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Autoluminescent plants engineered to express a bacterial 
bioluminescence gene cluster in plastids have not been widely 
adopted because of low light output. We engineered tobacco 
plants with a fungal bioluminescence system that converts 
caffeic acid (present in all plants) into luciferin and report 
self-sustained luminescence that is visible to the naked eye. 
Our findings could underpin development of a suite of imaging 
tools for plants.

Bioluminescent reporters have not been broadly applied in 
plants because exogenous addition of luciferin is expensive and can 
be toxic. Although bacterial bioluminescence genes can be targeted 
to plastids to engineer autoluminescence, it is technically cumber-
some and fails to produce sufficient light1. The caffeic acid cycle, 
which is a metabolic pathway responsible for luminescence in fungi, 
was recently characterized2. We report light emission in Nicotiana 
tabacum and Nicotiana benthamiana plants without the addition 
of any exogenous substrate by engineering fungal bioluminescence 
genes into the plant nuclear genome.

Caffeic acid is an intermediate in the phenylpropanoid pathway, 
which produces lignin and other metabolites in vascular plants. We 
reasoned that it might be feasible to integrate the fungal caffeic acid 
cycle into plant metabolism. Moreover, the green luminescence pro-
duced by the caffeic acid cycle fits well with the optical transparency 
window of pigmented plant tissues (Fig. 1a). Although caffeic acid 
is not native to animals, autonomous luminescence could also be 
enabled in animals by including two additional enzymes needed for 
its biosynthesis from tyrosine—tyrosine ammonia lyase and cou-
marate 3-hydroxylase—or their functional equivalents (Fig. 1b and 
Supplementary Fig. 1)3.

We engineered autonomously glowing N. tabacum plants by 
random-site genome integration using Agrobacterium-mediated 
transformation of DNA cassettes comprising codon-optimized 
versions of four Neonothopanus nambi bioluminescence 
genes2: nnluz (luciferase), nnhisps (hispidin synthase), nnh3h 
(hispidin-3-hydroxylase) and nncph (caffeoyl pyruvate hydrolase) 
(Fig. 1, Methods, Supplementary Fig. 2 and Supplementary Note 1). 

Fifteen independently obtained plant lines had confirmed genome 
integration events. The overall phenotype, chlorophyll and carot-
enoid content, flowering time and seed germination did not differ 
from wild-type tobacco in the greenhouse, with the exception of a 
12% increase in median height of transgenic plants (Supplementary 
Fig. 3 and Supplementary Note 2). This suggests that, unlike expres-
sion of bacterial bioluminescence system1, expression of caffeic acid 
cycle is not toxic in plants and does not impose an obvious burden 
on plant growth, at least in the greenhouse. Light emission at all 
developmental stages was visible to the naked eye, with intensity 
from the flowers reaching 1010 photons per minute (Supplementary  
Table 1). This level of brightness allowed us to capture detailed 
images on consumer-grade cameras with exposure times of 0.5–30 s,  
providing similar quality to that of more expensive luminescence 
imaging equipment (Fig. 2 and Supplementary Figs. 3–8).

To identify metabolites that might limit light emission, we 
infused leaves of glowing plants with luciferin or its precursors. 
We found that bright luminescence developed instantly after injec-
tions of luciferin or hispidin, whereas lower intensity was pro-
duced more slowly if leaves were supplemented with caffeic acid 
(Supplementary Video 1). Because engineered N. tabacum lines 
did not retain infused exogenous precursors at the injection site, 
we created a glowing line of N. benthamiana. In evaluation of 
all-but-one mixtures of hispidin precursors, caffeic acid produced 
increased luminescence, whereas malonyl-CoA, CoA or ATP, 
added individually or as a mixture, did not (Supplementary Note 3 
and Supplementary Fig. 9). Taken together, these experiments sug-
gest that caffeic acid limits hispidin biosynthesis (Supplementary 
Note 4 and Supplementary Video 1).

