7 research outputs found

    Asymmetric dimerization in a transcription factor superfamily is promoted by allosteric interactions with DNA

    Get PDF
    Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.journal articl

    Biochemical, biophysical and structural study of histone deacetylase HDAC8 action mechanism and selective inhibition

    No full text
    Les histones désacétylases (HDACs) sont les principales cibles des médicaments épigénétiques anticancéreux actuellement approuvés par la FDA. Les HDACs jouent aussi un rôle important dans l'homéostasie des pathogènes eucaryotes. Par conséquent, une stratégie pour lutter contre les maladies négligées causées par ces pathogènes est de modifier les médicaments épigénétiques actuellement approuvés qui ciblent les HDACs. HDAC8 de Schistosoma mansoni (smHDAC8) est une cible médicamenteuse valable pour traiter la schistosomiase, deuxième maladie négligée mortelle après le paludisme. Les différences structurales entre les poches catalytiques des HDAC8 humaine et smHDAC8 ont permis la conception d'inhibiteurs sélectifs des schistosomes qui se lient dans une poche sélective unique à HDAC8. Ce travail de thèse montre comment cibler sélectivement des isoformes HDAC l'aide de structures à résolution atomique, et ouvre la porte à l'étude du mode d'action de HDAC8 au niveau fondamental.Histone deacetylases (HDACs) are the major targets of currently FDA-approved anti-cancer epigenetic drugs. HDACs also play an important role in the homeostasis of eukaryotic pathogens. Hence, a strategy to tackle neglected diseases caused by these pathogens is to modify currently approved epigenetic drugs targeting HDACs. HDAC8 from Schistosoma mansoni (smHDAC8) was shown to be a valid drug target to treat schistosomiasis, second deadliest tropical disease after malaria. Structural differences between human HDAC8 and smHDAC8 catalytic pocket enabled the design of schistosome-selective inhibitors that bind in a HDAC8 selective pocket, which is unique to HDAC8 among the highly conserved HDAC isozymes. This thesis work shows how to target selectively related isoforms with the help of atomic resolution structures, and opens the door to the investigation of the mode of action of HDAC8 at the fundamental level

    Biochemical, biophysical and structural study of histone deacetylase HDAC8 action mechanism and selective inhibition

    No full text
    Les histones désacétylases (HDACs) sont les principales cibles des médicaments épigénétiques anticancéreux actuellement approuvés par la FDA. Les HDACs jouent aussi un rôle important dans l'homéostasie des pathogènes eucaryotes. Par conséquent, une stratégie pour lutter contre les maladies négligées causées par ces pathogènes est de modifier les médicaments épigénétiques actuellement approuvés qui ciblent les HDACs. HDAC8 de Schistosoma mansoni (smHDAC8) est une cible médicamenteuse valable pour traiter la schistosomiase, deuxième maladie négligée mortelle après le paludisme. Les différences structurales entre les poches catalytiques des HDAC8 humaine et smHDAC8 ont permis la conception d'inhibiteurs sélectifs des schistosomes qui se lient dans une poche sélective unique à HDAC8. Ce travail de thèse montre comment cibler sélectivement des isoformes HDAC l'aide de structures à résolution atomique, et ouvre la porte à l'étude du mode d'action de HDAC8 au niveau fondamental.Histone deacetylases (HDACs) are the major targets of currently FDA-approved anti-cancer epigenetic drugs. HDACs also play an important role in the homeostasis of eukaryotic pathogens. Hence, a strategy to tackle neglected diseases caused by these pathogens is to modify currently approved epigenetic drugs targeting HDACs. HDAC8 from Schistosoma mansoni (smHDAC8) was shown to be a valid drug target to treat schistosomiasis, second deadliest tropical disease after malaria. Structural differences between human HDAC8 and smHDAC8 catalytic pocket enabled the design of schistosome-selective inhibitors that bind in a HDAC8 selective pocket, which is unique to HDAC8 among the highly conserved HDAC isozymes. This thesis work shows how to target selectively related isoforms with the help of atomic resolution structures, and opens the door to the investigation of the mode of action of HDAC8 at the fundamental level

    Etude biochimique, biophysique et structurale du mécanisme d'action et de l'inhibition sélective de l'histone désacétylase HDAC8

