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Abstract

Convergence is a central concept in evolutionary studies because it provides strong evidence for adaptation. It also
provides information about the nature of the fitness landscape and the repeatability of evolution, and can mislead
phylogenetic inference. To understand the role of adaptive convergence, we need to understand the patterns of non-
adaptive convergence. Here, we consider the relationship between nonadaptive convergence and divergence in mito-
chondrial and model proteins. Surprisingly, nonadaptive convergence is much more common than expected in closely
related organisms, falling off as organisms diverge. The extent of the convergent drop-off in mitochondrial proteins is well
predicted by epistatic or coevolutionary effects in our “evolutionary Stokes shift” models and poorly predicted by
conventional evolutionary models. Convergence probabilities decrease dramatically if the ancestral amino acids of
branches being compared have diverged, but also drop slowly over evolutionary time even if the ancestral amino
acids have not substituted. Convergence probabilities drop-off rapidly for quickly evolving sites, but much more
slowly for slowly evolving sites. Furthermore, once sites have diverged their convergence probabilities are extremely
low and indistinguishable from convergence levels at randomized sites. These results indicate that we cannot assume that
excessive convergence early on is necessarily adaptive. This new understanding should help us to better discriminate
adaptive from nonadaptive convergence and develop more relevant evolutionary models with improved validity for
phylogenetic inference.

Key words: convergence, coevolution, epistasis, epistatic interactions, thermodynamics, adaptation, selection, evolution-
ary process, molecular evolution, phylogenetics, amino acid propensities, Stokes shift, Stokes–Fisher model.

Introduction
Although evolution mostly proceeds by accumulation of
differences between groups, numerous examples of conver-
gent evolution exist, where similar solutions are found to
similar evolutionary problems. Well-known morphological
examples include eyes and wings, but an increasing
number of examples are known at the molecular level, in-
cluding proteins involved in echolocation in bats and ceta-
ceans (Liu et al. 2010; Shen et al. 2012; Parker et al. 2013),
foregut fermentation proteins in monkeys and cows
(Stewart et al. 1987), transcription factors in mammals
and birds (Yokoyama and Pollock 2012), and mitochondrial
proteins among different snakes (Castoe et al. 2008), and
mitochondrial proteins between snakes and agamid lizards
(Castoe et al. 2009).

Such convergence at the molecular level can both con-
found and inform evolutionary analyses. Convergent evolu-
tion can result in erroneous phylogenetic trees by showing
strong support for incorrect topologies (Castoe et al. 2009).
However, replicated evolution to the same trait or amino acid
in different lineages provides convincing evidence of adapta-
tion (Castoe et al. 2008). In addition, convergent evolution
can provide important information about the adaptive

landscape; the relationship among genotype, phenotype,
and fitness; the constraints acting on evolutionary processes;
and the role of chance and necessity in evolution.

Statistically meaningful analyses of adaptive convergence
rely on estimates of the likelihood that such convergence
could occur by chance in the absence of adaptation. Such
analyses generally rely on standard models of evolution
(Rokas and Carroll 2008; Parker et al. 2013), but it is now
clear that these models are woefully inadequate, drastically
underestimating the levels of nonadaptive convergence
(Castoe et al. 2009). We need to improve our ability to predict
the amount of expected nonadaptive convergence if we want
to avoid errors in phylogenetic relationships, make accurate
inferences of adaptive evolution, and investigate what con-
vergence tells us about the fitness landscape and evolutionary
process.

Two assumptions common to most evolutionary models
are that evolutionary processes are homogeneous among
sites in an alignment, and over time. It is becoming increas-
ingly clear that both assumptions are unjustified. Different
distributions of amino acids are found in buried locations in
the protein structure, exposed locations, tight turns, trans-
membrane helices, disordered regions, and locations of
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functional significance, indicating different selective con-
straints at these different types of locations. These differences
are embodied in some mutation selection models (Halpern
and Bruno 1998; Tamuri et al. 2011) and mixture models
(Koshi and Goldstein 1998, 2001; Lartillot and Philippe 2004).