Consistent with a link between caffeic acid availability and lumi-
nescence intensity, the distribution of luminescence resembled 
reported expression patterns of enzymes involved in the phenyl-
propanoid pathway4. During seed germination, there was increased 
luminescence at the tips of cotyledons and roots (Fig. 2a and 
Supplementary Video 2). Roots also glowed brightly at branching 
points (Fig. 2d), often hours before visible evidence of lateral root 
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initiation (Supplementary Videos 3 and 4). As plants developed, 
luminescence increased at the transition zone between the root 
and the stem. Young shoots were brightest at the terminal and axil-
lary buds and at the upper part of the stem; older parts of the shoot 
dimmed as plants matured (Supplementary Video 5). Flowers pro-
duced the most luminescence (Fig. 2c,e, Supplementary Fig. 10 and 
Supplementary Video 6).

Increased light emission under conditions known to activate 
production of phenylpropanoids was observed using time-lapse 
luminescent imaging. Moreover, the spatial and temporal pat-
terns of luminescence of tobacco plants were characterized 
(Supplementary Notes 5–7). In injured leaves5,6, we observed 
a sustained increase in light emission at the injury site. We also 
discerned luminescence spreading from an injury site via small 
veins at approximately 2 µm s−1 (Supplementary Fig. 11 and 
Supplementary Video 7). Apical shoot removal7 resulted in sus-
tained bright luminescence in lateral shoots proximal to the cut 
site (Supplementary Fig. 12 and Supplementary Video 8). Aging 
leaves, reported to have gradually reducing caffeic acid content 
until late senescence8, generally exhibited decreased light emis-
sion. Nevertheless, some leaves displayed waves of intense light 
emission during the final stages of senescence (Supplementary 
Video 5), possibly reflecting age-related nutrient remobiliza-
tion9,10. Finally, plants treated with methyl jasmonate11,12 or ripe 
banana skin (which emits ethylene, among other compounds)13 

responded with massively increased luminescence throughout the 
plant (Supplementary Fig. 13a,b).

We have established the feasibility of using fungal biolumines-
cence genes to produce glowing plants that are at least an order of 
magnitude brighter than was previously achieved using a bacterial 
bioluminescence system (Supplementary Table 1 and Supplementary 
Figs. 6 and 7)1. By enabling autonomous light emission, dynamic 
processes in plants can be monitored, including development and 
pathogenesis, responses to environmental conditions and effects 
of chemical treatment. Screening methods should also be enabled 
by the simplicity and efficiency of acquiring luminescent data. By 
removing the need for exogenous addition of luciferin or other sub-
strates, these luminescent capabilities should be particularly useful 
for experiments with plants grown in the soil.
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Fig. 1 | Fungal bioluminescence system. a, Spectrum of fungal bioluminescence (N. nambi, in green) overlaid onto the absorbance spectrum of plant 
leaves (N. tabacum, in dark gray). b, The caffeic acid cycle shares metabolites with some of the major plant biosynthetic pathways. The fungal or plant 
origin of enzymes is indicated with mushroom and plantlet symbols, respectively. 4CL, 4-coumarate:CoA ligase; C3H, p-coumaric acid 3-hydroxylase; 
C4H, cinnamic acid 4-hydroxylase; CCOMT, caffeoyl-CoA 3-O-methyltransferase; CCR, cinnamoyl-CoA reductase; CHI, chalcone isomerase; CHS, 
chalcone synthase; CPH, putative caffeoyl pyruvate hydrolase; H3H, hispidin-3-hydroxylase; HispS, hispidin synthase; Luz, luciferase; PAL, phenylalanine 
ammonia-lyase. Absorbance spectrum of leaf is representative of experiment performed on three leaves. The luminescence spectrum is rendered from a 
data set published in ref. 3.
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Fig. 2 | Bioluminescent plants during development. Light emission from N. tabacum plants at germination (a), vegetative (b) and flowering (c) stages; 
light emission from roots (d) and cross section of flowers (e). Photos were captured on a Sony Alpha ILCE-7M3 camera (Methods). The 110 seedlings 
depicted in a are representative of three independent experiments. Images of plants in vegetative (b, 3 weeks) and flowering (c, 8 weeks) stages, as well 
as individual flowers (e) are representative of 100 plants followed from in vitro to flowering in four separate experiments. The age of plants is stated 
relative to transfer from in vitro to the greenhouse. The image of roots of an individual plant depicted in d is representative of three independent imaging 
experiments on six plants.
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Methods
Assembly of plasmids for plant transformation. Coding sequences of the 
nnluz, nnhisps, nnh3h and nncph genes from N. nambi were codon optimized 
for expression in N. tabacum and ordered synthetically from Evrogen. Synthetic 
genes were flanked by BsaI restriction sites designed to leave AATG-GCTT 
overhangs, compatible with the existing modular cloning standard described 
in ref. 14. Each gene was then cloned into Level 1-like vector, under the control 
of the constitutive 35S promoter from cauliflower mosaic virus and ocs 
terminator from Agrobacterium tumefaciens. These Level 1 plasmids were then 
digested by BpiI and assembled together into a Level 2-like backbone in the 
following order: nnhisps-nnh3h-nnluz-nncph or, in the case of cph-less version, 
nnhisps-nnh3h-nnluz. This gene cluster was preceded by a kanamycin resistance 
cassette for selection in plants. The entire construct, consisting of the kanamycin 
cassette plus luminescence genes, was flanked by A. tumefaciens insertion 
sequences to facilitate Agrobacterium-mediated random integration of the 
construct into plant genomes (Supplementary Fig. 2).

