21 research outputs found

    Efficient COI barcoding using high throughput single-end 400 bp sequencing

    Get PDF
    Background Over the last decade, the rapid development of high-throughput sequencing platforms has accelerated species description and assisted morphological classification through DNA barcoding. However, the current high-throughput DNA barcoding methods cannot obtain full-length barcode sequences due to read length limitations (e.g. a maximum read length of 300 bp for the Illumina’s MiSeq system), or are hindered by a relatively high cost or low sequencing output (e.g. a maximum number of eight million reads per cell for the PacBio’s SEQUEL II system). Results Pooled cytochrome c oxidase subunit I (COI) barcodes from individual specimens were sequenced on the MGISEQ-2000 platform using the single-end 400 bp (SE400) module. We present a bioinformatic pipeline, HIFI-SE, that takes reads generated from the 5′ and 3′ ends of the COI barcode region and assembles them into full-length barcodes. HIFI-SE is written in Python and includes four function modules of filter, assign, assembly and taxonomy. We applied the HIFI-SE to a set of 845 samples (30 marine invertebrates, 815 insects) and delivered a total of 747 fully assembled COI barcodes as well as 70 Wolbachia and fungi symbionts. Compared to their corresponding Sanger sequences (72 sequences available), nearly all samples (71/72) were correctly and accurately assembled, including 46 samples that had a similarity score of 100% and 25 of ca. 99%. Conclusions The HIFI-SE pipeline represents an efficient way to produce standard full-length barcodes, while the reasonable cost and high sensitivity of our method can contribute considerably more DNA barcodes under the same budget. Our method thereby advances DNA-based species identification from diverse ecosystems and increases the number of relevant applications

    Efficient \u3ci\u3eCOI\u3c/i\u3e Barcoding Using High Throughput Single-End 400 bp Sequencing

    Get PDF
    Background Over the last decade, the rapid development of high-throughput sequencing platforms has accelerated species description and assisted morphological classification through DNA barcoding. However, the current highthroughput DNA barcoding methods cannot obtain full-length barcode sequences due to read length limitations (for example, a maximum read length of 300 bp for the Illumina’s MiSeq system), or are hindered by a relatively high cost or low sequencing output (e.g. a maximum number of eight million reads per cell for the PacBio’s SEQUEL II system). Results Pooled cytochrome c oxidase subunit I (COI) barcodes from individual specimens were sequenced on the MGISEQ-2000 platform using the single-end 400 bp (SE400) module. We present a bioinformatic pipeline, HIFI-SE, that takes reads generated from the 5′ and 3′ ends of the COI barcode region and assembles them into full-length barcodes. HIFI-SE is written in Python and includes four function modules of filter, assign, assembly, and taxonomy. We applied the HIFI-SE to a set of 845 samples (30 marine invertebrates, 815 insects) and delivered a total of 747 fully assembled COI barcodes as well as 70 Wolbachia and fungi symbionts. Compared to their corresponding Sanger sequences (72 sequences available), nearly all samples (71/72) were correctly and accurately assembled, including 46 samples that had a similarity score of 100% and 25 of ca. 99%. Conclusions The HIFI-SE pipeline represents an efficient way to produce standard full-length barcodes, while the reasonable cost and high sensitivity of our method can contribute considerably more DNA barcodes under the same budget. Our method thereby advances DNA-based species identification from diverse ecosystems and increases the number of relevant applications

    Genetic Management of Virus Diseases in Peanut

    Get PDF
    Peanut, also known as groundnut (Arachis hypogaea L.) is a major oilseed crop in the world. About 31 viruses representing 14 genera are reported to naturally infe.ct peanut in different parts of the world, although only a few of these are of economic importance. These include groundnutrosette disease in Africa, tomato spotted wilt-disease in the United States, peanut bud necrosis disease in south Asia, and peanut stripe virus disease in east and southeast Asia. Cucumber mosaic virus disease in China and Argentina and peanut stem necrosis disease in certain -pockets in southern India are also economically important. Host plant resistance provides the most effective and economic option to manage virus diseases. However, for many virus diseases, effective resistance gene(s) in cultivated peanut have not been identified. With a few exceptions, the virus resistance breeding work has received little attention in peanut improvement programs. Transgenic resistance offers another option in virus resistance breeding. This review focuses on the status of genetic resistance to various economically important groundnut viruses and'use of transgenic-technology for the improvement of virus resistance

    Water nanoconfined in a hydrophobic pore: molecular dynamics simulations of transmembrane protein 175 and the influence of water models

