1,362 research outputs found

    Development of a triage protocol for patients presenting with gastrointestinal hemorrhage: a prospective cohort study

    Get PDF
    Abstract Introduction Many patients presenting with acute gastrointestinal hemorrhage (GIH) are admitted to the intensive care unit (ICU) for monitoring. A simple triage protocol based upon validated risk factors could decrease ICU utilization. Methods Records of 188 patients admitted with GIH from the emergency department (ED) were reviewed for BLEED criteria (visualized red blood, systolic blood pressure below 100 mm Hg, elevated prothrombin time [PT], erratic mental status, and unstable comorbid disease) and complication within the first 24 hours of admission. Variables associated with early complication were reassessed in 132 patients prospectively enrolled as a validation cohort. A triage model was developed using significant predictors. Results We studied 188 patients in the development set and 132 in the validation set. Red blood (relative risk [RR] 4.53, 95% confidence interval [CI] 2.04, 10.07) and elevated PT (RR 3.27, 95% CI 1.53, 7.01) were significantly associated with complication in the development set. In the validation cohort, the combination of red blood or unstable comorbidity had a sensitivity of 0.73, a specificity of 0.55, a positive predictive value of 0.24, and a negative predictive value of 0.91 for complication within 24 hours. In simulation studies, a triage model using these variables could reduce ICU admissions without increasing the number of complications. Conclusion Patients presenting to the ED with GIH who have no evidence of ongoing bleeding or unstable comorbidities are at low risk for complication during hospital admission. A triage model based on these variables should be tested prospectively to optimize critical care resource utilization in this common condition

    Universal role of correlation entropy in critical phenomena

    Get PDF
    In statistical physics, if we successively divide an equilibrium system into two parts, we will face a situation that, within a certain length ξ\xi, the physics of a subsystem is no longer the same as the original system. Then the extensive properties of the thermal entropy S(S(AB)=S()= S(A)+S()+S(B)) is violated. This observation motivates us to introduce the concept of correlation entropy between two points, as measured by mutual information in the information theory, to study the critical phenomena. A rigorous relation is established to display some drastic features of the non-vanishing correlation entropy of the subsystem formed by any two distant particles with long-range correlation. This relation actually indicates the universal role of the correlation entropy in understanding critical phenomena. We also verify these analytical studies in terms of two well-studied models for both the thermal and quantum phase transitions: two-dimensional Ising model and one-dimensional transverse field Ising model. Therefore, the correlation entropy provides us with a new physical intuition in critical phenomena from the point of view of the information theory.Comment: 10 pages, 9 figure

    Entropy Projection Curved Gabor with Random Forest and SVM for Face Recognition

    Get PDF
    In this work, we propose a workflow for face recognition under occlusion using the entropy projection from the curved Gabor filter, and create a representative and compact features vector that describes a face. Despite the reduced vector obtained by the entropy projection, it still presents opportunity for further dimensionality reduction. Therefore, we use a Random Forest classifier as an attribute selector, providing a 97% reduction of the original vector while keeping suitable accuracy. A set of experiments using three public image databases: AR Face, Extended Yale B with occlusion and FERET illustrates the proposed methodology, evaluated using the SVM classifier. The results obtained in the experiments show promising results when compared to the available approaches in the literature, obtaining 98.05% accuracy for the complete AR Face, 97.26% for FERET and 81.66% with Yale with 50% occlusion

    Five new real-time detections of Fast Radio Bursts with UTMOST

    Get PDF
    We detail a new fast radio burst (FRB) survey with the Molonglo Radio Telescope, in which six FRBs were detected between June 2017 and December 2018. By using a real-time FRB detection system, we captured raw voltages for five of the six events, which allowed for coherent dedispersion and very high time resolution (10.24 μ\mus) studies of the bursts. Five of the FRBs show temporal broadening consistent with interstellar and/or intergalactic scattering, with scattering timescales ranging from 0.16 to 29.1 ms. One burst, FRB181017, shows remarkable temporal structure, with 3 peaks each separated by 1 ms. We searched for phase-coherence between the leading and trailing peaks and found none, ruling out lensing scenarios. Based on this survey, we calculate an all-sky rate at 843 MHz of 9839+5998^{+59}_{-39} events sky1^{-1} day1^{-1} to a fluence limit of 8 Jy-ms: a factor of 7 below the rates estimated from the Parkes and ASKAP telescopes at 1.4 GHz assuming the ASKAP-derived spectral index α=1.6\alpha=-1.6 (FνναF_{\nu}\propto\nu^{\alpha}). Our results suggest that FRB spectra may turn over below 1 GHz. Optical, radio and X-ray followup has been made for most of the reported bursts, with no associated transients found. No repeat bursts were found in the survey.Comment: 13 pages, 11 figures, submitted to MNRA

