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Abstract 

 
 
 
This thesis focuses on the evolutionary history of the papillomaviruses (PVs) 

using phylogenetic approaches. Two aspects have been examined: the first is the 

level of phylogenetic compatibility among PV genes and the second is 

determining the ancestral diversification mechanisms of the PVs in order to 

explain the origin of the observed associations with host species. 

 

Bayesian phylogenetic analysis has been used to make evolutionary inferences. 

The existence of phylogenetic compatibility among genes was examined by 

estimating constrained and unconstrained phylogenies for pairs of PV genes. The 

Bayes' factor statistic derived from comparison of the constrained and 

unconstrained models indicated significant evidence against identical phylogenies 

between any of the 6 PV genes investigated and may indicate the existence of 

ancestral recombination events. 

 

The formation of new host-virus associations can occur via a process of 

'codivergence', where, following host speciation, the ancestral virus association is 

effectively inherited by the descendant host species; 'prior divergence' of the 

virus, which results in multiple virus associations with the host; and 'host 

transfer', in which the virus lineage is transferred between contemporaneous host 

species. To distinguish between these mechanisms of virus diversification, an 

approach based on temporal comparisons of host and virus divergence times was 

devised. Difficulties associated with the direct estimation of PV divergence times 

led to the incorporation of a biased sampling approach into Bayesian 

phylogenetic estimation. This allowed for viral divergence events to be biased in 

favour of codivergence but allowed sampling of times that violate this 

assumption and therefore indicate either prior divergence or host transfer. 

Statistical evaluation of the proportion of violations at each viral divergence 

identified significant evidence of prior divergence events behind many of the 

observed PV-host associations and one ancestral host transfer event. 
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Glossary 

 
Capsid: a viral protein coat that forms around the viral genome to protect it from 

the environment outside of the host cell. 

Codivergence: the process in which virus divergence occurs due to speciation of 

the host species it is associated with. Separation on different host species causes 

the two virus populations to evolve independently of each other.  

Convergent evolution: the process by which the same trait or character is 

evolved in unrelated lineages. Lineages displaying traits/characters that have 

been acquired via convergent evolution may mistakenly be inferred to be closely 

related, and the similarity inferred to be inherited from a common ancestor.  

Cospeciation: the process by which a vicariance event causing speciation of a 

host organism also causes speciation of the parasite species associated with it.     

Cutaneous tissue: epithelial tissue made up of layers of keratinised stratified 

squamous cells.  

Early genes: genes encoded in the ‘early’ region of the PV genome. These 

include the genes E1, E2, E4, E5, E6, E7, E8 and E9. 

Epithelial hyperplasia: a proliferation of the epithelial cells; results in a wart or 

tumour 

Fahrenholz’ rule: strict cospeciation (codivergence) will result in parasite 

(virus) and host phylogenies with identical topologies. 

Farris optimisation: an algorithm for calculating the minimum number of 

character changes along a proposed tree relating a set of data. Farris optimisation 

is employed when the characters are ordered and therefore changes are additive. 

Fitch optimisation: similar to Farris optimisation but applied to data possessing 

unordered characters, e.g., the nucleotide states A, C, G, and T. For unordered 

characters all possible changes of character state have a cost of 1.  

Homology: characters (or traits) that shared by two lineages that were inherited 

from their common ancestor 

Homoplasy:  characters (or traits) that are shared by two lineages but which were 

not inherited from their common ancestor.  

 xiii



Host transfer: the process in which a virus associated with one host species is 

able to establish infection on another host species. May also be referred to as host 

switch, or lateral/horizontal transmission. 

Incomplete lineage sorting: the process by which following speciation of the 

host, the parasite or virus associates with only one of the descendant species. 

Keratinocytes: stratified squamous cells that undergo a process of terminal 

differentiation in the epithelium that results in the loss of nuclei and filling of 

intracellular space by filaments of keratin. The keratinisation results in a tougher, 

waterproof tissue, which forms the skin and hair. 

Late genes: genes encoded in the ‘late’ region of the PV genome. These include 

the genes L1 and L2, which express the capsid proteins. 

Lesion: an abnormal growth of body tissue. 

Monophyletic clade: a phylogenetic of taxa that unites all the descendents of a 

common ancestor. 

Mucosal tissue: epithelial tissue that is moist and is made up of layers of non-

keratinised stratified squamous cells. Mucosal tissue forms the lining of the 

mouth, the inner eye, and the ano-genital region. 

Paraphyletic clade: a phylogenetic grouping of taxa that unites only some of the 

descendants from a common ancestor. 

Phylogeny: a tree depicting the pattern and relative timing of the lineage splitting 

events that occurred among a group of species.  

Polyphyletic clade: a phylogenetic grouping of taxa uniting species that do not 

share a recent common ancestor.  

Polyploidy cell: a cell possessing more than two complete sets of chromosomes. 

Post-speciation dispersal: the colonisation of different host species by the same 

parasite species.   

Prior divergence: divergence of a viral lineage or parasite species in the absence 

of a host speciation event. Prior divergence allows the new lineage to exploit a 

different environment or resourse on the same host species.  

Reassortment: the process in which two segmented virus genomes infecting the 

same cell exchange genome segments to create new reassortant strain. 

 xiv



Recombination: – the process in which a section of genetic material is 

exchanged between genomes. Recombination involves the breaking of DNA 

from one genome and insertion into another genome. 

Stratified squamous cells: layers of flattened epithelial cells that form the tissue 

at anatomical locations subject to regular abrasion, e.g. the skin. 

Tree topology: the lineage-splitting pattern, or branching pattern, that is 

observed in the phylogeny relating a group of species.  
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Chapter 1 

Introduction 

 

 

 

1.1 The Papillomaviruses (PVs) 
 

 The papillomaviruses (PVs) are small (approximately 55-60 nm in 

diameter), non-enveloped, double stranded DNA viruses that comprise the 

Papillomaviridae family. PV infection may cause lesions (epithelial hyperplasia) 

on mucosal and cutaneous tissue, referred to as warts, papillomas, and 

condylomas depending on the anatomical site. The lesions are generally benign 

and regress spontaneously; however, PVs may persist in the epithelial cells of 

their hosts for many years. Persistent infection has been identified as a key factor 

in the ability of a subset of PV types to cause infections that progress from 

benign, low-grade lesions to malignant tumors (Durst et al. 1983; Boshart et al. 

1984; zur Hausen 1989; Ho et al. 1995; zur Hausen 2000; Campo 2002; Ferenczy 

and Franco 2002; Schiffman et al. 2005; Doorbar 2006). The oncogenic potential 

displayed by certain PV types has made the PVs medically important viruses and 

has resulted in increased research interest to understand the biology and 

pathology of these viruses.  

 

The diversity demonstrated by the PVs also makes them interesting subjects 

for evolutionary study. In addition to differing histological preferences, site 

preferences and pathological severities among the PVs, different host species 

preferences are also observed. There is therefore a rich evolutionary history that 

is yet to be investigated among this family of viruses (Garcia-Vallve, Alonso and 

Bravo 2005; Bravo, de Sanjose and Gottschling 2011). For instance, substantial 
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PV diversity has been uncovered in humans and together these human-infecting 

lineages display the full complement of phenotypic variation that is observed 

among PVs (Ekstrom, Forslund and Dillner), e.g. some infect only cutaneous 

tissue at genital site, some infect only cutaneous tissue at non-genital sites, some 

infect only mucosal tissue at genital sites, other genotypes display dual tropism, 

etc. However, the molecular ‘signatures’ that correspond with these phenotypes 

(e.g., what defines a cutaneotrophic PV at the genotype level), are yet to be 

determined. Such a study will be of particular clinical benefit when applied to 

determine the molecular signatures for oncogenecity.  

In this particular thesis, I attempt to investigate the mechanisms of PV 

diversification to different host species. Some day, a characterisation of the 

adaptive changes, occurring at the genotype level, that enable infection of a 

particular host species may be achieved but at present the focus is on determining 

the nature of the macroevolutionary processes (i.e. those occurring above the 

molecular level) by which PVs have diverged to new hosts  (Gottschling et al. 

2007b; Gottschling et al. 2011b). 

 

 

1.2 Taxonomic Classification of the PVs 
 

The PVs were initially assigned to the Papovaviridae family along with 

another group of tumour viruses, the polyomaviruses, based on morphological 

similarities, such as in capsid structure, between the two groups of viruses (Wildy 

1971). However, the sequencing of PV and polyomavirus genomes revealed a 

lack of evidence for a homologous relationship, based on different genome 

organisations and protein sequence comparisons (Danos, Katinka and Yaniv 

1982). Statistically significant sequence similarity was later identified between 

the large tumour-antigen of the simian virus 40 (a polyomavirus infecting 

monkeys) and the E1 protein of the PVs (Clertant and Seif 1984; Mansky, Batiza 

and Lambert 1997), both of which share helicase functionality. However, the lack 

of evidence to suggest homology between the genomes of the two groups of 

viruses effected their reclassification of to individual families by the International 

Committee on Taxonomy of Viruses (ICTV) (van Regenmortel et al. 2002). 
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Within the Papillomaviridae family, PV classification comprises of five 

taxonomic categories: “genus”, “species”, “type”, “subtype”, and “variant” (de 

Villiers et al. 2004). 