The evolutionary process at individual sites can also vary as
a result of changes in structure, function, physiological role, or
context of the corresponding location in the protein structure
(Robinson et al. 2003; Blackburne et al. 2008; Tamuri et al.
2009; Kleinman et al. 2010; Pollock et al. 2012). In addition, in
the presence of epistatic or coevolutionary interactions be-
tween sites, the process at one site will change due to substi-
tutions that occur at other coupled sites (Pollock et al. 2012;
Pollock and Goldstein 2014). There has been increasing evi-
dence for the importance of epistatic interactions. For in-
stance, Bloom et al. performed measurements on influenza
proteins and observed that the effect of a substitution on the
thermodynamic properties depended on the amino acids
found in other positions (Ashenberg et al. 2013; Pollock and
Goldstein 2014). Pollock et al. (2012) demonstrated how
amino acid propensities at a site will adjust over time after
a substitution, such that the resident amino acid (and others
with similar physicochemical properties) tends to be the most
favorable amino acid at that site, an effect they termed an
“evolutionary Stokes shift.” As a result, the selective con-
straints at each site will shift to follow the changing occupant
at that site.

The amount of amino acid variation in a protein can be
decomposed into the variation allowed due to the site- and
time-specific constraints, plus the effect of variation in those
constraints among sites and over time. As a result, models
that neglect variation in evolutionary constraints over sites
and time tend to underestimate the magnitude of instanta-
neous selective constraints at individual sites, resulting in an
underestimation of the expected amount of neutral conver-
gence. In addition, temporal heterogeneity in selective con-
straints may induce time dependence to the neutral rate of
convergence. We therefore set out to quantify the frequency
of convergence in a data set of mitochondrial proteins and
investigate changes in convergence patterns over time. We
then compare these results with predictions from standard
models, as well as simulated proteins evolving under purifying
selection for thermodynamic stability, similar to simulations
used in Pollock et al (2012). We then consider what the results
indicate about the process of protein evolution.

Results

Convergence Decreases with Time in Vertebrate
Mitochondrial Proteins

We examined convergence events occurring on distinct
branches in a phylogenetic tree (supplementary fig. S1,
Supplementary Material online) from a concatenated align-
ment of all 13 mitochondrial protein sequences from over 600
vertebrate mitochondrial genomes. A fixed amino acid sub-
stitution model mtMam (Yang et al. 1998) with site rate
variation with five gamma distributed rates was used to
infer the substitutions. When comparing the substitutions

on two distinct branches, a pair of substitutions on each
branch at the same site can be classified as either a conver-
gence event (C) if the substitutions are to the same amino
acid, or as a paired divergence event (D) if the substitutions
resulted in different amino acids. Bayesian estimation was
used to obtain the C and D totals for each branch pair con-
sidered. For short branches, C and D would both be roughly
proportional to the product of the two branch lengths, sug-
gesting that the branch length dependence could be mini-
mized by considering the ratio of convergence and divergence
events, C/D. This is supported by previous analyses showing
that C and D are highly correlated and that D is a better
predictor of C than branch lengths (Castoe et al. 2009). For
display purposes, only substitutions with greater than 90%
posterior probability were considered in calculating C/D for
figures 1–4, although all significance and credible region esti-
mates were obtained by integrating overall ancestral state
uncertainty (see Methods and supplementary Methods,
Supplementary Material online). Distances between branches
were calculated as patristic distances along the phylogenetic
tree, measured between the ancestral nodes on each branch.
Note that we do not assess or make use of the state of the site
in the more ancient common ancestor of both branches.
Distances are given in units of expected number of replace-
ments per site.

The observed C/D ratios depend strongly on the distance
between branches (fig. 1), a result that might seem surprising
in the context of standard time- and site-homogeneous
models of substitution, simply because if the model does
not change one might think the C/D ratio would not
change either (we elaborate further on these expectations
below). The ratio is extremely high (0.4) for the shortest
distances between branches, falling to below 0.2 for the
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FIG. 1. Change in convergence over time in mitochondrial proteins. The
convergence over branch-paired divergence ratio (C/D) was estimated
for all eligible pairs of branches in the mitochondrial phylogeny. To help
visualization of the data, overlapping data points were merged into
single points with the color determined by the density of dots
merged, with blue intensity gradient as shown in the scale to the
right. We used a threshold of D� 20 for inclusion in this graph.
The distance between branches shown is the patristic distance between
the ancestral nodes of each branch, measured in average number of
amino acid replacements per site. The blue line shown is a running
average with window size 0.03.
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most separated branches. The 99% credible regions for the
expected C/D ratios over time are shown in supplementary
fig. S2, Supplementary Material online, and they are
nonoverlapping until later times when the ratios fall below

