2,775 research outputs found

    Nonadaptive Amino Acid Convergence Rates Decrease over Time.

    Get PDF
    Convergence is a central concept in evolutionary studies because it provides strong evidence for adaptation. It also provides information about the nature of the fitness landscape and the repeatability of evolution, and can mislead phylogenetic inference. To understand the role of adaptive convergence, we need to understand the patterns of nonadaptive convergence. Here, we consider the relationship between nonadaptive convergence and divergence in mitochondrial and model proteins. Surprisingly, nonadaptive convergence is much more common than expected in closely related organisms, falling off as organisms diverge. The extent of the convergent drop-off in mitochondrial proteins is well predicted by epistatic or coevolutionary effects in our "evolutionary Stokes shift" models and poorly predicted by conventional evolutionary models. Convergence probabilities decrease dramatically if the ancestral amino acids of branches being compared have diverged, but also drop slowly over evolutionary time even if the ancestral amino acids have not substituted. Convergence probabilities drop-off rapidly for quickly evolving sites, but much more slowly for slowly evolving sites. Furthermore, once sites have diverged their convergence probabilities are extremely low and indistinguishable from convergence levels at randomized sites. These results indicate that we cannot assume that excessive convergence early on is necessarily adaptive. This new understanding should help us to better discriminate adaptive from nonadaptive convergence and develop more relevant evolutionary models with improved validity for phylogenetic inference

    Mortality Among Adults With Intellectual Disability in England: Comparisons With the General Population.

    Get PDF
    OBJECTIVES: To describe mortality among adults with intellectual disability in England in comparison with the general population. METHODS: We conducted a cohort study from 2009 to 2013 using data from 343 general practices. Adults with intellectual disability (n = 16 666; 656 deaths) were compared with age-, gender-, and practice-matched controls (n = 113 562; 1358 deaths). RESULTS: Adults with intellectual disability had higher mortality rates than controls (hazard ratio [HR] = 3.6; 95% confidence interval [CI] = 3.3, 3.9). This risk remained high after adjustment for comorbidity, smoking, and deprivation (HR = 3.1; 95% CI = 2.7, 3.4); it was even higher among adults with intellectual disability and Down syndrome or epilepsy. A total of 37.0% of all deaths among adults with intellectual disability were classified as being amenable to health care intervention, compared with 22.5% in the general population (HR = 5.9; 95% CI = 5.1, 6.8). CONCLUSIONS: Mortality among adults with intellectual disability is markedly elevated in comparison with the general population, with more than a third of deaths potentially amenable to health care interventions. This mortality disparity suggests the need to improve access to, and quality of, health care among people with intellectual disability. (Am J Public Health. Published online ahead of print June 16, 2016: e1-e8. doi:10.2105/AJPH.2016.303240)

    Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients. results from the BACH Study (Biomarkers in ACute Heart Failure)

    Get PDF
    Objectives: The purpose of this study was to assess the impact of atrial fibrillation (AF) on the performance of mid-region amino terminal pro-atrial natriuretic peptide (MR-proANP) in comparison with the B-type peptides (BNP and NT-proBNP) for diagnosis of acute heart failure (HF) in dyspneic patients. Background: The effects of AF on the diagnostic and prognostic performance of MR-proANP in comparison with the B type natriuretic peptides have not been previously reported. Methods: A total of 1,445 patients attending the emergency department with acute dyspnea had measurements taken of MR-proANP, BNP, and NT-proBNP values on enrollment to the BACH trial and were grouped according to presence or absence of AF and HF. Results: AF was present in 242 patients. Plasma concentrations of all three peptides were lowest in those with neither AF nor HF and AF without HF was associated with markedly increased levels (p < 0.00001). HF with or without AF was associated with a significant further increment (p < 0.00001 for all three markers). Areas under receiver operator characteristic curves (AUCs) for discrimination of acute HF were similar and powerful for all peptides without AF (0.893 to 0.912; all p < 0.001) with substantial and similar reductions (0.701 to 0.757) in the presence of AF. All 3 peptides were independently prognostic but there was no interaction between any peptide and AF for prediction of all-cause mortality. Conclusions: AF is associated with increased plasma natriuretic peptide (MR-proANP, BNP and NT-proBNP) levels in the absence of HF. The diagnostic performance of all three peptides is impaired by AF. This warrants consideration of adjusted peptide thresholds for diagnostic use in AF and mandates the continued search for markers free of confounding by AF

    Design and rationale of a multi-center, pragmatic, open-label randomized trial of antimicrobial therapy - the study of clinical efficacy of antimicrobial therapy strategy using pragmatic design in Idiopathic Pulmonary Fibrosis (CleanUP-IPF) clinical trial