All clonings described above were performed according to established  
Golden Gate cloning methods, wherein digestion and ligation are performed 
together in a single step. All reactions were performed in 1× T4 ligase buffer 
(Thermo Fisher) containing 10 U of T4 ligase, 20 U of either BsaI or BpiI  
(Thermo Fisher) and 100 ng of DNA of each DNA part. Golden Gate reactions 
were performed according to “troubleshooting” cycling conditions described in  
ref. 15: 25 cycles between 37 °C and 16 °C (90 s at 37 °C, 180 s at 16 °C) and then 
5 min at 50 °C and 10 min at 80 °C.

Correct sequences of all plasmids were confirmed with Sanger and Illumina 
sequencing before use (Supplementary Data).

Assembly of plasmids for mammalian cells. DNA coding for RcTAL, HpaB, 
HpaC, nnHispS, NpgA, nnH3H, nnCPH and nnLuz was ordered synthetically 
(Evrogen) and cloned into the pKatushka2S-C1 vector (Evrogen) instead of 
Katushka2S coding sequence, under the control of CMV promoter. Plasmid 
sequences are available in Genbank under the following accession numbers: 
pHpaB-C1, MT233533; pHpaC-C1, MT233534; pnnCPH-C1, MT233535; 
pnnH3H-C1, MT233536; pnnHispS-C1, MT233537; pnnLuz-C1, MT233538; 
pnpgA-C1, MT233539; pRcTAL-C1, MT233540; pX037, MT233541. Correct 
sequences of all plasmids were confirmed with Sanger and Illumina sequencing 
before use (Supplementary Data).

Expression in cultured mammalian cells and luminescence imaging. HEK293T 
cell line was transfected with a mixture of all eight plasmids by FuGENE HD 
Transfection Reagent (Promega). Transfected cells were grown in DMEM (PanEco) 
supplemented with 10% fetal bovine serum (HyClone), 4 mM L-glutamine,  
10 U ml−1 penicillin and 10 µg ml−1 streptomycin, at 37 °C, 5% CO2. Twenty-four 
hours after transfection, the medium was changed to MEM supplemented 
with 20 mM HEPES, and luminescence was analyzed by IVIS Spectrum CT 
(PerkinElmer). For the analysis, the background luminescence signal from the 
empty wells was subtracted from the luminescence signal of wells with control  
and autoluminescent cells.