0.2 (supplementary table S1 Supplementary Material online).
The variation in ratios among branch pairs is high, with ratios
for short to medium branch distances (<0.5 replacements
per site) ranging from zero to nearly one. Notably, this high
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FIG. 4. Convergence in simulated data. Protein evolution was simulated along the mitochondrial tree using the WAG substitution model (A) and
Stokes–Fisher protein evolution model (B). C/D ratios were calculated using the same method as with the mitochondrial data (figs. 1–3) and were
visualized the same as in figure 1. The inset in (B) shows the SF and WAG averages along with the mitochondrial data average (in blue, as before), for
comparison. We used a threshold of D� 20 for A and D� 20 for inclusion in B.
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FIG. 2. Mitochondrial protein convergence for identical and different ancestral amino acids. The convergence over paired divergence ratios were
estimated, merged, and colored as described in figure 1, except that events were separated into two categories depending on whether the ancestral
amino acid at a site was the same (A) or different (B). We used a threshold of D� 0 for inclusion in these graphs.
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FIG. 3. Mitochondrial protein convergence for conserved and variable sites. The data and visualization are the same as in figure 1, except that ratios
were estimated separately for conserved (A) and variable (B) sites. We used a threshold of D� 7 for A and D� 10 for B.
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variation mostly arises from biological variation in the ex-
pected ratio among branch pairs, not from poor estimation
of ratios with few C or D counts (see model predictions
below). There is also a strong dependence on whether or
not the amino acid is different in the ancestral sequences of
the two branches (fig. 2). When the ancestral amino acids are
identical, the average ratio starts at about 0.45 and drops to
0.2, whereas when the ancestral amino acids are different the
average ratio is approximately constant at 0.08.

These results strongly suggest that amino acid propensities
and therefore substitution possibilities at each site are initially
highly constrained. We can calculate an effective number of
accessible residues by considering the size of the alphabet of
states m that would result in a particular value of C/D if all
substitutions were equally likely (i.e., a Jukes Cantor [JC]
model; Jukes and Cantor 1969). As shown in the supplemen-
tary Material, Supplementary Material online, if there is only a
short evolutionary distance between the branches so that
neither amino acid has changed, C/D = 1

m�2. An initial C/D
ratio of 0.45 therefore indicates an effective number of only
4.2 accessible residues per site. (These initial measurements
are taken over the period of time represented by the length of
the branches, and given the falloff in the C/D ratio, the initial
instantaneous ratio, prior to sequence divergence, may have
been substantially higher). When the ancestral amino acids
are known to differ, C/D is equal to m�2

m2�3mþ3, and therefore a
ratio of 0.08 is equivalent to an effective number of 13.4 res-
idues per site.

These results also strongly support the idea that amino
acid constraints change over time, because the C/D ratios
drop even when the ancestral amino acid is identical
(fig. 2A). Although the changing convergence probability in
the overall data set (fig. 1) can be understood by changing
mixtures of sites with the same ancestral states (fig. 2A) and
different ancestral states (fig. 2B), it does not appear possible
to explain the drop in convergence seen in figure 2A based on
changing site composition. If anything, as discussed below, the
bias in composition due to removal of evolved sites should
remove low constraint (low convergence probability) sites,
which would increasingly produce a bias for sites with
higher convergence probabilities. The 99% credible region
for the slope of a linear model fit to the data from
figure 2B shows a clear decrease in C/D ratios with divergence
(�0.109, �0.094; supplementary fig. S3, Supplementary
Material online). We therefore conclude that the constraints
are likely changing over time.

In contrast to the strong apparent initial constraint, once
the amino acids at a site diverge, the number of amino acids
acceptable at a site is quite high, drastically reducing the
chance of convergence. (Recall that a C/D ratio of 0.08 cor-
responds to an effective number of 13.4 accessible residues
per site.) To determine if sites retain information about con-
vergence probabilities in the case of different ancestral amino
acids, we resampled the substitutions among all sites, main-
taining the same ancestral amino acids for each substitution.
For example, if a branch has a substitution at site 5 from
alanine to glycine, we collected all the substitutions from
alanine on all branches and at all sites, then replaced the

glycine with an amino acid randomly chosen from the de-
scendent amino acids of the collected substitutions. The C/D
was then recalculated for every branch pair using these
resampled substitutions. The results are shown in supplemen-
tary figure S4, Supplementary Material online. The C/D ratios
for these resampled replacements are essentially the same as
for the observed ratios (fig. 2B), indicating that, conditional on
the different ancestral states, the sites provide no further de-
tectable information about convergence probabilities.

