72 research outputs found

    Group entropies, correlation laws and zeta functions

    Full text link
    The notion of group entropy is proposed. It enables to unify and generalize many different definitions of entropy known in the literature, as those of Boltzmann-Gibbs, Tsallis, Abe and Kaniadakis. Other new entropic functionals are presented, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium, when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.Comment: to appear in Physical Review

    Luminescence tuning of MOFs via ligand to metal and metal to metal energy transfer by co-doping of 2∞[Gd2Cl6(bipy)3]*2bipy with europium and terbium

    Get PDF
    The series of anhydrous lanthanide chlorides LnCl3, Ln=Pr–Tb, and 4,4'-bipyridine (bipy) constitute isotypic MOFs of the formula 2∞[Ln2Cl6(bipy)3]*2bipy. The europium and terbium containing compounds both exhibit luminescence of the referring trivalent lanthanide ions, giving a red luminescence for Eu3+ and a green luminescence for Tb3+ triggered by an efficient antenna effect of the 4,4'-bipyridine linkers. Mixing of different lanthanides in one MOF structure was undertaken to investigate the potential of this MOF system for colour tuning of the luminescence. Based on the gadolinium containing compound, co-doping with different amounts of europium and terbium proves successful and yields solid solutions of the formula 2∞[Gd2-x-yEuxTbyCl6(bipy)3]*2bipy (1–8), 0≤x, y≤0.5. The series of MOFs exhibits the opportunity of tuning the emission colour in-between green and red. Depending on the atomic ratio Gd:Eu:Tb, the yellow region was covered for the first time for an oxygen/carboxylate-free MOF system. In addition to a ligand to metal energy transfer (LMET) from the lowest ligand-centered triplet state of 4,4'-bipyridine, a metal to metal energy transfer (MMET) between 4f-levels from Tb3+ to Eu3+ is as well vital for the emission colour. However, no involvement of Gd3+ in energy transfers is observed rendering it a suitable host lattice ion and connectivity centre for diluting the other two rare earth ions in the solid state. The materials retain their luminescence during activation of the MOFs for microporosity

    Homoleptic imidazolate frameworks (3)(infinity)[Sr1-xEux(Im)(2)]-hybrid materials with efficient and tuneable luminescence.

    Get PDF
    Homoleptic frameworks of the formula 3∞[Sr1−xEux(Im)2] (1) x = 0.01–1.0; Im− = imidazolate anion, C3H3N2−) are hybrid materials that exhibit an intensive green luminescence. Tuning of both emission wavelength and quantum yield is achieved by europium/strontium substitution so that a QE of 80% is reached at a Eu content of 5%. Even 100% pure europium imidazolate still shows 60% absolute quantum efficiency. Substitution of Sr/Eu shows that doping with metal cations can also be utilized for coordination compounds to optimize materials properties. The emission is finely tuneable in the region 495–508 nm via variation of the europium content. The series of frameworks 3∞[Sr1−xEux(Im)2] presents dense MOFs with the highest quantum yields reported for MOFs so far

    QDMR: a quantitative method for identification of differentially methylated regions by entropy

    Get PDF
    DNA methylation plays critical roles in transcriptional regulation and chromatin remodeling. Differentially methylated regions (DMRs) have important implications for development, aging and diseases. Therefore, genome-wide mapping of DMRs across various temporal and spatial methylomes is important in revealing the impact of epigenetic modifications on heritable phenotypic variation. We present a quantitative approach, quantitative differentially methylated regions (QDMRs), to quantify methylation difference and identify DMRs from genome-wide methylation profiles by adapting Shannon entropy. QDMR was applied to synthetic methylation patterns and methylation profiles detected by methylated DNA immunoprecipitation microarray (MeDIP-chip) in human tissues/cells. This approach can give a reasonable quantitative measure of methylation difference across multiple samples. Then DMR threshold was determined from methylation probability model. Using this threshold, QDMR identified 10 651 tissue DMRs which are related to the genes enriched for cell differentiation, including 4740 DMRs not identified by the method developed by Rakyan et al. QDMR can also measure the sample specificity of each DMR. Finally, the application to methylation profiles detected by reduced representation bisulphite sequencing (RRBS) in mouse showed the platform-free and species-free nature of QDMR. This approach provides an effective tool for the high-throughput identification of potential functional regions involved in epigenetic regulation

    Understanding the electromagnetic interaction of metal organic framework reactants in aqueous solution at microwave frequencies

    Get PDF
    Preparation of metal organic frameworks (MOFs) via microwave heating is becoming increasingly popular due to reduced reaction times and enhanced control of MOF particle size. However, there is little understanding about the detailed interaction of the electric field portion of the wave with reactants during the synthesis of MOFs. In order to overcome this lack of fundamental understanding, information about the dielectric properties of the reactants is required. In this work the dielectric constants (ε′) and loss factors (ε′′) of benzene-1,4-dicarboxylic acid (H2BDC; also known as terephthalic acid) and a number of M(III) (M = metal) salts dissolved in deionized water were measured as a function of frequency, temperature and concentration and with varying anions and cations. Dielectric data confirm the aqueous M(III) salts to be strong microwave absorbers, particularly at 915 MHz. M(III) salts with mono-anionic ligands (for example chlorides and nitrates) exhibit higher losses than di-anionic salts (sulfates) demonstrating that the former are heated more effectively in an applied microwave field. Of the M(III) salts containing either singly- or doubly-charged anions, those containing Fe(III) have the highest loss indicating that they will heat more efficiently than other M(III) salts such as Cr(III) and Al(III). Interestingly, H2BDC exhibits little interaction with the electric field at microwave frequencies

    Adsorption of Elemental Mercury on the Residual Carbon in Coal Fly Ash

    No full text

    Evaluation of an Automated Truck Wash Modified with a Two-Stage Decontamination System for Sanitizing Transport Trucks At Large Farms or Animal Contaminant Facilities

    No full text
    An automated truck wash study was conducted at a large layer hen facility to determine the effectiveness of a modified decontamination system for sanitizing semi-trucks and other farm vehicles. The commercial automated power washing system was modified with a fixed gantry that applied a chlorine dioxide (ClO2) disinfectant rinse as the truck exited the biosecurity facility. The truck decontamination study included the primary study plus one smaller Bacillus atrophaeus spore study, as well as air and water sampling. The goal of the field study was to determine the effectiveness of a two-stage automated decontamination system for sanitizing a large, semi-tractor trailer. The primary study objective was to evaluate two power washing techniques (power wash only with a surfactant or power wash with surfactant and a ClO2 rinse). The second objective was to evaluate the decontamination methods on four coupon materials (glass, painted metal, plastic, rubber) to determine the effectiveness of the two-stage wash system on inoculated coupons. The third objective was to determine the effectiveness of the decontamination methods on coupon locations on the truck (front windshield, middle side of trailer, undercarriage). The fourth objective was to determine the effectiveness of the decontamination methods on coupon surface type (coupons coated with or without synthetic grime). The primary study evaluated 48 decontamination treatments to assess their ability to inactivate the MS2 bacteriophage, which is the viral surrogate selected for the study. The results show that the two-stage decontamination treatments increased log10 reduction of the MS2 phage. Log10 reduction increased an average of 247% and 118% for the non-grimed and grimed coupons, respectively, when comparing the automated wash with and without ClO2 rinse across all locations and material types. The average log10 reduction increased from 0.94 to 1.89 for the automated wash and the automated wash + ClO2 rinse, respectively, for the grimed coupons, across all coupon locations and materials. The average log10 reduction increased from 1.23 to 2.17 for the automated wash without ClO2 and the automated wash + ClO2 rinse, respectively, for the non-grimed coupons, across all coupon locations and materials. These results show that combining the ClO2 disinfectant rinse with the automated power wash increased viral efficacy by an average of one log (grimed coupons). Evaluation of the two-stage tuck decontamination system confirms that combining a power wash with a disinfectant rinse increases the ability of the system to sanitize transport trucks and increase farm biosecurity.

    Limiting Wind-Induced Resuspension of Radioactively Contaminated Particles to Enhance First Responder, Early Phase Worker and Public Safety—Part 1

    No full text
    An accidental radiological release or the operation of a radiological dispersal device (RDD) may lead to the contamination of a large area. Such scenarios may lead to health and safety risks associated with the resuspension of contaminated particles due to aeolian (wind-induced) soil erosion and tracking activities. Stabilization technologies limiting resuspension are therefore needed to avoid spreading contamination and to reduce exposures to first responders and decontamination workers. Resuspension testing was performed on soils from two sites of the Negev Desert following treatment with three different stabilization materials: calcium chloride, magnesium chloride, and saltwater from the Dead Sea in Israel. Two and six weeks post-treatment, resuspension was examined by inducing wind-driven resuspension and quantitatively measuring particle emission from the soils using a boundary-layer wind tunnel system. Experiments were conducted under typical wind velocities of this region. Treating the soils reduced resuspension fluxes of particulate matter 10) and saltating (sand-sized) particles to around background levels. Resuspension suppression efficiencies from the treated soils were a minimum of 94% for all three stabilizers, and the Dead Sea salt solution yielded 100% efficiency over all wind velocities tested. The impact of the salt solutions (brine) was directly related to the salt treatment rather than the wetting of the soils. Stabilization was still observed six weeks post-treatment, supporting that this technique can effectively limit resuspension for a prolonged duration, allowing sufficient time for decision making and management of further actions
    • …
    corecore