 

Taxonomic classifications of newly isolated PVs are performed via sequence 

comparisons of the L1 gene (de Villiers et al. 2004). This is primarily due to the 

ease of amplifying this region of the genome as well as the high degree of 

sequence conservation observed in the L1 gene, but was also initially supported 

by phylogenetic evidence demonstrating that PV relationships deduced from the 

L1 gene region were congruent with the relationships determined from other 

genomic regions (Bernard et al. 1994; Myers et al. 1994; Chan et al. 1995). 

Subsequent phylogenetic analyses have, however, revealed differences in the 

evolutionary histories of PV genes from different genome regions (Garcia-

Vallve, Alonso and Bravo 2005; Narechania et al. 2005; Bravo and Alonso 

2007). A key observation among these differences is that early gene phylogenies 

show groupings consistent with the biological properties of the PV types (e.g. 

distinct clades of high-risk and low-risk mucosal PV types, grouping of genital 

cetacean PV types with genital primate PV types) whilst the late gene 

phylogenies do not. Consequently, there has been some suggestion (Bravo and 

Alonso 2007) that PV taxanomic classification based on conserved sequences 

from the E1 and E2 protein sequences would produce a taxonomic structure that 

grouped PV types by functional properties and hence, would be more appropriate 

than the L1 gene sequences. However, despite the phylogenetic inconsistencies of 

the L1 gene, the classification protocol has remained the same (Bernard et al. 

2010); Table 1.1 outlines the criteria used to classify PV isolates based on L1 

gene sequence similarities.  

 

A PV isolate is declared a new type if its L1 gene shows more than 10% 

sequence divergence from its closest known PV type (de Villiers et al. 2004). For 

new PV types, the naming convention decided upon by PV researchers (Fauquet 

et al. 2005) (check Bernard et al. 2005) was to reference the scientific name of 

the infected host species, for example, PVs isolated from the common bottlenose 

dolphin (sp. Tursiops truncatus) are named Tursiops truncatus PVs (initialised as 
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TtPV). However, deviations from this naming system have resulted in some PV 

types being assigned the host species’ common name. For example, the PV type 

isolated from the European elk (sp. Alces alces) was named 'EEPV' and 'CRPV' 

refers to the cottontail rabbit (sp. Sylvilagus floridanus) PV. Some PV names also 

incorporated the site of infection, for example, the oral PV types from dog 

(COPV), rabbit (ROPV) and hamster (HaOPV) species.  

 

The different naming schemes that have been employed may produce replicate 

abbreviated forms, for instance, the PV type isolated from the European 

hedgehog (sp. Erinaceus europaeus) has been labelled EEPV1, which may be 

readily confused with EEPV from the European elk.  Bernard et al. (2010) have 

corrected for these inconsistencies by renaming all PV types using only the 

scientific name of the host species, e.g. the European elk PV type (EEPV) is now 

known as the Alces alces PV type 1 (AaPV1) and the oral rabbit PV type (ROPV) 

is now known as the Oryctolagus cuniculus PV type 1 (OcPV1). Additional PV 

types isolated from the same host species are then numbered as type 2, 3, etc. 

Where replicate names are still possible under this scheme additional letters are 

used, e.g. PV types from the Western roe deer (sp. Capreolus capreolus) are 

abbreviated as CcaPV to avoid confusion with PV types isolated from the 

Loggerhead turtle (sp. Caretta caretta), which are abbreviated as CcPV. The only 

exceptions to this unified naming system occur with the PV types isolated from 

humans (sp. Homo sapiens), domestic cows (sp. Bos taurus) and domestic dogs 

(sp. Canis familiaris), each of which have retained their original abbreviated 

forms that reference only the genus of the host species, i.e., HPV, BPV, and CPV, 

respectively (Bernard et al. 2010).  

 

The renaming of PV types by Bernard et al. (2010) coincided with the 

publication of the research carried out in this thesis (Shah, Doorbar and Goldstein 

2010). To maintain consistency with the PV names used in the published paper, 

in the following text I refer to the animal PVs studied in this thesis by their 

originally assigned names. However, for the reader’s reference, the revised names 

of those PV types will be given after, in parentheses, and are listed in Appendix 
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A1. PV types that have not been studied in this thesis will be referred to using the 

new names.  

 

 

Taxonomic level % Nucleotide identity (L1 gene) E.g. 

Genus 60-70  α 

Species 71-89  α-9 
Type 90-100  HPV16 

Subtype 90-97 - 
Variant 98-99 Tb-7 

        

Table 1.1: Taxonomic levels within the PV family and the corresponding classification 

criteria as outlined by deVilliers (2004). 

 

 

Intra-type diversity may be further classified into distinct subtypes when there 

is 2-10 % nucleotide difference with the L1 gene of the reference genome (i.e. 

first identified genome of that type), and distinct variants (Ong et al. 1993) when 

there is less than 2% sequence divergence from the reference genome. PVs 

isolated from bonobo (Pan paniscus, PcPV - now PpPV1) and the common 

chimpanzee (Pan troglodytes, CCPV1 - now PtPV1), which were classified as 

distinct types, possess sequence similarities indicative of a subtype relationship 

(de Villiers et al. 2004). Intensive sampling efforts of HPVs have so far identified 

little intra-type diversity at the subtype level, however, there has been substantial 

diversification at the variant level (Ho et al. 1993; Ong et al. 1993; Calleja-

Macias et al. 2005; Chen et al. 2009). These diversifications may be associated 

with differences in biological behaviour, for instance, variants of the cervical 

cancer-associated types HPV16 and HPV18 differ in their ability to persist in 

epithelial cells and hence, their oncogenic potential (Villa et al. 2000; Burk et al. 

2003; Sichero et al. 2007; Sichero, Simao Sobrinho and Villa 2012). 

 

At higher taxonomic levels, PV types are grouped into species and PV species 

into genera. 18 PV genera were initially established (de Villiers et al. 2004) each 
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of which were designated a letter of the Greek alphabet (α-π). The continual 

discovery of new PV types has now extended the PV family to 32 distinct genera. 

To accommodate the additional genera into the existing nomenclature system, the 

Greek alphabet is re-used with the prefix ‘dyo’ (Bernard et al. 2010). However, 

some individual PV types still remain unclassified at the genus level, e.g. BPV7.  

 

PV types are assigned to the same genus if they share 60-70% nucleotide 

identity. Nucleotide sequence identities between genomes of PV types from 

different genera are found to vary between 23-43 % (de Villiers et al. 2004). The 

genus classifications appear to unite PV types infecting closely related, if not the 

same, host species. For example, the α, β, γ, μ, and ν genera are all populated by 

PVs infecting species from the mammalian order Primates; the κ PVs have been 

isolated from different rabbit species from the order Lagomorpha; the δ, ε, and ξ 

PVs infect various ungulate hosts from the order Artiodactyla; the λ PVs infect 

species from the mammalian order Carnivora; the π genus currently consists of 

PV types infecting different species rodent species; and, the ο and υ PVs infect 

species from the mammalian order Cetacea.  

Some genera may be further defined by biological and pathological properties 

beyond the observed host range. For instance, the δ and ε genera both comprise 

of artiodactyl PV types (including some isolated from bovine hosts) that cause 

fibropapillomas, which extend below the epithelial tissue of normal PV infection 

into the dermis (Nasir and Campo 2008). Bovine PV types from the ξ genus, 

however, cause only epithelial infection of cutaneous and mucosal tissue. 

Similarly, PV types from the β, γ, μ, and ν genera, which infect primates, all 

cause lesions in cutaneous tissue but, notably, not at genital sites. In contrast, the 

genus of α PVs, which also infect primates, is a mix of PV types specifically 

targeting mucosal and/or cutaneous epithelial cells at genital and non-genital 

sites.  

Within each genus PV types are grouped into PV species (not to be confused 

with the host species), which are denoted by the genus name and a number, e.g., 

PV species from the α genus are named α-1, α-2, etc. The members of each PV 
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species are defined by 71-80% nucleotide sequence similarity in the L1 gene (de 

Villiers et al. 2004).  

The viral species groupings are generally found to unite PV types with similar 

biological and pathological characteristics. The best example of this is observed 

in the α genus, which currently comprises of 15 different species (Figure 1.1, 

adapted from Narechania et al. 2005: Fig. 1). In the α genus, the PV species 1, 3, 

10, 13, 14, and 15 all comprise of PV types that have been isolated from benign 

lesions of mucosal tissue at genital and/or oral sites. The α−10 species includes 

the PV types CCPV1 (now PtPV1) and PCPV1 (now PpPV1) from non-human 

primates (not included in Figure 1.1) - chimpanzee (Scinicariello et al. 1997, 

unpublished), and bonobo (Van Ranst et al. 1991), respectively, both of which 

were extracted from oral focal epithelial hyperplasias like their closest known 

relative – the human PV type HPV13.  