To further understand these results, we partitioned the
sites roughly evenly into three conservation classes. For re-
cently diverged branch pairs, the average C/D ratio was high-
est for conserved sites, starting at about 0.6 and falling to
below 0.2 (fig. 3A). In contrast, the average C/D ratio at var-
iable sites was initially only slightly above 0.2 and fell quickly to
near 0.1 (fig. 3B). As with the overall ratios, the fast- and slow-
evolving sites may have started out with much higher C/D
ratios, but the ratio dropped off too quickly to measure over
finite branches. This would particularly affect the fast-evolving
sites, and we cannot know for sure if the differences between
figures 3A and B are due to an inherently higher convergence
probability at more conserved sites or if they occur because
highly variable sites reach equilibrium much faster. The results
for identical and different ancestral states at each site for each
conservation level (supplementary figs. S5 and S6,
Supplementary Material online) are similar to the results for
the complete data set (fig. 2), albeit noisier. It is worth noting,
however, that the C/D ratio from identical amino acids at
conserved sites (supplementary fig. S3A, Supplementary
Material online) also falls off over time, indicating that the
effect of fluctuating constraints over time on convergence
probabilities is strong even for the most conserved sites.

Relationship of Convergence with Time under
Different Evolutionary Models

Given the convergence results for the mitochondrial data, we
wanted to know the degree that these results are predicted by
existing substitution models. We first simulated data along
the mitochondrial tree under two different models and then
we inferred the ancestral sequences and calculated the C/D
ratios using the same method as with the mitochondrial data.
The two models we used were the following: An amino acid
substitution matrix (Whelan and Goldman model, WAG)
(Whelan and Goldman 2001), which neglects differences
among sites and over time but accounts for differences in
the rates of exchange among different amino acids; and the
recent thermodynamic-based Stokes–Fisher (SF) model
(Pollock et al. 2012), which allows for coevolution (epistasis)
among sites, and thus allows for different processes among
sites and over time. We wish to avoid the possible impression
that the SF models we use are designed to accurately reflect
the true model of evolution. Instead, the SF model was con-
structed to generate semirealistic simulations that have many
salient aspects of evolution similar to real proteins and can
therefore guide us to better interpret observations on real
protein evolution.
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The “WAG” model results in a low and slightly decreasing
C/D ratio that is not highly variable (fig. 4A). In contrast, the
SF model results (fig. 4B) are a remarkably good match to the
mitochondrial data results (fig. 4B insert). This indicates that
the variance observed in the mitochondrial data is not just
the result of estimation error, and the general shape of the
curve is a fundamental expectation for evolution of complex
functional molecules such as proteins, and is not specific to
mitochondrial proteins.

To further dissect the basis for the observed effect, we
analyzed additional models of varying complexity, including
the simple JC model (equal rates of amino acid exchange), a
model with codon structure (Zihengian model, Z), WAG and
Z with gamma-distributed rate parameters, and the CAT-60
model (CAT), which includes variation in constraint among
sites (Jukes and Cantor 1969; Goldman and Yang 1994; Quang

et al. 2008). These models, except the CAT-60 model and
WAG, had their parameters fitted to data from SF simulations
that used a star phylogeny, instead of the mitochondrial phy-
logeny. The form of these models allowed exact calculations
of the expected mean C/D ratio, including the potentially
higher initial instantaneous C/D ratio inaccessible to analyses
on trees with finite branch lengths.

There is a decreasing C/D with time in all models of evo-
lution (fig. 5), although it is barely perceptible for the JC
model, and it is a relatively small effect for the WAG and Z
models. For models with a constant site-specific process over
time (all models except SF), the change in ratio is mostly
attributable to the difference in the number of available con-
vergent states depending on whether the ancestral state is the
same or different. It is interesting that the WAG and Z models
both have small but slightly different responses to adding site-
specific rate variation, with WAG somewhat delaying its drop
in convergence levels and the Z model accelerating the drop.
We speculate that convergence levels in the WAG model are
more dependent on slower exchanges, whereas in the Z
model the drop in faster sites takes precedence.

