of high and low turbulence. The aerodynamic flow characteristics were found to be reasonably independent of rotational speed but highly dependent upon rotor geometry

    Experimental study of the ion critical-gradient length and stiffness level and the impact of rotation in the JET tokamak

    No full text
    Experiments were carried out in the JET tokamak to determine the critical ion temperature inverse gradient length (R/L-Ti = R vertical bar del T-i vertical bar/T-i) for the onset of ion temperature gradient modes and the stiffness of Ti profiles with respect to deviations from the critical value. Threshold and stiffness have been compared with linear and nonlinear predictions of the gyrokinetic code GS2. Plasmas with higher values of toroidal rotation show a significant increase in R/L-Ti, which is found to be mainly due to a decrease of the stiffness level. This finding has implications on the extrapolation to future machines of present day results on the role of rotation on confinement

    Experimental study of the ion critical-gradient length and stiffness level and the impact of rotation in the JET tokamak

    No full text
    Experiments were carried out in the JET tokamak to determine the critical ion temperature inverse gradient length (R/L-Ti = R vertical bar del T-i vertical bar/T-i) for the onset of ion temperature gradient modes and the stiffness of Ti profiles with respect to deviations from the critical value. Threshold and stiffness have been compared with linear and nonlinear predictions of the gyrokinetic code GS2. Plasmas with higher values of toroidal rotation show a significant increase in R/L-Ti, which is found to be mainly due to a decrease of the stiffness level. This finding has implications on the extrapolation to future machines of present day results on the role of rotation on confinement

    Recent experiments on Alfven eigenmodes in MAST

    No full text
    The developments of advanced tokamak scenarios as well as the employment of a new neutral beam injection (NBI) source with higher power and beam energy up to approximate to 65 keV have significantly broadened the frequency range and the variety of Alfven eigenmodes (AEs) excited by the super-Alfvenic NBI on the spherical tokamak MAST. During recent experiments on MAST, several distinct classes of beam-driven AEs have been identified, with different modes being most unstable in different MAST scenarios. In MAST discharges with elevated monotonic q(r)-profiles and NBI power >= 3MW, chirping modes starting in the frequency range <= 150 kHz decreased in frequency down to approximate to 20 kHz as q( 0) decreased and then smoothly transformed to long-living modes with a weakly-varying frequency and a n = 1 kink-mode structure. The bolometer data suggest that the long-living modes can be responsible for fast ion losses on MAST, while the charge-exchange data show that a coupling between these modes and other low-frequency modes can cause a collapse of toroidal plasma rotation with a subsequent disruption. In MAST discharges with reversed magnetic shear, Alfven cascade eigenmodes in the frequency range 40-180 kHz were observed at a moderate NBI power <= 2MW allowing an additional assessment of q(r)-profile evolution in time. A robust reproducible scenario was found on MAST, in which the instability of high-frequency modes in the range 0.4-3.8MHz and typically with negative toroidal mode numbers was dominating the spectrum of beam-driven AEs. Since the highest frequency of such modes is close to the on-axis ion cyclotron frequency and the polarization study of these modes show a significant parallel perturbed magnetic field, these modes are identified as compressional Alfven eigenmodes. For investigating the AE spectrum in plasmas with high beta, an active AE antenna has been installed on MAST. First measurements of stable AE modes in MAST have been performed successfully and are described here

    Alfven cascades in JET discharges with NBI-heating

    No full text
    Alfven cascade (AC) eigenmodes excited by energetic ions accelerated with ion-cyclotron resonance heating in JET reversed-shear discharges are studied experimentally in high-density plasmas fuelled by neutral beam injection (NBI) and by deuterium pellets. The recently developed O-mode interferometry technique and Mirnov coils are employed for detecting ACs. The spontaneous improvements in plasma confinement (internal transport barrier (ITB) triggering events) and grand ACs are found to correlate within 0.2 s in JET plasmas with densities up to similar to 5 x 10(19) m(-3). Measurements with high time resolution show that ITB triggering events happen before 'grand' ACs in the majority of JET discharges, indicating that this improvement in confinement is likely to be associated with the decrease in the density of rational magnetic surfaces just before q(min) (0 passes an integer value. Experimentally observed ACs excited by sub-Alfvenic NBI-produced ions with parallel velocities as low as V-parallel to NBI approximate to . 0.2 . V-A are found to be most likely associated with the geodesic acoustic effect that significantly modifies the shear-Alfven dispersion relation at low frequency. Experiments were performed with a tritium NBI-blip (short time pulse) into JET plasmas with NBI-driven ACs. Although considerable NBI-driven AC activity was present, good agreement was found both in the radial profile and in the time evolution of DT neutrons between the neutron measurements and the TRANSP code modelling based on the Coulomb collision model, indicating the ACs have at most a small effect on fast particle confinement in this case

    Overview of physics results from MAST

    No full text
    Substantial advances have been made on the Mega Ampère Spherical Tokamak (MAST). The parameter range of the MAST confinement database has been extended and it now also includes pellet-fuelled discharges. Good pellet retention has been observed in H-mode discharges without triggering an ELM or an H/L transition during peripheral ablation of low speed pellets. Co-ordinated studies on MAST and DIII-D demonstrate a strong link between the aspect ratio and the beta scaling of H-mode energy confinement, consistent with that obtained when MAST data were merged with a subset of the ITPA database. Electron and ion ITBs are readily formed and their evolution has been investigated. Electron and ion thermal diffusivities have been reduced to values close to the ion neoclassical level. Error field correction coils have been used to determine the locked mode threshold scaling which is comparable to that in conventional aspect ratio tokamaks. The impact of plasma rotation on sawteeth has been investigated and the results have been well-modelled using the MISHKA-F code. Alfvén cascades have been observed in discharges with reversed magnetic shear. Measurements during off-axis NBCD and heating are consistent with classical fast ion modelling and indicate efficient heating and significant driven current. Central electron Bernstein wave heating has been observed via the O-X-B mode conversion process in special magnetically compressed plasmas. Plasmas with low pedestal collisionality have been established and further insight has been gained into the characteristics of filamentary structures at the plasma edge. Complex behaviour of the divertor power loading during plasma disruptions has been revealed by high resolution infra-red measurements

    Understanding disruptions in tokamaks

    No full text

    Ubiquity of non-diffusive momentum transport in JET H-modes

    No full text
    corecore