The α species 5, 6, 7, 9 and 11 also contain PV types that specifically infect 

mucosal tissue; however, these types have the potential to cause malignant 

tumours and are therefore labelled as ‘high-risk’ (Munoz et al. 2003). The α-12 

species (not included in Figure 1.1) currently comprises of only monkey PVs 

isolated from mucosal genital sites. The first α-12 PV type, RhPV1 (now 

MmPV1), was isolated from a metastatic penile squamous cell carcinoma 

(Kloster et al. 1988) and is observed to cluster with the high-risk HPV species in 

PV phylogenies. PV types from the α−2 species have been detected in skin warts 

at various anatomical sites whilst types from the α−4 and α-8 species have been 

isolated from benign lesions of both mucosal and cutaneous tissue and therefore 

display properties of dual tissue tropism. 

As is demonstrated in the phylogeny of HPVs from the α genus (Figure 1.1), 

phylogenetic analysis of PV types reveals high support for monophyletic 

clustering at the PV species level. A similar observation is made for PV species 

of other genera (Bernard et al. 2010). Thus, phylogenetic groupings of the α-

HPVs tend to correspond to similar biological and pathological properties. In 

particular, Figure 1.1 demonstrates high statistical support for the grouping of the 

high-risk HPV species (α species 5, 6, 7, 9 and 11) into a single clade, suggesting 
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a single lineage (internal branch 4 in Figure 1.1) for the origin of oncogenic 

potential among α HPV types. 

 

 

Genital and oral  mucosal PVsa  

Genital mucosal, oral  
mucosal and cutaneous PVsa,b,c  

Genital and oral  mucosal PVsa  

Genital mucosal PVa  

Genital mucosal PVs associated  
with cervical carcinomaa,d  

Genitala and orale mucosal PVs,  
also identified in cutaneous carcinomasd,f  

Genital mucosal PVs associated  
with cervical carcinomaa,d,g,h,i,j  

Genital mucosal and cutaneous PVsk.  
Associated with cervical carcinomaa,d.  

Genital and oral mucosal PVs 
associated with cervical carcinomasa,d,l  

Genital mucosal, oral  
mucosal and cutaneous PVsa  

Genital mucosal PVsb,m,n  

Genital mucosal PVsb,l,m,n,o,p,q,r,s  

Cutaneous PVsa,t  

Cutaneous fibropapilloma PVu  

Figure 1.1: Phylogenetic tree depicting relationships among HPV types of the α genus. 

The tree was estimated from the concatenated protein and nucleotide sequences of the E6, 

E7, E1, E2, L2, and L1 ORFs using Bayesian phylogenetic methods, with the bovine PV 

type 1 (BPV1) functioning as an outgroup taxon. Branch labels indicate the node number 

followed by the support values from phylogenetic estimations using various methods in 

the following order: Bayesian clade credibility, maximum parsimony bootstrap 

percentage, and neighbour joining bootstrap percentage. Methods that show 100% 
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support for a branch are inidicated using an asterisk; disagreements between the Bayesian 

phylogenetic grouping and phylogenetic groupings from either of the other two methods 

are indicated by an ‘N’. The HPV taxa, grouped by viral species classifications, constitute 

14 of the 15 species identified within the α genus. 13 of these HPV-containing α species 

are represented in the tree. No HPV type is known for α PV species 12, which is 

currently populated by monkey PV types (RhPVs) only. Each α PV species consists of 

PV types with similar histological preferences and pathological outcomes. The PV 

species of high-risk PV types, which are associated with carcinomas, are highlighted in 

red. PV species descriptions were obtained from the following:  
a (de Villiers 1989), b (Terai and Burk 2002), c (Greenspan et al. 1988), d (Munoz et al. 

2003), e(Volter et al. 1996), f (Kawashima et al. 1986), g (Chen et al. 2007a), h (Chow and 

Leong 1999), i (Forslund and Hansson 1996), j (Wu et al. 2009), k (Kino et al. 2000), l 

(Tachezy et al. 1994), m (Matsukura and Sugase 2001), n (Chen et al. 2007b), o (Fu et al. 

2004), p (Brown et al. 1999), q (Terai and Burk 2001b), r (Terai and Burk 2001a), s (Menzo 

et al. 2001), t (Delius et al. 1998), and u (Chen et al. 1982). Adapted from Narechania et 

al. (2005: Fig. 1, scale not provided) 
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1.3  PV Biology 
 

1.3.1  Genome Structure 

 

PV genomes are unsegmented, circular structures, varying between 7000-

9000 base pairs (bp) in length. They encode up to 9 genes, 5 of which are present 

in all PV types. A well-established feature of the PVs is that they display a 

relatively stable genome structure with a highly conserved genome organisation. 

The first PV genomes to be characterised were HPV1a (Danos, Katinka and 

Yaniv 1982) and BPV1 (Chen et al. 1982). These two PV types infect different 

host species (humans and cows, respectively) and are distantly related to each 

other but presented similar genome structures in which the relative positions of 

the 4 major ORFs – E1, E2, L1 and L2 – were highly conserved across the two 

genomes (Figure 1.2, reprinted from Chen et al. 1982: Fig. 5). The genomes of 

subsequent PV types have revealed similar organisations. In all PV genomes, the 

ORFs are transcribed from the same strand of DNA, and a non-coding upstream 

regulatory region (URR, aka the long control region (LCR)) is found at the 3' end 

of the genome (Figure 1.3, adapted from Doorbar 2006).   
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Figure 1.2: An alignment of the BPV1 and HPV1a genomes. The two genomes 

demonstrate similar size and position of the major ORFs E1, E2, L1 and L2. Differences 

are observed in the reading frames from which these ORFs are translated, however. The 

dark bar along the BPV1 genome indicates the region of the genome expressed in BPV1 

transformed cells, thus the L1 and L2 gene products are not involved in cellular 

transformation. The identities of the smaller ORFs (< 500 bases) were not known in Chen 

et al. (1982) and therefore were not labelled. These ORFs correspond to the E6, E7, E4, 

E5, and E8 ORFs. Reprinted from Chen et al. (1982: Fig. 5). 
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Figure 1.3: Schematic representation of the genome organisation of HPV16. The 

replication and structural genes E1, E2, E4, L1 and L2 are accompanied by the 

transforming genes E5, E6 and E7. The genes are transcribed from different reading 

frames on the same strand of DNA. The organisation of the ORFs is common across 

most PV genomes; however the transforming genes that are present may vary in different 

PV types. Some PV genomes may possess an E8 ORF in the E6-E7 region and the λ PVs 

possess a second NCR in the E2-L2 region. The extent of overlap between adjacent 

ORFs may also vary with PV types. Adapted from Doorbar (2006) 

 

 

The URR varies in length from 360-700 bp among the PVs and contains the 

viral origin of replication (ori), as well as transcription factor binding sites and 

promoter elements (promoter sequences and late polyadenylation signal). The ori 

is approximately 60-80 bp in length and contains binding sites for two viral 

proteins – E1 and E2, which initiate viral replication and regulatory control upon 

ori binding. The genes in the coding portion of the PV genome are classified as 

either ‘early’ or ‘late’ genes, in reference to their time of expression during the 

virus life cycle (Danos, Katinka and Yaniv 1982).  

 

The early genes E1, E2 and E4 encode proteins involved in replication and 

transcription, and are common to all PV genomes. The E4 ORF is contained 

within the E2 ORF and is translated from its second reading frame. The 
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remaining early genes – E5, E6 and E7 – manipulate cellular processes to 

promote viral replication in differentiated epithelial cells. E6 and E7 are found to 

be sufficient for cellular immortalisation (Munger et al. 1989a) and most PV 

genomes possess both these genes. However, an E6 ORF is not observed in the 

genomes of the ξ genus bovine PVs (Jackson et al. 1991; Hatama, Nobumoto and 

Kanno 2008; Hatama et al. 2011; Zhu et al. 2012) and two γ HPV types (HPV101 

and 103) (Chen et al. 2007a), whilst all PV genomes sequenced from cetacean 

species lack an E7 ORF (Rehtanz et al. 2006; Van Bressem et al. 2007; 

Gottschling et al. 2011a; Robles-Sikisaka et al. 2012).  

 

The PV genomes PePV1, FlPV1, and FcPV1, sequenced from avian species, 

all lack canonical E6-E7 ORFs (Terai, DeSalle and Burk 2002; Van Doorslaer et 

al. 2009) and instead possess a different ORF in the E6-E7 region. This ORF 

lacks significant sequence similarity to other E6 and E7 genes but possesses 

functionally important sequence motifs that are conserved among E7 proteins and 

is therefore also referred to as E7. It was proposed that the differences in the 

mammalian and avian genome organisations in the E6-E7 region may highlight a 

later acquisition of the transforming genes by mammalian PV genomes after 

diversification to the avian and mammalian hosts (Garcia-Vallve, Alonso and 

Bravo 2005). Recent characterisations of turtle (Herbst et al. 2009) and snake 

(Lange et al. 2012) PV genomes, however, reveal the presence of E6 and E7 

ORFs. Snakes and turtles are more closely related to birds than to mammals, and 

therefore the presence of E6 ORFs in their PV genomes adds support to an 

alternative hypothesis of E6 gene loss by the avian PVs (Herbst et al. 2009).  