The results for that CAT model are especially notable when
broken down into same and different ancestral states (fig. 6A).
Although the C/D ratios for diverged ancestral states are
somewhat higher than the equivalent results from the mito-
chondrial (fig. 2B) data, the truly notable observation is that
the C/D ratio for sites with the same ancestral amino acid
actually increases over time under the CAT model. In princi-
ple, if one observes C/D ratios for the same set of sites that
change neither their ancestral amino acids nor their propen-
sities over time (as in the CAT model), then their C/D ratio
must remain constant. However, the set of amino acids is
changing in this case because the sites that evolve more rap-
idly are more likely to have differing ancestral amino acids
(about 80% of sites by the most divergent timepoint; see
fig. 6A inset). Unsurprisingly, the sites that change tend to
have higher entropy than the sites that do not, and the sites
with unchanged amino acids have less average entropy over
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time (fig. 6A inset). The increase in C/D ratios in the CAT
model for sites with the same ancestral amino acid is thus
explained by the lower average entropy (and thus greater
constraint) over time at those sites that remain unchanged.
This result is clearly exactly opposite the results from the
mitochondrial data, in which sites with the same ancestral
amino acids have clearly decreasing C/D ratios with time.
Although it is possible to conceive the evolutionary models
that are constant over time but still result in decreasing C/D
ratios in this case (i.e., if low entropy sites all had extremely
high mutation rates), such models would appear rather arti-
ficial and would have to overcome the naturally higher sub-
stitution rates of high entropy (low constraint) sites. It is
much easier (and perhaps more natural) to explain these
results with models that involve fluctuating constraints
over time, of which the SF model is but one example.

Finally, we described above that sites with different levels of
sequence conservation behaved differently in terms of their
drop in C/D ratio. To understand this better, we separated out
the instantaneous C/D ratio expectations for sites in the SF
star phylogeny simulations corresponding to buried, partially
buried, and exposed locations in the protein structure. From
this we can see that indeed the buried sites start out with a
higher C/D ratio of slightly over 0.8, and retain a higher ratio
throughout the evolutionary simulation (fig. 6B). In contrast,
the exposed sites start out with a lower ratio of about 0.5, and
are always lower. This implies that the instantaneous site-
specific constraints under the SF model are highest at
buried (more slowly evolving) sites and lowest at exposed
sites. By analogy, this suggests that similar factors are at
play in producing the real mitochondrial protein differences
in C/D ratios between slow- and fast-evolving sites observed
in figure 3.

Discussion
Current treatment of convergent events generally assumes
that nonadaptive convergence at the molecular level is well
predicted by simple time-averaged and site-averaged models.
However, our analysis of real proteins and model-based sim-
ulations demonstrates that the rate of convergence changes
over time, and can be extremely high for recently diverged
proteins. The convergence data presented here provide addi-
tional evidence that our understanding of how proteins
evolve needs to be fundamentally revised. The patterns of
convergent evolution observed may cause difficulties for phy-
logenetic reconstructions, but can also provide important
information about adaptation and adaptive bursts, as well
as allowing us to investigate the underlying topology of the
fitness landscape and the nature of the substitution process.

Convergence probability is closely related to the number of
amino acids that are acceptable at a given site at a given time.
If a small hydrophobic amino acid is required, the probability
that two acceptable substitutions in different lineages will
result in the same small hydrophobic amino acid can be
quite high. Constraints at another site requiring large flexible
amino acids will result in a similarly high probability of con-
vergence. If the substitution model is inferred by averaging
over different sites, or the same site at different times,

including instances where only small hydrophobic, or large
flexible, or aromatic, or charged amino acids are required, the
result is a model with few constraints that allows a wide
variety of different amino acids. These simple models will
overestimate the number of acceptable amino acid substitu-
tions and underestimate the probability of convergence.

