896 research outputs found

    Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Get PDF
    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm exhibit plasmon resonance in the biological transparency window. With dimensions optimized for efficient cellular uptake, the nanoparticles demonstrate a high photothermal conversion efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization.Comment: 17 pages, 4 figures, 1 abstract figur

    Unidirectional Amplification and Shaping of Optical Pulses by Three-Wave Mixing with Negative Phonons

    Full text link
    A possibility to greatly enhance frequency-conversion efficiency of stimulated Raman scattering is shown by making use of extraordinary properties of three-wave mixing of ordinary and backward waves. Such processes are commonly attributed to negative-index plasmonic metamaterials. This work demonstrates the possibility to replace such metamaterials that are very challenging to engineer by readily available crystals which support elastic waves with contra-directed phase and group velocities. The main goal of this work is to investigate specific properties of indicated nonlinear optical process in short pulse regime and to show that it enables elimination of fundamental detrimental effect of fast damping of optical phonons on the process concerned. Among the applications is the possibility of creation of a family of unique photonic devices such as unidirectional Raman amplifiers and femtosecond pulse shapers with greatly improved operational properties.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with arXiv:1304.681

    Four-wave mixing, quantum control and compensating losses in doped negative-index photonic metamaterials

    Full text link
    The possibility of compensating absorption in negative-index metatamterials (NIMs) doped by resonant nonlinear-optical centers is shown. The role of quantum interference and extraordinary properties of four-wave parametric amplification of counter-propagating electromagnetic waves in NIMs are discussed.Comment: 3 pages, 3 figures, LaTeX, corrected typos in eqs. (1) and (2

    Quantum informatics with plasmonic metamaterials

    Full text link
    Surface polaritons at a meta-material interface are proposed as qubits. The SP fields are shown to have low losses, subwavelength confinement and can demonstrate very small modal volume. These important properties are used to demonstatre interesting applications in quantum information, i.e., coherent control of weak fields and large Kerr nonlinearity at the low photon level

    Plants with genetically encoded autoluminescence

    Get PDF
    Autoluminescent plants engineered to express a bacterial bioluminescence gene cluster in plastids have not been widely adopted because of low light output. We engineered tobacco plants with a fungal bioluminescence system that converts caffeic acid (present in all plants) into luciferin and report self-sustained luminescence that is visible to the naked eye. Our findings could underpin development of a suite of imaging tools for plants

    Measurement of B-c(2S)(+) and B-c*(2S)(+) cross section ratios in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore