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Homoleptic frameworks of the formula 3
N[Sr1�xEux(Im)2] (1)

(x = 0.01–1.0; Im�= imidazolate anion, C3H3N2
�) are hybrid

materials that exhibit an intensive green luminescence. Tuning of

both emission wavelength and quantum yield is achieved by

europium/strontium substitution so that a QE of 80% is reached

at a Eu content of 5%. Even 100% pure europium imidazolate

still shows 60% absolute quantum efficiency. Substitution of

Sr/Eu shows that doping with metal cations can also be utilized

for coordination compounds to optimize materials properties.

The emission is finely tuneable in the region 495–508 nm via

variation of the europium content. The series of frameworks
3
N[Sr1�xEux(Im)2] presents dense MOFs with the highest

quantum yields reported for MOFs so far.

Framework and MOF chemistry1 have attracted attention, as

interesting properties were reported like conductivity,2 catalytic

effects,3 luminescence4 and porosity.5 They are mainly known

for oxygen coordinating ligands, mostly metal carboxylates6

which include the alkaline earth and 4f elements.7 Because of

the oxophilicity of lanthanides oxygen-free multi-dimensional

coordination networks are rarely found except for a few rare

earth imidazolates and triazolates.8 Among transition metals

the imidazole ring system is of exceptional interest together

with several 3d metals as they adopt zeolite structures (ZIFs)9

that can be used for sorption and gas separation. Different

from many solid state phosphors, coordination compounds

can exhibit luminescence by metal ions although they contain

100% luminescence centres.10 An expected quenching by

concentration is suppressed by ligand shielding. They are

furthermore interesting luminescent hybrid materials, as

emission can be achieved either via a fluorescence of the

ligand system11 or the metal centres, mainly by the use of

lanthanides.4 The excitation can benefit from antenna effects,

viz. the ligand system is excited primarily followed by a

transfer of the energy to the luminescence centres.12 However

there are only little coordination compounds for which effective

emission characterized by high quantum efficiencies has been

reported.4,11,13 Mostly, no quantum yields were determined,

although luminescence becomes important for MOFs concerning

sensoring and lighting from UV to near IR.14,15

We now report a series of homoleptic imidazolate frameworks

containing divalent strontium and europium that shows an

exceptional combination of properties: an effective luminescence

with the highest quantum yield reported for coordination poly-

mers today, together with multiple excitation options including

excitation maxima at the applicationally important wavelengths

370 and 460 nm (for Hg and blue LED excitation). The emission

can be finely tuned in the region 495–508 nm (blue-green to

green) via variation of the Eu content (Fig. 1). Furthermore a

low quenching by concentration is observed, combined to a high

thermal stability of the frameworks up to 530 1C.
3
N[Sr1�xEux(Im)2] (x = 0.01–1.0; Im�= imidazolate anion,

C3H3N2
�) (1) are obtained by reactions of the metals europium

and strontium together with a melt of the ligand 1H-imidazole

in excellent yields up to 90%.y Solvent free reaction conditions

avoid co-coordination of solvent molecules and drive the system

towards homoleptic products.16 Strontium and europium form

isotypic compounds that allow complete mixing throughout all

molar ratios as the two ions Sr2+ and Eu2+ have almost

identical ionic radii.17 Also the monometallic frameworks
3
N[Sr(Im)2] (2) and

3
N[Eu(Im)2] (1) were prepared, corroborated

by single crystal X-ray and powder diffraction. Although an

oxidation to Eu3+ could be expected, the reaction finishes at a

metal to ligand ratio of 1 : 2. Even upon excess of imidazole

no reaction to Eu3+ is observed until decomposition.z For

combination of Eu and Sr the ratio of the two metals can be

setup and controlled by the use of liquid ammonia. Both metals

dissolve under formation of ammonia complexes and electride

solutions, so that perfect mixing on the atomic level is

Fig. 1 Selected and normalized excitation and emission spectra of
3
N[Sr1�xEux(Im)2] (1) (x=0.05–1.0) in comparison to BaMgAl10O17 : Eu,