As indicated above, the high rate of convergence and the
strong dependence of the convergence rate on evolutionary
distance strongly suggest the importance of variation in the
substitution rate across sites and over time. The idea of fluc-
tuating amino acid substitution rates over time is an impor-
tant feature of evolutionary Stokes-shift theory (Pollock et al.
2012). According to this theory, the fitness of an amino acid
for any site, and therefore the propensities for the amino acid
at that site, is dependent on how well suited it is to the
environment formed by the amino acids at neighboring
and interacting sites. As substitutions at neighboring sites
alter the environment of a site, the amino acid propensities
of that site will also be altered, resulting in fluctuating substi-
tution rates at that site. Homologous but divergent proteins
in other species will likely have fluctuated differently, meaning
that the sets of acceptable amino acids at each position will
diverge with evolutionary distance, causing a falloff in the
convergence probability. In Stokes-shift theory, divergence
in substitution models at a site is strongly coupled to substi-
tutions at that site, so the convergence rate will also be sig-
nificantly lower following a substitution, consistent with the
data shown in figure 2.

The SF model makes three additional predictions. First, as
the selection at different sites in the protein will be of different
and fluctuating magnitude, there should be large differences
and fluctuations in the convergence probability, as shown in
figure 4B. Second, we would expect more buried locations to
be under more stringent constraints, resulting in a higher
convergence probability than exposed locations, as shown
in figure 6B. Third, as also shown in figure 6B, we expect
the selective constraints at buried locations to diverge
slowly because the residues around such locations are also
buried and evolve slowly, resulting in a slower decline in the
convergence probability with increasing evolutionary dis-
tance. All these predictions are matched by the observations
of mitochondrial proteins (figs. 1 and 3).

Both heterogeneity of selection at different sites in the
protein and fluctuations in selection over evolutionary time
can cause models that neglect these effects to underestimate
convergence rates. In particular, the CAT model (Quang et al.
2008), which includes spatial variation and excludes temporal
variation, generates initially high C/D ratios that decline over
evolutionary distance in a similar manner as the SF model
(fig. 6A). Similar drops in C/D ratios can also be seen in other
highly parameterized site-specific models of spatial variation
(data not shown). However, the effect of spatial versus tem-
poral variation can be distinguished by considering the evo-
lutionary distance dependence of C/D ratios from the same
ancestral states. As shown in figure 6A, this ratio increases
with evolutionary distance when a model is used (CAT) that
includes only spatial variation. Sites with fewer constraints are
more likely to undergo changes, and therefore less likely to
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have the same ancestral states at longer divergence times. As
a result, as shown in figure 6A inset, the sites with the same
ancestral states become increasingly the highly constrained
sites with lower sequence entropy. As more constrained sites
have higher C/D ratios, this means that C/D for these sites will
increase with evolutionary distance. In contrast, when there
are temporal changes in selection, diverging sequences will
increasingly be under different selective constraints. This can
result in a decreasing C/D ratio with increasing evolutionary
distance, as observed in figure 2A. A fluctuating temporal
component is not surprising, as no plausible biophysical
model would allow site-specific constraints to remain fixed
in the face of divergence in the rest of the protein, and there is
other strong evidence for coevolution (or epistasis) among
residue positions (Pollock et al. 1999, 2012; Pollock and
Goldstein 2014).

The effects of fluctuating and poorly estimated neutral
convergence may have substantial effects on phylogenetic
inference. Although truly neutral convergence is expected
to be unbiased to any particular phylogenetic solution, it
may well add considerable noise that would mask true phy-
logenetic signal. The distance dependence of the convergence
probability may also interact in complex ways with the well-
known phylogenetic problem of long-branch attraction
(Felsenstein 2004), and we expect that extensive analyses
will be necessary to sort out such interactions. Furthermore,
it is clear that our new understanding of fluctuating substi-
tution processes suggests a multitude of new questions about
how protein evolution operates and the role of convergence
analysis in understanding protein evolution. Can we use con-
vergence to better estimate instantaneous constraints? Can
we understand the role of interactions between different
amino acid substitutions at different distances in a protein
structure, and how substitutions at those positions affect the
probability of convergence? Can we use convergence esti-
mates over different lengths of time to better understand
the rates of fluctuation in constraints both with and without
substitution at a target site? The inclusion of variation in the
substitution process across sites and over time—details that
standard models currently lack—should be included in future
evolutionary models to obtain more accurate descriptions of
protein evolution.