Agrobacterium-mediated transformation of plants. Assembled plasmids were 
transferred into A. tumefaciens strain AGL0 (ref. 16). Bacteria were grown in flasks 
on a shaker overnight at 28 °C in LB medium supplemented with 25 mg l−1  
rifampicin and 50 mg l−1 kanamycin. Bacterial cultures were diluted in liquid 
Murashige and Skoog (MS) medium to an optical density of 0.6 at 600 nm.

Leaf explants used for transformation experiments were cut from 2-week-old 
tobacco plants (N. tabacum cv. Petit Havana SR1, N. benthamiana) and incubated 
with bacterial culture for 20 min. Leaf explants were then placed onto filter paper 
overlaid on MS medium (MS salts, MS vitamin, 30 g l−1 sucrose, 8 g l−1 agar,  
pH 5.8) supplemented with 1 mg l−1 6-benzylaminopurine and 0.1 mg l−1 indolyl 
acetic acid. Two days after inoculation, explants were transferred to the same 
medium supplemented with 500 mg l−1 cefotaxime and 75 mg l−1 kanamycin. 
Regeneration shoots were cut and grown on MS medium with antibiotics.

Molecular analysis of transgenic plants. Genomic DNA was extracted from 
young leaves of greenhouse-grown plantlets using the cetyltrimethylammonium 
bromide method17. The presence of each of the transferred genes was confirmed by 
PCR with gene-specific primers (Supplementary Table 2).

For Southern blots, 30 μg of plant genomic DNA was digested overnight 
at 37 °C by 100 U of EcoRV, a restriction enzyme that cuts T-DNA constructs 
used in this study at a single position inside the nnHispS coding region. After 
gel electrophoresis, digestion products were transferred onto Amersham 
Hybond-N+ membrane (GE Healthcare) and immobilized. The DNA probe  
was constructed by PCR using cloned synthetic nnluz gene as the template  
and nnluz-specific primers listed in Supplementary Table 2. Probe DNA was 
labeled with alkaline phosphatase using the AlkPhos Direct Labeling Kit  
(GE Healthcare). Prehybridization, hybridization (overnight at 60 °C) with alkaline 
phosphatase-labeled probe and subsequent washings of the membrane were 
carried out according to the AlkPhos Direct Labeling Kit protocol. Detection 
was performed using Amersham CDP-Star detection reagent following the 

manufacturer’s protocol (GE Healthcare). The signal from the membrane was 
accumulated on X-ray film (XBE blue sensitive, Retina) in film cassette at room 
temperature for 24 h. X-ray films were scanned on an Amersham Imager 600  
(GE Healthcare Life Sciences).

Plant growth conditions. Plant transgenesis and cultivation were carried out at the 
artificial climate station Biotron N2-2.9 (branch of the Shemyakin-Ovchinnikov 
Institute of Bioorganic Chemistry of the Russian Academy of Sciences). Tobacco 
plants were propagated on MS medium supplemented with 30 g l−1 sucrose and 
0.8 wt/vol agar (Panreac). In vitro cultures were incubated at 24 ± 1 °C with a  
12–16-d photoperiod, with mixed cool white and red light (Cool White and 
Gro-Lux fluorescent lamps) at a light intensity of 40 μmol s−1 m−2. After root 
development, plantlets were transferred to 9-cm pots with sterilized soil (1:3 wt/wt 
mixture of sand and peat). Potted plants were placed in the greenhouse at 22 ± 2 °C 
under neutral day conditions (12 h light/12 h dark; 150 μmol s−1 m−2) and 75% 
relative humidity. For time-lapse imaging of germinating seeds (Supplementary 
Video 2), seeds were sterilized in sodium hypochlorite (25%/15 min) and then 
propagated on MS medium supplemented with 30 g l−1 sucrose and 0.3 wt/
vol Gellan Gum Powder (MP Biomedicals). The same medium was used for 
luminescence imaging of roots (Fig. 2d and Supplementary Videos 3 and 4).