Mn as reference phosphor.
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achieved.188 3
N[Sr1�xEux(Im)2] form at 160 1C. Excess imidazole

can be evaporated with the MOFs being stable up to 530 1C.z
In addition to 1 and 2 further Eu/Sr imidazolates were

obtained. Imidazole containing networks of the formula
2
N[Sr1�xEux(Im)2(ImH)2] can be obtained at lower

temperatures. Evidence is given again by X-ray single crystal

diffraction of 2
N[Eu(Im)2(ImH)2] (3) and powder diffraction

for Sr/Eu combinations. Alike HO– groups, HN– groups are

known to function as quenchers. Accordingly, 3 is not a

luminescent material and no emission is observed.

Luminescence of the series 3
N[Sr1�xEux(Im)2] (1) is based on a

broad band excitation that ranges from l = 250 nm to

460 nm. Independent from the europium content excitation via

the imidazolate ligands is possible with excitation maxima at

270 and 366 nm.With an increasing europium content additional

excitation maxima emerge at 345 and 450 nm. Thus both Eu and

the ligand as an antenna effect can be used for excitation. For

ligand excitation the energy is then transferred to the Eu

ions. Emission is observed from europium centres only. Both
3
N[Sr(Im)2] (2) and 1H-imidazole were also investigated and

neither displays a referring emission.** The broad emission

band in 1 is typical for divalent europium as observed for

SrSi2O2N2 : Eu
2+ and Sr2Si5N8 : Eu

2+.19 Emission derives from

transitions between the 5d energy levels and the 4f8S7/2 levels.

Different from4f–4f transitionsofEu3+ these transitions areparity

allowed, therefore strong in intensity, and influenced by the

chemical surrounding by inclusion of the Eu 5d levels into

the process.20 For imidazolate this results in an emission of 1 in the

green region. Participation of Eu3+ in the emission can be excluded

as the typical line emission 5D4 to the 7FJ states is not observed.
20

The emission maximum can be finely tuned by the content

of europium over 14 nm and range from 495 nm for 1% Eu to

508 nm for 100% Eu and results in a pronounced shift of

the colour points and thereby of the emission colour from

blue green to bright green according to CIE (Commission

Internationale de l’Eclairage).21 Most efficient emission is

observed for Sr : Eu = 95 : 5 with a quantum yield of about

80% (lexc = 366 nm, see Table 1).** This is in the region

of commercial phosphors like BaMgAl10O17 : Eu:

QE = 80–85%, Zn2SiO4 : Mn: 75–80%, YVO4 : Eu:

65–70%, lexc = 254 nm,19 higher than the peak of the known

Eu coordination compounds [Eu(nta)3(dmso)2]
22 and twice as

high as GWMOF-6,15,22 the MOF with the so far highest

quantum yield (QE = 39%). Even for 100% Eu and no

Sr content the quantum yield still is 60% for an excitation at

450 nm (blue LED). It is also remarkable that these quantum

yields were determined for room temperature and not for low

temperatures. Altogether 1 could be interesting even for solid

lighting as a green phosphor component for a pcLED.

The complete series 3
N[Sr1�xEux(Im)2] (1) and

3
N[Sr(Im)2] (2)

crystallize isotypic in the monoclinic space group C2/c.ww This is

responsible for an isopointal exchange of Eu vs. Sr and the

excellent doping possibilities. The metal ions are coordinated by

six nitrogen atoms of six imidazolate anions. The imidazolate

anions are committed in a m3-Z1:Z1:Z1 coordination mode and

coordinated by three metal ions. Each Sr/EuN6 polyhedron is

edge connected to two other polyhedra. This results in zig-zag

chains of polyhedra that are interlinked via nitrogen atoms of the

imidazolate ligands in the (a, b) plane to give 3D-framework

structures (see Fig. 2). The overall structure is a dense framework.