 

The avian and reptilian PVs (Terai and Burk 2002; Herbst et al. 2009; Van 

Doorslaer et al. 2009; Lange et al. 2012) also lack an E5 ORF. Among mammals, 

the E5 ORF has been identified in the α, δ, ε (except BPV5), κ, and ξ genera. In 

genomes of the α, δ, ε and κ PVs, the E5 ORF is located in the genomic region 

between the E2 and L2 ORFs (the E2-L2 region), and may/may not overlap with 

one or both of these ORFs. Multiple E5 ORFs have been identified in the E2-L2 

region of many PV types; however, phylogenetic analysis of the putative E5 

proteins suggests that many of these multiple copies may be spurious translations 
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(Bravo and Alonso 2004). For the λ PVs, the absence of E5 ORFs occurs in spite 

of uncharacteristically large E2-L2 regions, over 1 kb long (Garcia-Vallve, 

Alonso and Bravo 2005).  

The genomes of the ξ BPVs possess a small E2-L2 region; the E5 ORF was 

initially labelled as an E8 ORF (Narechania et al. 2004) as it is found to be 

located in place of the E6 ORF at the 5' end of the early region. In addition to an 

E5 ORF, the κ PVs also encode an E8 protein in the E6 region of the genome 

(Giri, Danos and Yaniv 1985; Christensen et al. 2000). The E8 protein appears 

E5-like in structure and function and may be more functionally active than the E5 

ORF in κ PVs (Nonnenmacher et al. 2006).  

 

The late genes, L1 and L2, of the PV geneome, are expressed in the final 

stages of a productive viral life cycle. L1 and L2 respectively express the major 

and minor capsid proteins, which are necessary for virus particle formation; their 

presence is therefore conserved in all PV genomes.  

 

The order in which these genes occur in the PV genome is maintained among 

most PV genomes and only a few exceptions regarding the position of the 

transforming genes have been observed. Some curious additions are observed in 

specific PV genomes. The λ PVs (which appear exclusive to species from the 

order Carnivora) (Tachezy et al. 2002), the hedgehog-infecting EePV1 (Schulz et 

al. 2009), the horse-infecting EcPV2 and EcPV3 (Lange et al. 2011), and the 

snake MsPV1 (Lange et al. 2012) display one additional genomic element – a 

second non-coding region (NCR2) between the E2 and L2 ORFs. The NCR2 is 

found to be absent of the E2 binding sites and promoter elements found in the 

URR, and, aside from MsPV1, is found to be longer than the URR (e.g., 1172 nt 

vs. 472 nt for the length of the URR in EePV1). Further characterisation of the 

NCR2 remains to be performed. 

The avian PePV1, FlPV1, and FcPV1 all possess an E9 ORF that is embedded 

within the E1 ORF (Van Doorslaer et al. 2009). The function of this protein has 

not been uncovered and it is not found to be homologous to any other PV 

proteins. In addition, the cetacean PVs that have been sequenced to date (except 

TtPV1) and the ξ bovine PVs (BPV3 and BPV4) display an additional ORF 
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embedded within the L1 ORF, which has been labelled L3 (Robles-Sikisaka et al. 

2012); the function of this ORF is yet to be determined.   

 

 

1.3.2  Protein Functions 

 

The PVs rely on only a small set of proteins to carry out productive infection. 

Most of these proteins are therefore charged with multiple functions to regulate 

expression of cellular genes, manipulate cellular pathways, induce DNA 

synthesis and silence immune responses to viral presence in the host cells. 

 

In the early region, the E1 protein has maintained a high level of sequence and 

structure conservation among the PVs (Longworth and Laimins 2004a). It plays a 

central role in initiating viral DNA replication and consequently is subject to 

strong functional constraints. The biological activities of E1 are largely achieved 

through a DNA-binding domain (DBD), approximately 150 amino acids (aa) 

long, which recognises E1 binding sites in the viral ori (Enemark et al. 2000), and 

a helicase domain, approximately 200 aa long, which forms dihexameric rings 

upon DNA-binding to separate the DNA strands for replication (Lin et al. 2002). 

Both the DBD and helicase domains are highly conserved among PVs whilst 

other regions of the E1 protein show less sequence conservation.  

In addition to its role in DNA unwinding, the helicase domain was identified 

as an interaction partner of cellular DNA polymerase α-primase (Masterson et al. 

1998), a necessary enzyme for DNA replication, and cyclinE/cyclin-dependent 

kinase (cdk)-2 complexes (Cueille et al. 1998), which are essential regulators of 

the cell cycle – this interaction may allow the virus to utilise cellular regulatory 

mechanisms in the regulation of its own replication. The less conserved N-

terminal domain of E1 may also play a crucial role in replication: 

phosphorylation of various conserved sites within this domain by cdk complexes 

results in inactivation of its nuclear export signal and hence ensures nuclear 

retention of the viral protein for DNA replication (Deng et al. 2004).  
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The E2 protein comprises of two functional domains – a C-terminus DBD and 

an N-terminus transactivation domain. A necessary step in the initiation of viral 

replication is the formation of an E12E22 complex via interactions between the 

transactivation domain of E2 and the E1 helicase domain. This complex serves to 

increases the DNA-binding specificity of the E1 protein at the ori (Sedman and 

Stenlund 1995; Berg and Stenlund 1997; Stenlund 2003).. Upon loading of E1 

onto the viral ori, cellular heat shock proteins effect the dissociation of E2 from 

the complex (Lin et al. 2002), terminating its role in replication initiation.  

Of equal importance is the E2 protein’s role as a viral transcription factor and 

its regulation of viral gene expression, which ensures viral infection is maintained 

at low copy numbers during the early stages of the viral life cycle (Steger and 

Corbach 1997). The E2 protein also appears to be responsible for ensuring newly 

replicated viral genomes survive basal cell division: prior to mitosis, the E2 DBD 

binds to the viral genome, whilst the E2 transactivation domain binds to the 

cellular chromosomal associated factor Brd4 (the bromodomain-containing 

protein 4) to ensure equal segregation and efficient transfer of the episomes into 

the nuclei of the daughter cells (You et al. 2004; Baxter et al. 2005). The highly 

functional transactivation domain and DBD of the E2 protein are separated by a 

stretch of sequence that is known as the E2 hinge region. The main function of 

the hinge region appears to be to provide the degree of structural flexibility 

required for the DBD and transactivation domains to perform their various 

functions and act independently of each other (Gauthier, Dillner and Yaniv 

1991).  

 

The E4 ORF lies within the hinge-encoding region of the E2 ORF. It lacks an 

initiation codon and is therefore translated from a spliced mRNA transcript 

containing the first 5 codons of the E1 ORF (Longworth and Laimins 2004a). 

There is little sequence conservation observed among the E4 proteins, which vary 

greatly in size from 50-331 aa. Although the E4 ORF is located in the early 

region of the genome, expression of E4 increases substantially in the latter stages 

of the virus life cycle. In fact, the E4 gene is found to be the most highly 

expressed PV gene during the productive life cycle (Longworth and Laimins 

2004a). 
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Attempts to characterise E4 functions have identified a central role in 

facilitating cellular release by associating with and destabilising the cytokeratin 

networks (Doorbar et al. 1991) which confer structural integrity upon the cell. 

Interaction with keratin filaments is thought to occur via two conserved E1^E4 

sequence segments: an N-terminus MADxxA motif, contributed by the E1 

polypeptide, and an LLxLL leucine cluster, in the E4 polypeptide. Disintegration 

of the filaments may also cause secondary disruption of many cellular processes 

including signal transduction. The leucine cluster of the E4 protein has also been 

identified in interactions with mitochondria which are thought to induce 

apoptosis in terminally differentiated keratinocytes, thereby facilitating viral 

release from host cells (Raj et al. 2004).  

Whilst the transforming proteins assume the task of preparing the 

differentiated cells for replication, E4 helps to maximise viral replication in these 

cells by preventing host genome replication during the viral-induced S (synthesis) 

phase of the cell cycle (Roberts et al. 2008). A process of progressive N-terminal 

cleavage occurs to generate smaller E4 polypeptices from the full length protein 

at various stages during the replicative phase. These polypeptides form multimer 

complexes which assist the full length protein in appropriating the host 

replication machinery for viral genome replication (Roberts et al. 2008). The 

various E4 species act to suppress host genome replication by inhibiting the 

binding of cellular replication licensing factors Mcm2 and Mcm7 to chromatin 

(Roberts et al. 2008) and inducing G2 cell-cycle arrest by preventing nuclear 

localisation of the cyclin B/Cdk1 complex which is necessary for cell-cycle 

progression to mitosis (Davy et al. 2002; Knight et al. 2004; Davy et al. 2005).  