Materials and Methods

Convergence calculations on mitochondrial proteins

Thirteen genes encoded in the mitochondrial genome were
downloaded from GenBank for 641 tetrapod species. Separate
alignments of amino acid sequences for every gene were
made using ClustalX (Larkin et al. 2007). Aligning a selection
of the sequences using PRANK (L€oytynoja and Goldman
2005) yielded similar downward-sloping results, although
there are differences in the height of the early curve (supple-
mentary fig. S7, Supplementary Material online). The muta-
tion pattern in genes across the mitochondrial genome has a
complex pattern of changing asymmetry (Krishnan, Raina,
et al. 2004; Krishnan, Seligmann, et al. 2004) that is not em-
bodied in current phylogenetic reconstruction programs. We

therefore made our phylogeny using only cytochrome oxidase
1 (CO1), which has the least asymmetric mutation rates
among vertebrate mitochondrial genes (Krishnan, Raina,
et al. 2004; Krishnan, Seligmann, et al. 2004). We partitioned
the CO1 data by codon positions and determined the pre-
ferred model for the three data partition using the Akaike
Information Criterion (Akaike 1973, 1983) in MrModeltest
v2.2 (Nylander 2004). The Bayesian consensus tree was deter-
mined using the model for each partition (integrating over
model parameters) and MrBayes 3.0b4 (Huelsenbeck and
Ronquist 2001; Ronquist and Huelsenbeck 2003).

The alignments for all genes were concatenated and taxa
with a large number of gaps (4 500 of 3,596 sites) were
removed, leaving 629 taxa. PLEX (de Koning et al. 2012) was
used to infer the ancestral sequences and substitutions along
the (maximum likelihood) CO1 tree. A fixed amino acid sub-
stitution model mtMam (Yang et al. 1998) was used along
with site rate variation with five gamma distributed rates.
PLEX analyses were run for 400,000 Markov chain Monte
Carlo generations after 100,000 generations of burn-in. All
branch pairs except sister branches and branch pairs where
one branch was the ancestor of the other were considered.
For the significance calculations (supplementary Materials,
Supplementary Material online), we sampled the complete
set of ancestral node states on the phylogenetic tree every 100
generations. Double substitutions for each branch pair were
determined by finding all sites that changed between ances-
tor and descendant on both branches in the pair in that
generation. Double substitutions that ended at the same de-
scendant amino acid in both branches were counted as con-
vergent events, while the remaining double substitutions that
ended at different descendant amino acids were counted as
divergent events. For simplicity of display, for figures 1–4 the
average C/D ratios were calculated using only sites with
4 90% posterior probability of having a substitution, and
branch pairs were included in the average only if D was
greater than a specified cutoff (see figure legends). The
number of inferred substitutions along the tree were counted
to classify sites as conserved (60 or fewer substitutions) or
fast-evolving sites (75 or more substitutions). We estimated
how well we could infer the C/D ratios using this method by
simulating sequences evolving over the mitochondrial tree
and then comparing the C/D ratios from the known ancestors
with the inferred ancestors. The results are shown in supple-
mentary figure S8, Supplementary Material online.

The Stokes–Fisher Model

The SF model used to simulate protein evolution in this study
has been described previously (Williams et al. 2006; Goldstein
2011). It is based on modeling the evolutionary process where
the fitness of the protein is the probability that the protein
would be folded in a particular “native” structure under equi-
librium conditions.

The free energy GðS; CkÞ of a protein sequence S in a par-
ticular conformation Ck was calculated based on the sum of
pair-wise energies between amino acids that are in contact in
that conformation (i.e., have their C� atoms closer than 7 Å),

1379

Convergence Rates Decrease over Time . doi:10.1093/molbev/msv041 MBE
 at U

niversity C
ollege L

ondon on July 27, 2015
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

F
F
; Pollock etal.
 -- 
 -- 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv041/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv041/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv041/-/DC1
a
b
Cytochrome Oxidase
a
b
AIC) (
; Akaike
T
3596
Cytochrome Oxidase 1 (
)
MCMC
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv041/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv041/-/DC1
F
-
to
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv041/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv041/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv041/-/DC1
m
Stokes Fisher
7&Aring;
http://mbe.oxfordjournals.org/