    No full text
    Water molecules within biological ion channels are in a nanoconfined environment and therefore exhibit behaviors which differ from that of bulk water. Here, we investigate the phenomenon of hydrophobic gating, the process by which a nanopore may spontaneously dewet to form a “vapor lock” if the pore is sufficiently hydrophobic and/or narrow. This occurs without steric occlusion of the pore. Using molecular dynamics simulations with both rigid fixed-charge and polarizable (AMOEBA) force fields, we investigate this wetting/dewetting behavior in the transmembrane protein 175 ion channel. We examine how a range of rigid fixed-charge and polarizable water models affect wetting/dewetting in both the wild-type structure and in mutants chosen to cover a range of nanopore radii and pore-lining hydrophobicities. Crucially, we find that the rigid fixed-charge water models lead to similar wetting/dewetting behaviors, but that the polarizable water model resulted in an increased wettability of the hydrophobic gating region of the pore. This has significant implications for molecular simulations of nanoconfined water, as it implies that polarizability may need to be included if we are to gain detailed mechanistic insights into wetting/dewetting processes. These findings are of importance for the design of functionalized biomimetic nanopores (e.g., sensing or desalination) as well as for furthering our understanding of the mechanistic processes underlying biological ion channel function

    A BEST example of channel structure annotation by molecular simulation

    No full text
    An increasing number of ion channel structures are being determined. This generates a need for computational tools to enable functional annotation of channel structures. However, a number of studies of ion channel and model pores have indicated that the physical dimensions of a pore are not always a reliable indicator of its conductive status. This is due to the unusual behavior of water within nano-confined spaces, resulting in a phenomenon referred to as ‘hydrophobic gating’. We have recently demonstrated how simulating the behavior of water within an ion channel pore can be used to predict its conductive status. In this addendum to our study, we apply this method to compare the recently solved structure of a mutant of the bestrophin chloride channel BEST1 with that of the wild-type channel. Our results support the hypothesis of a hydrophobic gate within the narrow neck of BEST1. This provides further validation that this simulation approach provides the basis for an accurate and computationally efficient tool for the functional annotation of ion channel structures

    A BEST example of channel structure annotation by molecular simulation

    No full text
    An increasing number of ion channel structures are being determined. This generates a need for computational tools to enable functional annotation of channel structures. However, a number of studies of ion channel and model pores have indicated that the physical dimensions of a pore are not always a reliable indicator of its conductive status. This is due to the unusual behavior of water within nano-confined spaces, resulting in a phenomenon referred to as ‘hydrophobic gating’. We have recently demonstrated how simulating the behavior of water within an ion channel pore can be used to predict its conductive status. In this addendum to our study, we apply this method to compare the recently solved structure of a mutant of the bestrophin chloride channel BEST1 with that of the wild-type channel. Our results support the hypothesis of a hydrophobic gate within the narrow neck of BEST1. This provides further validation that this simulation approach provides the basis for an accurate and computationally efficient tool for the functional annotation of ion channel structures

    A heuristic derived from analysis of the ion channel structural proteome permits the rapid identification of hydrophobic gates

    No full text
    Ion channels are nanoscale protein pores in cell membranes. An exponentially increasing number of structures for channels means that computational methods for predicting their functional state are needed. Hydrophobic gates in ion channels result in local dewetting of pores, which functionally closes them to water and ion permeation. We use simulations of water behavior within nearly 200 different ion channel structures to explore how the radius and hydrophobicity of pores determine their hydration vs. dewetting behavior. Machine learning-assisted analysis of these simulations allowed us to propose a simple model for this relationship and present an easy method for rapidly predicting the functional state of new channel structures as they emerge

    Characterising membrane association and periplasmic transfer of bacterial lipoproteins through molecular dynamics simulations

    Get PDF
    Escherichia coli lipoprotein precursors at the inner membrane undergo three maturation stages before transport by the Lol system to the outer membrane. Here, we develop a pipeline to simulate the membrane association of bacterial lipoproteins in their four maturation states. This has enabled us to model and simulate 81 of the predicted 114 E. coli lipoproteins and reveal their interactions with the host lipid membrane. As part of this set we characterize the membrane contacts of LolB, the lipoprotein involved in periplasmic translocation. We also consider the means and bioenergetics for lipoprotein localization. Our calculations uncover a preference for LolB over LolA and therefore indicate how a lipoprotein may be favorably transferred from the inner to outer membrane. Finally, we reveal that LolC has a role in membrane destabilization, thereby promoting lipoprotein transfer to LolA
    corecore