 

The transforming genes E6 and E7 both encode zinc finger proteins that 

interact with numerous cellular proteins to enforce a replicative state within 

differentiated epithelial cells. Both proteins share structural features and possess 

multiple domains of a Cys-x-x-Cys zinc-binding motif (typically, 4 motifs are 

found in E6 but only 2 in the E6 of reptilian PVs and 2 in E7, Barbosa, Lowy and 

Schiller 1989) and it has been proposed that the genes may have evolved from an 

ancient duplication of genetic sequence containing the zinc-binding motif (Cole 
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and Danos 1987). The specific cellular activities of the two proteins differ; E7 

may be assumed to be the 'major' transforming protein as its functions are 

essential in causing cellular transformation and enabling DNA replication in the 

upper layers of the epithelium (Cheng et al. 1995; Flores et al. 2000), though the 

transforming functions of E6 complement those of E7. Functional analyses of the 

transforming proteins have largely been confined to those of the high-risk HPV 

types (in which they are referred to as 'oncoproteins') in an attempt to elucidate 

the particular interactions that contribute to the development of malignant states. 

Comparatively less information has been unearthed about the functions of the 

low-risk transforming proteins in productive infection. 

 

The principal interaction of the E7 oncoprotein appears to be with the 

retinoblastoma tumour suppressor protein (pRb; (Munger et al. 1989b)). The E7 

protein contains a pRb binding domain motif, Leu-x-Cys-x-Glu, which is 

conserved in most PVs. Interaction of E7 with pRB is likely to have numerous 

cellular implications, most of which remain to be studied; however an important 

consequence is activation of the E2F transcription factor, which is otherwise 

deactivated by pRb binding (Longworth and Laimins 2004a). By indirectly 

activating E2F, E7 increases transcription of genes necessary for DNA synthesis 

and therefore encourages a replicative state within the cell (Phelps et al. 1988). 

pRB interaction is not, however, guaranteed to induce cell transformation 

(Ciccolini et al. 1994; Schmitt et al. 1994) and the affinity of E7 for pRB varies 

among PV genomes (Munger et al. 1989b) with low-risk HPV E7 proteins 

showing a weaker pRb binding affinity than their high-risk homologs.  

E7 is also able to interact with the retinoblastoma-like proteins, p107 and p130 

(Phelps et al. 1988), via the pRB-binding motif; these proteins exhibit similar 

activities to pRB, including interaction with E2F transcription factors. E7 

interaction with tumour suppressor proteins and increased expression of E2F 

enhances the activity of cyclin dependent kinase (cdk)/cyclin complexes which 

are regulators of cell cycle progression (Davies et al. 1993; Morozov et al. 1997). 

The pRB-binding motif is found to be absent in the δ and ε PVs associated with 

fibropapillomas, as well as in the γ HPVs and a few β HPVs though the HPVs are 
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able to transform the infected cell through pRB-independent mechanisms 

(Caldeira, de Villiers and Tommasino 2000).   

The E7 protein may also interact directly with the cyclin proteins to influence 

cell cycle progression (McIntyre, Ruesch and Laimins 1996) and is observed to 

prevent cellular growth inhibition by interactions with the cdk inhibitors, p21CIP1, 

p27KIP1 and p15ink4A (Pietenpol et al. 1990; Garcea and DiMaio 2007, p. 215). E7 

is also observed to enhance E2F activity via associations with histone 

deacetylases (HDACs) (Phelps et al. 1992; Longworth and Laimins 2004b) since 

deacetylation of E2F serves to activate the transcription factor (Marks et al. 

2001). E7-HDAC binding may serve an additional function in avoiding immune 

detection by preventing the expression of interferon regulatory factor 1 (IRF-1) 

(Park et al. 2000) which normally forms one of the first immune responses to 

detection of pathogen presence.  

 

Like E7, the E6 protein is also involved in numerous cellular interactions to 

prevent cell cycle arrest and immune detection by the host immune system. Host 

cells may typically respond to the E7-pRB interaction by increasing expression of 

another tumour suppressor protein, p53 (Jones, Thompson and Munger 1997). 

p53 is responsible for either activating DNA repair proteins or inducing 

apoptosis, in response to DNA damage. E6 causes the inactivation of p53 by 

binding to the E6 associated protein (E6AP), a ubiquitin protein ligase, which is 

then able to engage p53 and mark it for ubiquitylation (Scheffner et al. 1990; 

Huibregtse, Scheffner and Howley 1991; Scheffner et al. 1993). The inactivation 

of p53 by the E6 ORF had been observed for all high-risk species of the α PVs 

and for a low risk PV type (HPV71); the activity has been linked to the presence 

of a non-basic residue at a site in close proximity to the E6AP binding region in 

the E6 ORF (Fu et al. 2010).  

E6 also employs E6AP for the degradation of PDZ-domain containing proteins 

(Nakagawa and Huibregtse 2000; Favre-Bonvin et al. 2005), which serve as 

organising centres for complexes processes such as signal transduction, 

transcriptional regulation and receptor assembly (Garcea and DiMaio 2007, p. 

203), thereby disrupting these processes. E6 plays an important role in cellular 

immortalisation by increasing expression of human telomerase reverse 
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transcriptase (hTERT), the catalytic subunit of telomerase (Klingelhutz, Foster 

and McDougall 1996). Telomere shortening is a mechanism employed by the cell 

to limit the number of cell divisions; E6-induced expression of hTERT results in 

elongation of telomere ends and thereby eliminates another key regulatory 

mechanism (Klingelhutz, Foster and McDougall 1996; Liu et al. 2009). hTERT 

expression is found to be a characteristic of oncogenic-E6 proteins and not of the 

low-risk E6 proteins (Van Doorslaer and Burk 2012). 

E6-induced immune response suppression may take on a number of forms 

including binding to Interferon Regulatory Factor-3 (IRF-3) (Ronco et al. 1998), 

interacting with interleukin 18 (IL-18) cytokine to prevent activation of a cell-

mediated immune response (Lee et al. 2001) and precluding antigen presentation 

by Langerhans cells via down-regulation of the E-cadherin molecules necessary 

for cellular adhesion (Matthews et al. 2003).  

 

In infections with high-risk HPV types the E6 and E7 oncoproteins are 

observed to work together to impair the stability of the host genome and 

consequently increase the chances of malignant progression (Duensing et al. 

2000). Expression of the E7 oncogene overstimulates centrosome synthesis 

causing cell division to proceed in the presence of multipolar mitotic spindles, 

which then prevents normal chromosome segregation and produces polyploid 

daughter cells (Heilman et al. 2009). These events render the host genome more 

susceptible to mutagenesis and are compounded by the actions of the E6 

oncogene which inactivates various cellular proteins with functions in DNA 

repair, for instance, p53. Further interference by the oncoproteins with various 

cell-cycle checkpoints (Thompson et al. 1997; Thomas and Laimins 1998; Fan 

and Chen 2004) ensures cell cycle progression despite these unstable cellular 

conditions. Finally, it has also been proposed that the E7 oncoprotein facilitates 

integration of viral DNA into the host genome by causing DNA strand breaks; 

this is a key step in malignant progression of the infection (Duensing et al. 2000).  

 

Additional transforming functions may be carried out by the E5 protein. 

Among HPVs, four distinct groups of E5 proteins labelled E5α, E5β, E5γ, and 

E5δ were defined in the α PV genus; a high level of evolutionary divergence, 
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approaching 80% aa difference, was observed between the E5 proteins from these 

different groups (Bravo and Alonso 2004). Despite low sequence conservation, 

the E5 ORFs from different PVs are characterised by similar structural and 

functional properties. All E5 proteins are small (42-83 aa), consisting of 1 or 

more hydrophobic transmembrane domains. Within the cell the protein is 

localised to the endosomal membranes and Golgi apparatus, and forms a dimer 

through interactions between its hydrophilic C-terminus domain (Surti et al. 

1998).  

Functional analyses suggest that the E5 protein is able to modulate cell-cycle 

progression via interactions with membrane proteins. BPV1 E5, which is the 

most studied of the E5 proteins, is found to stimulate platelet-derived growth 

factor (PDGF) beta-receptor tyrosine kinases thereby activating a signalling 

cascade that encourages mitosis of the cell (Lai, Henningson and DiMaio 2000). 

Excessive stimulation of receptor tyrosine kinases has been linked to the 

development of malignant tumours and may be a contributing factor in PV-

induced cancers: E5 expression has been detected in bovine bladder cancers 

(Borzacchiello et al. 2003), whilst the E5 protein of the cervical cancer-causing 

HPV16 interacts with epidermal growth factor (EGF) receptor tyrosine kinases 

(Genther Williams et al. 2005). The E5 protein also helps induce DNA 

replication and mitosis by increasing expression of cyclin A for the formation of 

cyclinA-cdk2 complex important during the S phase of the cell cycle. E5 function 

has also been linked to the suppression of inter-cell communication by down-

regulating the expression of the inter-cellular gap junction protein, connexion 

(Oelze et al. 1995). Prevention of cell signalling may allow E6- and E7-induced 

transformations to proceed without the risk of stimulating a defensive response 

from the surrounding uninfected cells.  

The E5 protein also contributes to immune evasion during infection by down-

regulating cell surface expression of major histocompatibility (MHC) antigens 

(Ashrafi et al. 2002; Marchetti et al. 2002; Longworth and Laimins 2004a; 

Doorbar 2006). Expermiental studies reveal that the E5 protein prevents 

acidification of the endosomes and Golgi apparatus, which then causes retention 

of MHC molecules in the Golgi (Marchetti et al. 2002). Both MHC class-I and 

class-II antigens are targeted to prevent the presentation of viral peptides to the 
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host immune system. Although E5 contributes to cell transformation, in human 

cervical cancers, the E5 gene is not found to be integrated into the host genome 

(Borzacchiello et al. 2003).  