Plant imaging setup with photo cameras. We used a Sony Alpha ILCE-7M3 
camera to capture all photos and videos presented in this article, except those taken 
on a smartphone (Supplementary Fig. 8) and a long-term time lapse filmed on a 
Nikon D800 camera (Supplementary Video 5). Depending on the experimental 
setup, lens aperture and other considerations, a range of ISO values from 3,200 
to 40,000 was used, with exposure times from 5 s (leaf injury) to 20 min (root 
microscopy). Most of the photos were captured with a 30-s exposure time.

We used an SEL50M28 lens (Sony, f/2.8) or a 35-mm T1.5 ED AS UMC 
VDSLR lens (Samyang, ~f/1.4). Long-term time lapse of growing tobacco plants 
(Supplementary Fig. 13c and Supplementary Video 5) was captured with a 
Nikon D800 camera and a Sigma AF 35-mm f/1.4 DG HSM Art at ISO 8063 
and 30-s shutter speed. Root microscopy was performed with a Sony Alpha 
ILCE-7M3 camera with Meiji MA833 U. A Plan 20× objective lens was mounted 
on the camera via a custom-made adaptor. For quantitative comparison, XLS-4 
(PerkinElmer) calibrated light source was used as a reference (emits 1.6 × 109 
photons per second at 525 nm).

The photos were then processed in the following way. First, a raw photo 
obtained in the dark with the same settings was per-channel subtracted from a raw 
photo of plants (LibRaw version 0.19.2, 4channels tool) to remove hot pixels and 
reduce noise. Optionally, an ImageJ plugin was applied (https://imagej.nih.gov/ij/
source/ij/plugin/filter/RankFilters.java) to remove outliers (hot pixels). For most 
photos, only the green channels (G and G2) were kept in the final image. Final 
images were rendered in pseudocolor with either “Green” or “Fire” linear lookup 
tables from ImageJ.

Plant imaging on IVIS Spectrum CT. Plant imaging on IVIS Spectrum CT was 
performed without filters in front of the camera, with 1-min exposure and without 
binning. The samples were acquired with “C” settings of field of view. Ambient 
light image was taken after the luminescence measurements. Other settings were 
left at defaults.

Chlorophyll content in leaves. Next, 0.5 g of fresh plant leaf sample was 
homogenized in tissue homogenizer with 10 ml of 95% ethanol. Homogenized 
sample mixture was centrifuged at 10,000 r.p.m. for 15 min. An aliquot of the 
supernatant (0.5 ml) was mixed with 95% ethanol (4.5 ml). The solution mixture 
in a glass cuvette was analyzed for chlorophyll-a, chlorophyll-b and carotenoids 
content at 664, 649 and 470 nm.

Plant imaging on a smartphone. We used a Huawei P30 Pro smartphone for 
photography. To capture the photo displayed on Supplementary Fig. 8b, we used 
the following settings: 30-s exposure time, ISO 6400 and aperture 1.6.

Absorption spectra of tobacco leaves. The leaves from adult wild-type  
N. tabacum plants were collected and measured directly by spectrophotometer 
(Cary 100 Bio, Varian).

Imaging of leaf injuries. Plants were cultivated in a greenhouse for 6 weeks. 
Leaves of N. tabacum were wounded with a blade, causing a cut across  
the midvein.

Treatment with methyl jasmonate. Three-week-old transgenic bioluminescent  
N. tabacum plants were treated with methyl jasmonate (5 mM in 10 mM MES 
buffer, pH 7.0) by spraying. Control plants were treated with buffer (10 mM MES 
buffer, pH 7.0). Plants were then imaged in closed glass jars for 3 d in the dark.