    No full text
    Histone deacetylases (HDACs) are the major targets of currently FDA-approved anti-cancer epigenetic drugs. HDACs also play an important role in the homeostasis of eukaryotic pathogens. Hence, a strategy to tackle neglected diseases caused by these pathogens is to modify currently approved epigenetic drugs targeting HDACs. HDAC8 from Schistosoma mansoni (smHDAC8) was shown to be a valid drug target to treat schistosomiasis, second deadliest tropical disease after malaria. Structural differences between human HDAC8 and smHDAC8 catalytic pocket enabled the design of schistosome-selective inhibitors that bind in a HDAC8 selective pocket, which is unique to HDAC8 among the highly conserved HDAC isozymes. This thesis work shows how to target selectively related isoforms with the help of atomic resolution structures, and opens the door to the investigation of the mode of action of HDAC8 at the fundamental level.Les histones désacétylases (HDACs) sont les principales cibles des médicaments épigénétiques anticancéreux actuellement approuvés par la FDA. Les HDACs jouent aussi un rôle important dans l'homéostasie des pathogènes eucaryotes. Par conséquent, une stratégie pour lutter contre les maladies négligées causées par ces pathogènes est de modifier les médicaments épigénétiques actuellement approuvés qui ciblent les HDACs. HDAC8 de Schistosoma mansoni (smHDAC8) est une cible médicamenteuse valable pour traiter la schistosomiase, deuxième maladie négligée mortelle après le paludisme. Les différences structurales entre les poches catalytiques des HDAC8 humaine et smHDAC8 ont permis la conception d'inhibiteurs sélectifs des schistosomes qui se lient dans une poche sélective unique à HDAC8. Ce travail de thèse montre comment cibler sélectivement des isoformes HDAC l'aide de structures à résolution atomique, et ouvre la porte à l'étude du mode d'action de HDAC8 au niveau fondamental

    Asymmetric dimerization in a transcription factor superfamily is promoted by allosteric interactions with DNA

    No full text
    Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution

    Novel spiroindoline HDAC inhibitors: Synthesis, molecular modelling and biological studies

    No full text
    This paper describes the rational development of a series of novel spiroindoline derivatives endowed with selective inhibitory activity on the HDAC6 isoform. A convenient multicomponent one-pot protocol was applied for the assembly of the desired N1-substituted spiroindoline core which allowed a straightforward analoging. Computational studies and in vitro determination of inhibitory potency for the developed compounds against HDAC6 and HDAC1 isoforms were flanked by cell-based studies on histone H3 and α-tubulin acetylation. The effects on cancer cell cycle and apoptosis of the best performing derivatives were assessed on cancer cell lines highlighting a promising antitumor potential. In view of cell-based data and calculated drug-like properties, the selective HDAC6 inhibitor 5b, with a spiroindoline-based hydroxamate bearing a tert-butyl carbamate functionality, was selected to be further investigated for its potential in inhibiting tumor cells migration. It was able to potently inhibit cell migration in SH-SY5Y neuroblastoma cells and did not display toxicity in NIH3T3 mouse fibroblasts. Taken together, these data foster further investigation and optimization for this class of compounds as novel anticancer agents

    Structure-Based Design and Biological Characterization of Selective Histone Deacetylase 8 (HDAC8) Inhibitors with Anti-Neuroblastoma Activity

    No full text
    Histone deacetylases (HDACs) are important modulators of epigenetic gene regulation and additionally control the activity of non-histone protein substrates. While for HDACs 1–3 and 6 many potent selective inhibitors have been obtained, for other subtypes much less is known on selective inhibitors and the consequences of their inhibition. The present report describes the development of substituted benzhydroxamic acids as potent and selective HDAC8 inhibitors. Docking studies using available crystal structures have been used for structure-based optimization of this series of compounds. Within this study, we have investigated the role of HDAC8 in the proliferation of cancer cells and optimized hits for potency and selectivity, both in vitro and in cell culture. The combination of structure-based design, synthesis, and in vitro screening to cellular testing resulted in potent and selective HDAC8 inhibitors that showed anti-neuroblastoma activity in cellular testing
    corecore