 

Of the two proteins expressed from the late region, L1 displays greater 

sequence conservation among PVs. The sole function of the L1 protein is to form 

a shell around the viral genome and protect it from the external environment once 

the virus particle is released from epithelial cells. The L1 polypeptide folds into 

an eight-stranded anti-parallel beta barrel structure known as the “jelly-roll” fold 

(Chen et al. 2000). Three large loop structures reside on one end of the beta-

barrel and C-terminal alpha-helical domains project out from the other end 

(Garcea and Chen 2007). The L1 proteins self-assemble into pentavalent ring-

shaped capsomers held together by multiple interactions between beta sheets and 

the loop structures (Chen et al. 2000). The C-terminal helical domains possess 

cysteine residues which permit the formation of inter-pentameric disulphide 

bonds; through these inter-helical bonds, 72 capsomer units are organised into a 

protein shell of icosahedral symmetry and ~55 nm in diameter (Chen et al. 2000; 

Modis, Trus and Harrison 2002). Sequence variability in the loop region has been 

associated with epitope function and can bind neutralising monoclonal antibodies 

that prevent cell binding and virion uncoating (Chen et al. 2000). The position of 

the C-terminal end of the L1 polypeptide, in the central region of the capsid shell, 

is thought to indicate a function in interactions with the encapsidated viral 

genome (Chen et al. 2000).  

 

The L2 protein, a.k.a. the minor capsid protein, also forms part of the viral 

coat though its contribution is much smaller: estimates of the stoichiometry of L2 

within the capsid vary from 12 molecules in total (Kawana et al. 1999; Modis, 

Trus and Harrison 2002) to 1 per capsomere (Doorbar 2006). In the formation of 

the capsid, the C-terminal portion of the L2 protein may form hydrophobic 

interactions with the central cavities of capsomeres (Finnen et al. 2003).  

Functional studies of the L2 protein have identified two key roles for the L2 

protein in the PV life cycle (Holmgren et al. 2005). The protein may influence the 

infectivity of the virus through its observed ability to bind to the cell surface and 
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facilitate viral entry independent of L1 (Kawana et al. 2001) and by nuclear 

localisation signals in the N- and C-termini of the protein that can efficiently 

transport the viral genome to the nucleus following virion uncoating (Roden et al. 

2001). The second major function of L2 is to facilitate assembly of the virus 

particle. Although the L1 protein is capable of self-assembly into the capsid 

structure, L2 molecules, with the help of chaperone protein hsc70 (Florin et al. 

2004), transport L1 capsomers into the nucleus for assembly at nuclear structures 

where L2 also associates with viral genome-bound E2 molecules to orchestrate 

genome encapsidation (Day et al. 1998; Okun et al. 2001). Surface-exposed 

portions of the L2 protein are also found to bind neutralising antibodies and may 

be utilised in PV vaccination development (Kawana et al. 1999; Gambhira et al. 

2007). 

 

 

1.3.3  Life Cycle 

 

PV infection occurs within a specific type of epithelial cell, known as a 

squamous cell due to its scale-like appearance. The stratified squamous 

epithelium (Figure 1.4) consists of layers of closely packed squamous cells and 

serves as a protective barrier against the external environment (Madison 2003); 

the layered nature of stratified squamous epithelium offers greater protection in 

areas subject to regular abrasion. Stratified squamous epithelium make up the 

cutaneous tissue of the skin, lips, and part of the tongue, and the mucosal tissue 

of the cornea, mouth, oesophagus and the anogenital tract.  

 

The bottom layer of epithelium is known as the basal layer; the basal cells are 

the only cells that undergo mitotic division in normal epithelium. Following each 

cell division, one daughter cell migrates up through the epithelium to replenish 

dead cells shed from the surface. As cells progress out of the basal layer and into 

the suprabasal layer, they exit the cell cycle and begin a process of terminal 

differentiation, which involves the loss of the nucleus thus precluding further cell 

division. The PV genome, which does not encode its own replication machinery, 

is entirely dependent on the production of replicative enzymes by the host cell to 
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ensure its propagation. It is therefore imperative that PV particles gain entry into 

the basal cells of the epithelium to ensure the chance of successful infection 

(Doorbar 2005; Lazarczyk et al. 2009); viral entry into the differentiated cells 

would be futile.  

 

 

 

 

         

Basal layer
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   layer

Granular 
   layer

Cornified 
   layer

 
Figure 1.4: Cartoon representation of the cellular layers of the stratified squamous 

epithelium. The epithelial cells, called keratinocytes, undergo a process of terminal 

differentiation once they have progressed out of the basal layer. The differentiation 

process causes termination of the cell cycle, loss of nuclei and progressive cellular 

flattening towards the surface. 

 

 

Entry into the basal cells can be gained in a number of ways. In many cases a 

micro-wound that punctures the epithelium down to the basal layer will provide a 

pathway for the virus. Hair follicles, also made of stratified squamous epithelium, 

are a rich supply of stem cells and are therefore also common entrance points for 

PVs (Doorbar 2005). Cervical infections can also arise via infection of columnar 

cells (Boxman et al. 2001) which exist below the stratified squamous epithelium 

of the cervix and eventually migrate into the basal layer of the cervical 

epithelium.  
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Characterisation of the process of cellular entry remains an on-going area of 

PV research (Horvath et al. 2010); however, putative viral receptors include the 

proteoglycan heparin sulphate (Giroglou et al. 2001; Shafti-Keramat et al. 2003), 

which acts as a cellular receptor for many viruses (e.g. Dengue virus and Herpes 

Simplex virus), and the α6 integrin (Evander et al. 1997; McMillan et al. 1999). 

Studies of HPV internalisation have identified the involvement of either clathrin-

coated pits or caveolae (Bousarghin et al. 2003; Day, Lowy and Schiller 2003) 

although the process is found to be much slower than endocytosis of substrates 

and other viruses (Horvath et al. 2010). Following internalisation, the reducing 

environment of the cell causes cleavage of intercapsomere disulphide bonds, 

subsequent protease-driven cleavage of the carboxy-terminal helical arm of L1 

releases the viral genome from the L1 capsomeres (Li et al. 1998). The viral 

genome is then transported into the nucleus for viral replication by the L2 capsid 

proteins (Doorbar 2006).  

 

Inside the nucleus, the virus induces a brief period of replication in the basal 

layer in order to increase the number of infected cells (Doorbar 2006). This stage 

of the PV life cycle, referred to as 'genome maintenance', produces approximately 

20-100 copies of the genome per cell (Longworth and Laimins 2004a), which 

exist as extra-chromosomal episomes. During genome maintenance, viral 

transcription proceeds from an early promoter located in the URR. The E1 and 

E2 proteins are expressed first to initiate replication but the E2 protein also acts 

as a regulator, restricting the amount of replication that occurs. This is achieved 

through a negative feedback mechanism involving adjacent binding sites in the 

URR for the E2 protein and cellular transcription factors necessary for activation 

of the early promoter. Since E2 binding site affinities vary, at low concentrations 

E2 engages with only two of its binding sites and permits activation of viral 

transcription from the early promoter. As E2 expression increases, E2 proteins 

bind to the remaining sites and simultaneously inhibit the binding of the cellular 

transcription factors, thereby repressing further viral transcription. The early 

promoter also initiates expression of low quantities of E6 and E7, whose 

contribution in the early stages of viral infection may be to eliminate cellular 
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checkpoints that block long-term retention of extra-chromosomal DNAs 

(Longworth and Laimins 2004a). 

 

Following epithelial stem cell division, one daughter cell exits the basal layer 

and begins the process of terminal differentiation, involving termination of the 

cell cycle (Doorbar 2005). The cell cycle (Figure 1.5) is the sequence of events 

that occur in the process of cell division (mitosis) and is characterised by four 

distinct phases: G1, during which there is cellular growth; S, during which DNA 

replication occurs; G2, during which the cells prepare for division; and M, in 

which the chromosomes are separated and new daughter cells are formed. Each 

daughter cell enters the cell cycle in the G1 phase; in stratified squamous 

epithelium, the process of terminal differentiation requires exit from the cell 

cycle at the G1 phase. The PVs must induce cell cycle progression in cells 

beyond the epithelial basal layer to ensure propagation of their own genomes. As 

the cells progress out of the basal layer and begin differentiation, expression of 

the viral transforming genes is increased to cause G1/S phase transition (Doorbar 

2005). S phase entry signals the expression and assembly of replication 

complexes for DNA synthesis and provides the viral genome with the necessary 

tools it lacks for its own replication. Changes in cellular factors and signalling in 

the differentiated cells have been associated with the activation of the late 

promoter located in the E7 ORF (Spink and Laimins 2005). This promoter 

increases expression of the viral replication genes (E1, E2, E4 and E5), and 

unlike the early promoter used for viral replication in the basal layer, is not 

regulated by the E2 protein, resulting in unrestricted genome replication for the 

production of new virus particles (Doorbar 2005).  
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Figure 1.5: The 4 stages of the cell cycle. 
 