    Get PDF
    Compelling data have linked disease progression in patients with idiopathic pulmonary fibrosis (IPF) with lung dysbiosis and the resulting dysregulated local and systemic immune response. Moreover, prior therapeutic trials have suggested improved outcomes in these patients treated with either sulfamethoxazole/ trimethoprim or doxycycline. These trials have been limited by methodological concerns. This trial addresses the primary hypothesis that long-term treatment with antimicrobial therapy increases the time-to-event endpoint of respiratory hospitalization or all-cause mortality compared to usual care treatment in patients with IPF. We invoke numerous innovative features to achieve this goal, including: 1) utilizing a pragmatic randomized trial design; 2) collecting targeted biological samples to allow future exploration of 'personalized' therapy; and 3) developing a strong partnership between the NHLBI, a broad range of investigators, industry, and philanthropic organizations. The trial will randomize approximately 500 individuals in a 1:1 ratio to either antimicrobial therapy or usual care. The site principal investigator will declare their preferred initial antimicrobial treatment strategy (trimethoprim 160 mg/ sulfamethoxazole 800 mg twice a day plus folic acid 5 mg daily or doxycycline 100 mg once daily if body weight is < 50 kg or 100 mg twice daily if ≥50 kg) for the participant prior to randomization. Participants randomized to antimicrobial therapy will receive a voucher to help cover the additional prescription drug costs. Additionally, those participants will have 4-5 scheduled blood draws over the initial 24 months of therapy for safety monitoring. Blood sampling for DNA sequencing and genome wide transcriptomics will be collected before therapy. Blood sampling for transcriptomics and oral and fecal swabs for determination of the microbiome communities will be collected before and after study completion. As a pragmatic study, participants in both treatment arms will have limited in-person visits with the enrolling clinical center. Visits are limited to assessments of lung function and other clinical parameters at time points prior to randomization and at months 12, 24, and 36. All participants will be followed until the study completion for the assessment of clinical endpoints related to hospitalization and mortality events. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT02759120

    “It’s hard to tell”. The challenges of scoring patients on standardised outcome measures by multidisciplinary teams: a case study of Neurorehabilitation

    Get PDF
    Background Interest is increasing in the application of standardised outcome measures in clinical practice. Measures designed for use in research may not be sufficiently precise to be used in monitoring individual patients. However, little is known about how clinicians and in particular, multidisciplinary teams, score patients using these measures. This paper explores the challenges faced by multidisciplinary teams in allocating scores on standardised outcome measures in clinical practice. Methods Qualitative case study of an inpatient neurorehabilitation team who routinely collected standardised outcome measures on their patients. Data were collected using non participant observation, fieldnotes and tape recordings of 16 multidisciplinary team meetings during which the measures were recited and scored. Eleven clinicians from a range of different professions were also interviewed. Data were analysed used grounded theory techniques. Results We identified a number of instances where scoring the patient was 'problematic'. In 'problematic' scoring, the scores were uncertain and subject to revision and adjustment. They sometimes required negotiation to agree on a shared understanding of concepts to be measured and the guidelines for scoring. Several factors gave rise to this problematic scoring. Team members' knowledge about patients' problems changed over time so that initial scores had to be revised or dismissed, creating an impression of deterioration when none had occurred. Patients had complex problems which could not easily be distinguished from each other and patients themselves varied in their ability to perform tasks over time and across different settings. Team members from different professions worked with patients in different ways and had different perspectives on patients' problems. This was particularly an issue in the scoring of concepts such as anxiety, depression, orientation, social integration and cognitive problems. Conclusion From a psychometric perspective these problems would raise questions about the validity, reliability and responsiveness of the scores. However, from a clinical perspective, such characteristics are an inherent part of clinical judgement and reasoning. It is important to highlight the challenges faced by multidisciplinary teams in scoring patients on standardised outcome measures but it would be unwarranted to conclude that such challenges imply that these measures should not be used in clinical practice for decision making about individual patients. However, our findings do raise some concerns about the use of such measures for performance management

    Screening of DUB activity and specificity by MALDI-TOF mass spectrometry

    Get PDF
    Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analyzing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAMM DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs

    Understanding the evolutionary history of the papillomaviruses

    Get PDF
    This thesis focuses on the evolutionary history of the papillomaviruses (PVs) using phylogenetic approaches. Two aspects have been examined: the first is the level of phylogenetic compatibility among PV genes and the second is determining the ancestral diversification mechanisms of the PVs in order to explain the origin of the observed associations with host species. Bayesian phylogenetic analysis has been used to make evolutionary inferences. The existence of phylogenetic compatibility among genes was examined by estimating constrained and unconstrained phylogenies for pairs of PV genes. The Bayes' factor statistic derived from comparison of the constrained and unconstrained models indicated significant evidence against identical phylogenies between any of the 6 PV genes investigated and may indicate the existence of ancestral recombination events. The formation of new host-virus associations can occur via a process of 'codivergence', where, following host speciation, the ancestral virus association is effectively inherited by the descendant host species; 'prior divergence' of the virus, which results in multiple virus associations with the host; and 'host transfer', in which the virus lineage is transferred between contemporaneous host species. To distinguish between these mechanisms of virus diversification, an approach based on temporal comparisons of host and virus divergence times was devised. Difficulties associated with the direct estimation of PV divergence times led to the incorporation of a biased sampling approach into Bayesian phylogenetic estimation. This allowed for viral divergence events to be biased in favour of codivergence but allowed sampling of times that violate this assumption and therefore indicate either prior divergence or host transfer. Statistical evaluation of the proportion of violations at each viral divergence identified significant evidence of prior divergence events behind many of the observed PV-host associations and one ancestral host transfer event

    Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells

    Full text link
    © 2017 the American Physiological Society. Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/ adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases

    International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol

    Get PDF
    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature. There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6–7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
    corecore