    Semiclassical Theory of Coulomb Blockade Peak Heights in Chaotic Quantum Dots

    Full text link
    We develop a semiclassical theory of Coulomb blockade peak heights in chaotic quantum dots. Using Berry's conjecture, we calculate the peak height distributions and the correlation functions. We demonstrate that the corrections to the corresponding results of the standard statistical theory are non-universal and can be expressed in terms of the classical periodic orbits of the dot that are well coupled to the leads. The main effect is an oscillatory dependence of the peak heights on any parameter which is varied; it is substantial for both symmetric and asymmetric lead placement. Surprisingly, these dynamical effects do not influence the full distribution of peak heights, but are clearly seen in the correlation function or power spectrum. For non-zero temperature, the correlation function obtained theoretically is in good agreement with that measured experimentally.Comment: 5 color eps figure

    Feature selection for chemical sensor arrays using mutual information

    Get PDF
    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    An enhanced gas ionization sensor from Y-doped vertically aligned conductive ZnO nanorods

    Get PDF
    A stable and highly sensitive gas ionization sensor (GIS) constructed from vertically aligned, conductive yttrium–doped ZnO nanorod (YZO NR) arrays is demonstrated. The conductive YZO NRs are synthesized using a facile one-pot hydrothermal method. At higher Y/Zn molar ratio, the aspect ratio of the YZO NRs is increased from 11 to 25. Doping with yttrium atoms decreases the electrical resistivity of ZnO NRs more than 100 fold. GIS measurements reveal a 6-fold enhancement in the sensitivity accompanied with a significant reduction in breakdown voltage from the highly conductive YZO NRs. Direct correlations between the resistivity of the NRs and GIS characteristics are established

    Perception and valuations of community-based education and service by alumni at Makerere University College of Health Sciences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Training of health professionals can be deliberately structured to enhance rural recruitment by exposing the trainees to the realities of rural life and practice through Community-Based Education and Service (COBE) programs. Few studies have surveyed the alumni of these programs to establish their post-university views and whether the positive impact of COBE programs endures into the post-university life. This study surveyed the alumni of COBE at Makerere to obtain their perceptions of the management and administration of COBE and whether COBE had helped develop their confidence as health workers, competence in primary health care and willingness and ability to work in rural communities.</p> <p>Objectives</p> <p>• To assess the efficiency of the management and administration of COBES.</p> <p>• To obtain the views of the impact of COBES on its alumni.</p> <p>Methods</p> <p>A mixed qualitative and quantitative study was conducted using focus group discussions (FGD) and a telephone administered questionnaire. From a total of 300 COBES alumni 150 were contacted. Twenty four Alumni (13 females and 11 males) were purposefully selected by discipline, gender and place of work, and invited for the focus group discussion. The discussions were transcribed and analyzed using a manifest content analysis table. The thematic issues from the FGDs were used to develop a structured questionnaire which was administered by telephone by the authors. The data were entered into Microsoft excel template and exported to Stata for analysis. The findings of the telephone survey were used to cross-match the views expressed during the focus group discussions.</p> <p>Results</p> <p>The alumni almost unanimously agree that the initial three years of COBES were very successful in terms of administration and coordination. COBES was credited for contributing to development of confidence as health workers, team work, communication skills, competence in primary health care and willingness to work in rural areas. The COBES alumni also identified various challenges associated with administration and coordination of COBES at Makerere.</p> <p>Conclusions</p> <p>This study has established that the positive impact of COBES endures with the alumni of the program. Health planners should take advantage of the impact of COBES and provide it with more support.</p
    corecore