916 research outputs found

    The Effects of Different String Positions of the Bow on Right Scapular Kinematics in Experienced Violin Players

    Get PDF
    Shoulder health is vital to the ability of violinists to play their instruments, but poor posture is considered a major risk of injury to violin players. For those who perform professionally, shoulder injuries endanger their careers. Therefore, finding shoulder postures that promote shoulder endurance and health are important. To this aim, the purpose of this study is to examine the scapular kinematics involved in playing on different strings of the violin. Five college-aged experienced violin players (male=1, female=4) with no recent history of shoulder surgery or severe shoulder pain volunteered to participate in this study. Kinematic sensors were placed on the sternum, humerus, and scapular spine. Participants played through three musical passages with varying string position requirements, during which data was collected on scapular kinematics. One musical passage required playing on the low-pitched strings, which involved an elevated right arm; another required playing on the high-pitched strings, which involves a lowered right arm; the third passage combined low- and high-pitched notes. Scapular upward rotation and anterior tilt were statistically significantly different between the low-pitch passage and high-pitch passage (p0.05 for all). When playing on the lower-pitch strings, the scapula is more upwardly rotated but less anteriorly tilted than when playing on the higher-pitch strings. However, the speed of transition between string positions does not affect scapular kinematics

    Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis

    Get PDF
    Background: The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. Results: WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil. Conclusions: Whether these teratogenic effects are unique to the oil from the Deepwater Horizon oil spill or generalizable for most crude oil types remains to be determined. This work establishes a model for further investigation into the molecular mechanisms behind crude oil mediated deformations. In addition, due to the high conservation of genetic and cellular processes between zebrafish and other vertebrates, our work also provides a platform for more focused assessment of the impact that the Deepwater Horizon oil spill has had on the early life stages of native fish species in the Gulf of Mexico and the Atlantic Ocean

    MatrixDB, a database focused on extracellular protein–protein and protein–carbohydrate interactions

    Get PDF
    Summary: MatrixDB (http://matrixdb.ibcp.fr) is a database reporting mammalian protein–protein and protein–carbohydrate interactions involving extracellular molecules. It takes into account the full interaction repertoire of the extracellular matrix involving full-length molecules, fragments and multimers. The current version of MatrixDB contains 1972 interactions corresponding to 4412 experiments and involving 259 extracellular biomolecules

    The Impact of the Prior Density on a Minimum Relative Entropy Density: A Case Study with SPX Option Data

    Full text link
    We study the problem of finding probability densities that match given European call option prices. To allow prior information about such a density to be taken into account, we generalise the algorithm presented in Neri and Schneider (2011) to find the maximum entropy density of an asset price to the relative entropy case. This is applied to study the impact the choice of prior density has in two market scenarios. In the first scenario, call option prices are prescribed at only a small number of strikes, and we see that the choice of prior, or indeed its omission, yields notably different densities. The second scenario is given by CBOE option price data for S&P500 index options at a large number of strikes. Prior information is now considered to be given by calibrated Heston, Schoebel-Zhu or Variance Gamma models. We find that the resulting digital option prices are essentially the same as those given by the (non-relative) Buchen-Kelly density itself. In other words, in a sufficiently liquid market the influence of the prior density seems to vanish almost completely. Finally, we study variance swaps and derive a simple formula relating the fair variance swap rate to entropy. Then we show, again, that the prior loses its influence on the fair variance swap rate as the number of strikes increases.Comment: 24 pages, 2 figure

    Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information

    Get PDF
    Theoretical and experimental studies suggest that oscillatory modes of processing play an important role in neuronal computations. One well supported idea is that the net excitatory input during oscillations will be reported in the phase of firing, a ‘rate-to-phase transform’, and that this transform might enable a temporal code. Here, we investigate the efficiency of this code at the level of fundamental single cell computations. We first develop a general framework for the understanding of the rate-to-phase transform as implemented by single neurons. Using whole cell patch-clamp recordings of rat hippocampal pyramidal neurons in vitro, we investigated the relationship between tonic excitation and phase of firing during simulated theta frequency (5 Hz) and gamma frequency (40 Hz) oscillations, over a range of physiological firing rates. During theta frequency oscillations, the phase of the first spike per cycle was a near-linear function of tonic excitation, advancing through a full 180 deg, from the peak to the trough of the oscillation cycle as excitation increased. In contrast, this relationship was not apparent for gamma oscillations, during which the phase of firing was virtually independent of the level of tonic excitatory input within the range of physiological firing rates. We show that a simple analytical model can substantially capture this behaviour, enabling generalization to other oscillatory states and cell types. The capacity of such a transform to encode information is limited by the temporal precision of neuronal activity. Using the data from our whole cell recordings, we calculated the information about the input available in the rate or phase of firing, and found the phase code to be significantly more efficient. Thus, temporal modes of processing can enable neuronal coding to be inherently more efficient, thereby allowing a reduction in processing time or in the number of neurons required
    corecore