Incubation with banana skin. Three-week-old transgenic bioluminescent  
N. tabacum plants were imaged with ripe banana skin in closed glass jars  
for 24 h.
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Quantitative PCR. In experiments aimed to determine whether expression of 
nnluz gene oscillates during the day, we collected the third leaf counting from 
the apical bud from 27 25-day-old transgenic glowing plants. The leaves were 
collected with 3-h intervals during 24 h, and leaves from three plants were 
collected at each time point. From each plant, we collected leaves only once. All 
leaves were flash frozen in liquid nitrogen and homogenized for RNA extraction 
with TRIzol kit (Thermo Fisher Scientific). Synthesis of the first cDNA strand 
was carried out with an MMLV kit (Evrogen). Quantitative PCR was performed 
with qPCRmix-HS SYBR + LowROX kit (Evrogen) on a 7500 Real-Time PCR 
machine (Applied Biosystems) with primers annealing at the nnluz transcript: 
GGACCAGGAGTCCCAGGC and CTTGGCATTTTCGACAATCTTA with the 
following program: 95 °C for 1 min and then 40 cycles of 95 °C for 15 s, 60 °C for 
15 s and 72 °C for 15 s.

Infiltration of tobacco leaves with hispidin precursors. For experiments with 
infiltration of transgenic N. benthamiana leaves, we prepared 100 uM solutions 
of caffeic acid, malonyl-CoA, ATP and coenzyme A in 10 mM MES buffer (pH 
7.0). We also prepared 100 uM mixtures of these compounds in the same buffer: 
Mix 1, full (caffeic acid, malonyl-CoA, CoA, ATP); Mix 2 without caffeic acid 
(malonyl-CoA, CoA, ATP); Mix 3 without malonyl-CoA (caffeic acid, CoA, ATP); 
Mix 4 without CoA (caffeic acid, malonyl-CoA, ATP); and Mix 5 without ATP 
(caffeic acid, malonyl-CoA, CoA). The solutions were injected into the blades of 
cut N. benthamiana leaves, and leaves were imaged for 15 min after injections. The 
analysis of the frame at 1 min after injection is presented in Supplementary Fig. 9. 
Similar experiment design was followed for the injection of luciferin precursors 
into N. tabacum leaves, followed by 16 h of imaging (Supplementary Video 1).

LC-MS/MS analysis. Analytical standard (≥ 98.0) caffeic acid and acetic acid were 
purchased from Sigma-Aldrich. Hispidin was synthesized by Planta (≥ 95.0%). 
HPLC-grade acetonitrile was purchased from J.T. Baker. Deionized water was 
obtained from a Milli-Q System.

We analyzed several groups of samples: leaves and flowers of the wild-type 
N. tabacum (NT000) and two transgenic lines of plants (NT001 and NT078). 
Immediately after collection, the samples were frozen in liquid nitrogen and 
manually ground in a mortar. To reduce biological variability, we mixed plant 
material from three different organisms of the same group. For each sample,  
about 1 g of the frozen tissue was lyophilized in 50-ml Falcon tubes, and 
freeze-dried material was stored at −20 °C. Еach sample was prepared and  
analyzed in three replicates.

For the analysis, about 50 mg of lyophilized powder was weighed and treated 
with 7 ml of 70% methanol for 30 min in an ultrasonic bath and then centrifuged 
for 10 min at 4,000 r.p.m. The supernatant was collected, filtered with Phenex 
GF/PVDF syringe filter (diameter 30 mm, pore size 0.45 μm) and analyzed on 
an LCMS instrument. Analyses were performed by a Shimadzu 8030 system 
consisting of HPLC coupled to PDA and triple quadrupole mass spectrometer 
(HPLC-DAD-ESI-TQ MS). The chromatographic separation was performed 
on Discovery C18 column 4.6 × 150 mm, 5 μm in a gradient mode with mobile 
phase components A (0.3% acetic acid in water) and B (acetonitrile). The gradient 
run was performed in the following way: 0–4 min 10–40% B, 4–5 min 40–80%, 
5–10.5 min, isocratic elution with 100% B and then returned to the initial 
condition. The column temperature was 40 °C, the flow rate was 1 ml min−1 and the 
sample injection volume was 20 μl.