 
 

The final stages of productive infection involve formation of the virus particle 

and its release from the epithelial lesion. Synthesis of the viral capsid proteins is 

restricted to the upper layers of the epithelium, in the highly differentiated 

epithelial cells, and may serve as a strategy for immune evasion (Doorbar 2006). 

L2 is expressed first and aids the assembly of the L1 proteins (Zhou et al. 1991). 

The high specificity DNA-binging capabilities of E2 may be utilised to aid 

encapsidation of the viral genome (Day et al. 1998; Zhao et al. 2000). The 

packaged viral particles are then ready to infect new cells. Viral release from the 

epithelium occurs naturally, with some help from the E4 protein, and unlike other 

viruses, is not self-instigated using lytic methods (Doorbar 2005). Released virus 

particles may either reinfect the same tissue or may separate from the infected 

individual. Virus transmission to a new individual typically occurs via direct 

epithelial contact e.g. from a mother to her newborn child; however, the virus 

particle is highly durable in external conditions (Roden, Lowy and Schiller 1997), 

and can therefore also be transmitted via indirect means, e.g. HPV2, which 

causes plantar warts on the soles of feet, commonly resides on the wet floors of 

communal showers and swimming pools. 
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Throughout the viral life cycle, the timing and level of expression of the 

various genes is crucial to ensuring a productive life cycle (Doorbar 2005). The 

different stages of PV infection are found to be finely tuned to the differentiated 

states of the epithelial cells. The expression of polycistronic mRNAs transcripts 

is common during the life cycle and transcripts containing the late genes, whose 

products are only active in terminally differentiated keratinocytes, have been 

observed in less differentiated cells (Stoler et al. 1989; Stoler et al. 1992). 

Alternative splicing mechanisms may be used to regulate the expression of 

different genes, particularly the oncogenes, in the different layers of the 

epithelium (Doorbar 2005; Tang et al. 2006; Zheng and Baker 2006; Mole, 

Milligan and Graham 2009; del Moral-Hernandez et al. 2010). However, the 

expression of PV genes has been shown to be altered by changing the particular 

codon specified for a degenerately encoded amino acid (Disbrow et al. 2003; 

Mossadegh et al. 2004; Muller 2005). It is therefore proposed that differences in 

codon usage preferences among individual PV genes correlate with differences in 

tRNA levels during cellular differentiation (Zhou et al. 1999; Zhao et al. 2005; 

Zhao and Chen 2011).  

 

 

1.3.4  Pathogenicity 

 

The epithelial lesions and hyperplasias symptomatic of PV infection are a 

consequence of viral-induced cell proliferation in the epithelium. In benign 

lesions, the cdk inhibitors act to reduce the amount of abnormal cell proliferation 

in the upper layers of the epithelium but in malignant lesions, increased activity 

of the oncogenes eliminates such cellular regulations (Doorbar 2006). Malignant 

transformation of PV-induced (cervical) lesions has been linked to the virus's 

ability to persist for years or even decades in the cells of the epithelial tissue 

(Bosch et al. 2002; Schiffman et al. 2005).  

Persistent occupation of host cells affords the virus DNA the opportunity to 

transform the infected cells and to insert itself into the host's genomic material. 

The integration of the high-risk HPV16 and HPV18 genome into the host genome 

is found to be strongly correlated with the development of cervical cancer 
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(Hopman et al. 2004; Canadas et al. 2010). Most significantly, the insertion of the 

E6 and E7 genes enables continued expression of these genes thereby ensuring 

continued manipulation of cell-cycle regulation pathways by the virus.  

Viral genome integration generally results in loss or disruption of the other 

viral genes, in particular the E2 gene. In productive infections the E2 protein 

plays an important role in regulating the expression of the transforming genes; its 

absence in oncogene-transformed cells results in uncontrolled expression of the 

integrated E6 and E7 genes. Inhibition of the functions of pRB by E7 results in 

continued DNA replication and cell division; errors sustained by the host's 

genomic material during each round of genome replication are allowed to 

accumulate due to the impairment of p53 by E6. When mutations supporting 

uncontrolled cell growth are incurred, PV infection can progress to an oncogenic 

stage.  

 
The development of high grade cervical intra-epithelial neoplasias, which will 

progress to cancer, occurs over a period of several years and may be facilitated by 

the presence of other carcinogens, for example tobacco metabolites (Doorbar 

2006). Genetic mutations caused by common carcinogens – UV radiation, 

pollutants, etc – in genes responsible for the regulation of cellular growth are 

maintained under the lack of cellular regulation induced by PV infection and 

hence are able to exert their harmful effects. Besides cervical cancer, genital 

HPVs have also been identified in cancers of the anus, vulva, vagina, penis, 

mouth and larynx (Hoory et al. 2008). HPVs have also been linked to cancers of 

the breast, lung, colon, rectum, prostate, oesophagus, head and neck (Chang et al. 

1990; Cooper, Taylor and Govind 1995; Suzuk et al. 1996; Gillison 2004), and 

possibly of the bladder (Campo 2002), though not all of these cancers are limited 

to the stratified epithelium. HPV infection may play a causal role in some of the 

anogenital cancers but for the rest of these cancers, viral infection is assumed to 

play a secondary role to the more commonly known carcinogens, and can involve 

high-risk or low-risk HPV types (Munoz et al. 2006).  

Skin cancers associated with the cutaneous HPVs, specifically the high-risk β 

HPV types 5 and 8, have been reported in patients suffering from 

epidermodysplasia verruciformis (EV), an inherited skin disease, as well as in 
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immunosuppressed individuals, such as transplant patients (Antonsson 2012). 

Among infections of non-human species there is also some evidence of PV 

oncogenicity: the cottontail rabbit PV type (CRPV) and a canine PV type (CPV2) 

can both cause cancer in their natural hosts (Giri, Danos and Yaniv 1985; Yuan et 

al. 2007). Carcinogenesis was also observed in experimental cross-species 

infections of BPV1 in hamsters (Robl and Olson 1968). In cows, natural PV 

infection results in only benign lesions but the development of squamous cell 

carcinomas remains a risk due to the presence in the wild of bracken fern which 

contains chemical mutagens and immuno-suppressants (Campo 1997). Ingestion 

of this plant has resulted in cases of bladder cancer in cows infected with BPV-1 

or BPV-2 (Campo 2002) and cancer of the upper gastrointestinal (GI) tract in 

cows infected with BPV-4.  

 

 

1.3.5  Immume Evasion Strategies 

 

Viruses face constant selective pressure from their host’s immune system and 

therefore must evolve strategies to negotiate through host defence mechanisms if 

they are to ensure successful infection and continuity of their lineage. The 

vertebrate hosts of PVs have evolved highly developed systems to deal with 

pathogen invasion and consequently the virus is observed to employ an array of 

preventative and defensive mechanisms to subdue stimulation of both innate and 

adaptive immune responses. These tactics allow the virus to delay immune 

clearance by their host. 

 

Various characteristics of the PV life cycle appear to be optimised towards 

minimising immune detection. Firstly, the short-lived nature of epithelial cells is 

highly advantageous to viral survival as they are subject to less immune 

surveillance than other cells (Egelkrout and Galloway 2007). Likewise, PV 

infection remains localised within the epithelium and does not spread into the 

bloodstream where the detection of pathogenic presence can rapidly evoke an 

antibody response from the host (Schwarz and Leo 2008). The innate immune 

system is also alert to the presence of foreign DNA in the cytoplasm (Frazer 
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2009) and hence, we observe rapid import of the viral DNA into the nucleus upon 

viral uncoating. In the epithelial stem cells the viral proteins are expressed at low 

copy numbers thereby minimising the risk of initiating an immunogenic 

response; expression of the most immunogenic viral proteins – the capsid 

proteins – is delayed until the last stages of the PV life cycle, in the very upper 

layers of the epithelium (Frazer 2009). The natural process of cell death and 

desquamation of differentiated epithelial cells provides the new virus particles an 

inconspicuous release mechanism that avoids an inflammatory response and the 

risk of antigen presentation as is incurred following virus-enforced cytolytic 

release (Doorbar 2006; Schwarz and Leo 2008).  

 

The PV proteins have also evolved mechanisms to obstruct immune reaction 

pathways of the innate response. In cervical neoplasias, the E6 and E7 proteins 

are found to cause multiple breakdowns in the immune response, including the 

prevention of intercellular signalling through inhibition of interleukin action (Lee 

et al. 2001) and of interferon-responsive gene expression (Ronco et al. 1998; 

Barnard and McMillan 1999; Chang and Laimins 2000; Park et al. 2000; Nees et 

al. 2001). It has also been suggested that the viral oncoproteins may prevent the 

Langerhans cells, which are stimulated by antigen binding, to initiate an adaptive 

immune response (Matthews et al. 2003; Zhang et al. 2003; Guess and McCance 

2005) via cytotoxic T cells. Along with E6 and E7, the E5 protein protects the 

virus by preventing MHC-I and MHC-II antigen presentation at the cell surface 

(Ashrafi et al. 2002; Marchetti et al. 2002; Longworth and Laimins 2004a; 

Doorbar 2006). Given the extent of PV diversification observed, many 

undiscovered mechanisms are likely to be employed by the different PV types 

and their variants.  