using the contact potentials determined by Miyazawa and
Jernigan (1985) based on their analysis of protein structures.
To calculate the free energy of folding �GFoldðSÞ, we calcu-
lated GNSðSÞ, the free energy for the native state (the confor-
mation of the 300-residue purple acid phosphatase, PDB
1QHW, Lindqvist et al. 1999) as well as a large ensemble of
alternative folds. We assumed that the distribution of the free
energies of the large ensemble of thermodynamically relevant
unfolded and alternative conformations can be represented
by a Gaussian distribution with sequence-dependent average
GðSÞ and variance �ðSÞ2, which we estimated by calculating
the average free energy and variance of the free energies of the
sequence in the conformation of the first 300 residues of 55
different structurally diverse protein structures. Assuming
that a large set (10160) of possible unfolded structures with
free energies are drawn from that distribution, we can then
calculate �GFoldðSÞ and therefore the probability PFoldðSÞ that
the protein would be folded at equilibrium. As in previous
work, we considered the fitness of a sequence !ðSÞ to equal
the probability that it folded to the native state.

For the star phylogeny simulations, we initialized a protein
sequence by choosing 300 codons at random (ignoring stop
codons), using the standard genetic code to determine the
encoded amino acids. We then computed the codon substi-
tution model at each site in the protein at each point in time.
The mutation rate to all possible alternative codons �ij was
constructed using the K80 nucleotide model (� ¼ 2) (Kimura
1980), disallowing multiple nucleotide changes. For each
nonsynonymous mutation, !0 of the resulting sequence
was computed based on the value of �GFoldðS

0Þ, the free
energy of folding for this sequence, and the corresponding
folding probability PFoldðS

0Þ. This fitness was then compared
with the fitness of the premutated sequence !; the mutation
rate was multiplied by the acceptance probability calculated
using the Kimura formula for diploid organisms (Kimura
1957, 1962; Crow and Kimura 1970):

Qij ¼ �ij
1� exp ð�2sÞ

1� exp ð�4NEff sÞ
ð4Þ

where s ¼ !0�!
! , with Ne, the effective population size set

equal to 106.
The simulation proceeded for a sufficient number of gen-

erations such that the stability of the protein reached equi-
librium (i.e., the average fitness was approximately constant
over time and across independent runs). Equilibrium was
reached due to mutation–selection balance, the point
where stabilizing mutations are relatively uncommon and
have smaller relative fitness benefits, while destabilizing (but
marginally acceptable) mutations are greater in number.

For the star phylogeny simulations, 100 replicate sequences
were evolved to approximate equilibrium and then split into
10 lineages diverging from one another to produce sequences
related by a star phylogeny. Each lineage was evolved for a
distance of 10.0 synonymous nucleotide substitutions per
nucleotide site from the common ancestor (on average,
6.95 amino acid replacements per amino acid position). We
estimated the expected C/D ratios from these data.

To calculate the expected C/D ratios, we considered the
instantaneous codon–codon substitution rate matrices given
the constraints at each site in the two proteins and the cur-
rent codons at this site. We then calculated the rate at which
a double transition to the same amino acid would be ob-
served in both lineages, compared with the rate at which a
double transition to different amino acids would be observed.
C and D were summed over all sites, with the ratio of these
quantities computed for that pair of proteins. We then aver-
aged C/D over all pairs of proteins in each star phylogeny, and
over all star phylogenies. The details are provided in the
Supplementary Material, Supplementary Material online.
The observed C/D ratios found in figure 4B were obtained
from simulating SF over the mitochondrial tree and then
inferring the ancestors and C/D ratios using the same
method as for the mitochondrial data.

Phenomenological Substitution Models

We also considered the expected C/D ratio for a variety of
phenomenological substitution models, as more fully de-
scribed in the supplementary Material, Supplementary
Material online. We again considered a site in two homolo-
gous proteins i and j. We then calculated the probability that
every pair of amino acids (or codons) would be observed in
proteins i and j. We then used the substitution model to
calculate the rate at which these amino acids would undergo
a double substitution to the same or different amino acids (or
codons coding for the same or different amino acids). C and D
were calculated by summing over all possible amino acids (or
codons) for sequences k, i, and j. When a gamma distributed
rate distribution was used, we also summed C and D over four
different rate categories. The ratio then yielded the C/D ratio.

Supplementary Material
Supplementary figures S1–S8 and table S1, and material are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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