DistancesM(Sr,Eu)–N of 1 range from 259.3(4) to 268.8(5) pm

and are in the expected region for EuII.17 Additionally, an offset

p-stacking is observed for each imidazolate ligand to a neighbouring

aromatic ring. The distance between the centroids of neighbouring

rings is only 277.4 pm, shorter than in molecular coordination

compounds with N-heterocycles.23 According to Hunter and

Sanders and the shift between both rings it can be classified as an

electrostatic interaction,24 which is in good accordance to the Lewis

acidic ionic character of Eu/Sr. The short ring distance is a result of

a decrease in the electron density of the p-systems and of the

electrostatic ring distraction. We believe p-stacking also influences

the luminescence, but this effect and the low quenching by

concentration cannot be fully interpreted by the literature.25

Prior to formation of 1 and 2, another Eu containing

imidazolate was isolated at lower temperatures.y Different from

1 and 2 this compound exhibits a 2D network structure of the

formula 2
N[M(Im)2(ImH)2], M = Sr/Eu (3) and contains

imidazole ligands as interplanar end-on ligands. The Eu/Sr

atoms are octahedrally coordinated by N atoms, with the square

plane of the octahedron containing four m2-Z1:Z1-bridging

imidazolate anions and the caps being N atoms of end-on

imidazole molecules to form one layer of the structure. The next

layer shows a parallel offset so that the SnF4 structure type is

adopted (see Fig. 3). The Eu–N distances range from 258(2) to

265(2) pm being in the expected region for EuII.

3 is a low temperature phase in the system Sr/Eu/imidazole.

Upon thermal treatment it is converted into the homoleptic dense

MOF structure of 1. Conversion is combined to a stepwise release

of imidazoleandcanbeobservedwith thermalanalysis andpowder

Fig. 2 The crystal structure of the dense 3D-MOF 1 along [001] with

coordination polyhedra. H atoms omitted for clarity.

Table 1 Luminescence properties of 3
N[Sr1�xEux(Im)2] (1)8
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diffraction.zWith theNHgroups of the imidazolemolecules being

known quenchers, 3 does not show any luminescence.Accordingly

a suitable reaction temperature is vital to obtain the highly

luminescent hybrid materials 3
N[Sr1�xEux(Im)2] (1).

Notes and references

y Reactions of the 4f metal europium, and the alkaline earth metal
strontium with amine melts are redox reactions that give hydrogen gas in
addition to the amideproducts.16Detaileddescriptionon theExperimental
of 1–3 is found in the ESIz including the results of IR and CHN-analysis.
z The trivalent oxidation state is stable for Eu (E0

LnII/III = 0.35 V). But
reactions with 1H-imidazole stop at Eu2+, as proven by the lumines-
cence being characteristic for Eu2+. No further oxidation is observed
until decomposition at 530 1C. 1–3 are stable vs. dry air and vs.
normal air over six hours, after which hydrolysis is observed. Thermal
properties were determined by simultaneous DTA/TG and powder
diffraction. For detailed information please check the ESI.z
8 Mixingof themetals Sr andEu is essential for the luminescenceproperties
of1but limitedupongrinding.Theproblemisovercomebyactivationof the
metals by electride formation in liquidNH3.

16,18Themetals equallydissolve
under formation of ammine complexes [M(NH3)x]

2+18 and solvated
electrons identified by a dark blue solution. Upon removal of ammonia
themetals are reformed as very smallmetal particles that fairly improve the
mixing for the subsequent reaction with imidazole.
** Excitation of Eu2+ leads to population of the 4f65d1-level followed
by relaxation without emission to the t2g 4f65d1-level. Here emission
occurs to the 8S7/2 4f7 ground state. Because of coordination of the
imidazolate anions, lowering of the 5d levels in energy below the 6P
4f7-level occurs. Parity forbidden f–f transitions are therefore neglect-
able. In addition to the series of compounds 1, excitation and emission
spectra were also recorded for 3

N[Sr(Im)2] (2) and the ligand
1H-imidazole. The characteristic emission of 1 can neither be detected
for 2 nor for the free ligand. For further information, please see the ESI.z
ww Crystallographic data: for detailed crystallographic data on 1–3,
please refer to the ESIz including interatomic distances and angles.
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Fig. 3 The crystal structure of 3. Coordination polyhedra of two

different layers are marked in light grey and dark grey.
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