The electrospray ionization (ESI) source was set in negative ionization 
mode. Multiple reaction monitoring was used to perform mass spectrometric 
quantification. MS conditions: interface voltage 3,500 V (ESI−), nebulizer gas 
(nitrogen) flow 2.5 l min−1, drying gas (nitrogen) flow 15 l min−1, CID gas pressure 
60 kPa, DL temperature 250 °C and heat block temperature 400 °C. High-purity 
argon was used as collision gas. The precursor and product ions (m/z) of target 
analytes were 178.95 and 134.95 for caffeic acid and 245.05 and 159.00 for hispidin; 
collision energy was 35 V for both compounds.

Owing to the lack of isotope-labeled standards, we added standards to samples 
to account for substantial matrix effect. Each sample was analyzed twice, with and 
without the addition of standards. After the first analysis, a solution with a known 
amount of caffeic acid and hispidin was added. Assuming a linear relation between 
the observed signal and concentration of compounds, concentration of the extract 
was calculated as Cextr = Cad × Sextr/(Stot – Sextr), where Cad is concentration of the 
added compound in the extract and Sextr and Stot are the analyte peak area in the 
first and second analyses.

Statistics. Data are plotted as box plots implemented in Seaborn (https://seaborn.
pydata.org/) package (version 0.10, Python version 3.6). The boxes extend from  
the lower to upper quartile values of the data, and the horizontal line represents  
the median. Whiskers represent the full data range. Two-tailed Mann–Whitney  
U tests (Supplementary Fig. 3) were computed with the scipy.stats package  
(https://www.scipy.org/, SciPy version 1.3.1). The Scikit-posthocs Python package 

(https://pypi.org/project/scikit-posthocs/, version 0.6.2) was used for multiple 
pairwise post hoc Mann–Whitney U tests with P values corrected by the step-down 
method using Sidak adjustments (Supplementary Fig. 9). Sample numbers (n), 
statistical tests used and exact P values can be found in the figure legends.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated or analyzed in the current study are available from the 
corresponding authors upon reasonable request. Unprocessed images of luminescent 
flowers captured on a Sony Alpha ILCE-7M3 camera and IVIS Spectrum CT are 
available from Figshare (https://doi.org/10.6084/m9.figshare.11353601). Plasmid 
sequences are available in Genbank under the following accession numbers: 
pHpaB-C1, MT233533; pHpaC-C1, MT233534; pnnCPH-C1, MT233535; 
pnnH3H-C1, MT233536; pnnHispS-C1, MT233537; pnnLuz-C1, MT233538; 
pnpgA-C1, MT233539; pRcTAL-C1, MT233540; pX037, MT233541. Sanger and 
Illumina sequencing results are available as Supplementary Data.
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Sample size The experiments described in this study were done for the first time. Due to exploratory nature of our study we refrained from unnecessary  
generalizations. No pre-specified effect size could be determined a priori. In cases of assessment of the effect of external stimuli on transgenic 
plants, and in the case of determination of chemical composition of plant samples, the sample size were selected in accordance with the 
standards in the field.

Data exclusions No data were excluded from the study.

Replication Number of replicates are explicitly stated in the figure legends. Where applicable, reported results were consistently replicated across 
multiple experiments with all replicates generating similar results. 

Randomization Randomization is not relevant to our study design because investigators were comparing plant samples under well controlled conditions. 
 No human or animal subjects were used in the study. 

Blinding No blinding was performed as there was no animal or human groups.
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Policy information about cell lines
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Mycoplasma contamination Cell lines were frequently tested for mycoplasma contamination. Cell line used in this study was verified to be mycoplasma 
negative before undertaking experiments with it.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cells were used. All cells displayed homogeneous characteristic morphology. 
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