 

The ability to cause asymptomatic infection, where viral episomes are 

maintained in the basal layer without further progression of infection or any sign 

of clinical disease, provides a situation in which PV infection can be reactivated 

at a later stage when levels of immunosurveillance in the host decline. Latent PV 

infections can remain inactive for up to several years. During latent infection 

there is minimal gene expression, involving just E1 and E2 (Zhang et al. 1999), 
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which further reduces the risk of immune detection.  Asymptomatic infections 

may be highly prevalent: PV DNA has been detected in the healthy skin of 

humans, including new-born babies (Forslund et al. 1999; Antonsson et al. 2000; 

Antonsson et al. 2003); non-human primates and ungulates (Antonsson and 

Hansson 2002; Ogawa et al. 2004); Australian animals (Antonsson and McMillan 

2006) and in horses (Bogaert et al. 2008).  

For most cases (~90%, Schwarz and Leo 2008) of PV infection the host's 

immune system is able to gain control over the virus: PV infections regress 

spontaneously with only a small percentage of infections becoming persistent. PV 

infections can be cleared by the immune system in less than a year (Hopfl et al. 

2000). In humans, it is observed that a successfully resolved PV infection 

protects against future infections by the same PV type (Frazer 2009). However, 

when the host's immune system is incapable of defending against viral infection, 

PV infection can spread around the body more easily and epithelial lesions are 

found to become more prevalent as well as increasing in severity. Reduced 

immuno-competency affects patients suffering from Epidermodysplasia 

verruciformis (EV), who often develop skin cancer due to activation of latent PV 

infection; transplant patients (Halpert et al. 1986; Petry et al. 1994); aging 

individuals; patients infected with the immunodeficiency virus (Frisch, Biggar 

and Goedert 2000) and species facing extinction (Sundberg et al. 2000; Rector et 

al. 2007). 

 

The last decade has seen the emergence of the first two vaccines for 

protection against HPV infection (Koutsky et al. 2002; Harper et al. 2004; Villa 

et al. 2005). Both vaccines are prophylactic vaccines that introduce innocuous 

virus-like particles (VLPs), consisting of an L1-derived protein coat that is absent 

of genomic material, into the host to stimulate production of neutralising 

antibodies. The antibodies produced are specific towards the viral epitopes 

encountered and therefore the vaccines do not offer general protection against all 

HPV infections; however, priority has been given to immunisation against PV 

types causing cervical cancer. CervarixTM, developed by GlaxoSmithKline, 

consists of VLPs derived from the L1 protein of HPV16 and HPV18, whilst 

GardasilTM, developed by Merck, consists of VLPs for the HPV types 6, 11, 16, 
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and 18. Clinical studies have found the HPV vaccines to be effective in 

protecting against both new and persistent infections, and the production of high 

levels of the neutralising antibodies was maintained for several years after 

vaccination (Harper et al. 2004; Harper et al. 2006; Mao et al. 2006; Villa et al. 

2006). 

 

 

1.4 PV Evolution 
 

1.4.1  Rate of PV Evolution 

 

Estimated rates of the evolution of PV types show that, contrary to the 

common perception of viruses as rapidly evolving pathogens, PV evolution 

appears to proceed slowly. Sequence comparisons of two bovine PV type 1 

variants sequenced almost 30 years apart, and from different continents, exhibited 

less than 0.1 % nucleotide differences across a 4807 bp long sequence from the 

early and late region of the genome (Ahola et al. 1983). In humans, analysis of 

HPV-16 and HPV-18 variants obtained from different ethnic groups revealed a 

high degree of similarity among the variants, with only 5% sequence divergence 

in the most variable genomic regions (Ong et al. 1993). This is in stark contrast to 

HIV or influenza A genomes which can achieve 1% nucleotide differences within 

the space of a year (Gibbs, Calisher and Garcia-Arenal 1995). Whilst these RNA 

viruses evolve at a rate of ~ 10-3 nucleotide substitutions/site/year (Duffy, 

Shackelton and Holmes 2008), estimates of the evolutionary rate of PVs lie on 

the order of 10-8 nucleotide substitutions/site/year.  

The amount of evolution that has occurred between molecular sequences can 

be estimated using models of sequence change. If it is possible to specify the time 

over which the estimated changes occurred (i.e., calibrate the timescale of 

evolution) then the rate at which the sequences have been evolving can also be 

estimated. Various estimates of the evolutionary rate of PVs have been obtained 

in this manner. However, the slow-evolving nature of PV genomes, as 

demonstrated by the BPV1 variants, means that little change occurs over 

measurable timescales. Consequently, evolutionary rates have been estimated 
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from PV types infecting different host species, using the time at which the host 

species diverged, to represent the time at which the corresponding PV types 

diverged. Various estimates have been reported, each one being derived from a 

different subset of PV types.  

An evolutionary rate of 3.3× 10-8 nucleotide substitutions/site/year was 

estimated from the E6 gene of PV types isolated from chimpanzee (PtPV1) and 

bonobo (PpPV1) (Van Ranst et al. 1995). A second evolutionary rate of 3.6× 10-8 

nucleotide substitutions/site/year was estimated from the E6 gene of these PVs 

and their closest relative – the human PV type 13 (Van Ranst et al. 1995). 

Tachezy et al. (2002) obtained lower average rate estimates of 7.3-9.6 × 10-9 

nucleotide substitutions/site/year from from the E6, E1 and L1 genes of PV types 

isolated from the domestic cat (FdPV1) and domestic dog (CPV1) (Tachezy et al. 

2002). A re-estimation of the evolutionary rate following the detection of novel 

PV types (PcPV1, LrPV1, PlpPV1, UuPV1) from different Felidae species 

(puma, bobcat, Asiatic lion, and snow leopard), provided rates ranging from 1.76-

2.69 × 10-8 nucleotide substitutions/site/year across the different genomic regions 

and an overall rate of 1.95 × 10-8 nucleotide substitutions/site/year for the coding 

region of the feline PVs  (Rector et al. 2007).  

Average evolutionary rates ranging from 0.9-2.2 × 10-8 nucleotide 

subs/site/year were estimated for the E1, E2, L1and L2 genes of turtle (CmPV1, 

CcPV1) and avian (FcPV1, and PePV1) PV types (Herbst et al. 2009). These 

rates appear to agree with estimates from the feline PV dataset of Rector et al. 

(2007), which ranged from 1.76-2.13 × 10-8 nucleotide subs/site/year among the 

E1, E2, L1and L2 genes; however, substantial overlap in the confidence intervals 

for the estimated rates is only observed for the L1 ORF. Moreover, calculation of 

the divergence time of the turtle-avian PV split, using the evolutionary rates 

estimated from the feline PVs, produced estimates of approximately 60 My, 

which is over 3 times more recent than fossile estimates for the time of 

divergence of the corresponding hosts (Herbst et al. 2009). Three possible 

explanations exist for the inconsistency. The estimates for the evolutionary rates 

of the feline PVs, or the reptilian-avian PVs, or both, may be grossly incorrect. 

Alternatively, the different estimates obtained for different PV datasets may 
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indicate evidence against a constant rate of evolution, which was assumed in all 

cases, across different PV lineages. The third explanation is that the PVs have not 

codiverged with their hosts and therefore use of the host’s divergence times to 

calibrate the timescale of PV evolution is erroneous.  

Despite the lack of consensus among the estimated rates, the values estimate 

suggest that the PVs evolve at a rate more comparable to that of their hosts, 

which is estimated to be on the order of 10-9 nucleotide substitutions/site/year 

(Miyamoto et al. 1988; Makalowski and Boguski 1998). Slow evolutionary rates 

are characteristic among other DNA viruses and are largely attributed to the fact 

that viral genome replication is performed by the host’s own DNA polymerases, 

which possess proof-reading and error-correcting mechanisms to ensure high-

fidelity in replication (Shadan and Villarreal 1993).  

 

1.4.2  PV-Host Associations 

 

The Papillomaviridae have diverged to infect a diverse set of host species from 

the mammalian, avian and reptilian classes of vertebrates (Bernard et al. 2010). 

However, it is not known how the observed host range was acquired by this 

family of viruses. Individual PV types demonstrate high specificity for the host 

they were isolated from and the slow evolutionary rates suggest against the 

ability to ‘jump’ between host species with ease. However, closely related PV 

types have been detected on distantly related hosts (Chan et al. 1992a; Myers et 

al. 1996b), therefore raising the question, “How have PV associations been 

formed on different host species?” To answer this question we must consider the 

different processes that enable virus diversification to new hosts.  

 

1.4.2.1  Similarities to Parasite-Host Associations 

 

Viruses are non-living entities that possess genetic material but which lack a 

cellular structure and therefore do not possess the machinery to replicate their 

genomes and create progeny virus particles. They must infect the cells of living 

organisms, where they can use the host cell’s replication machinery to create new 

copies of their own genetic material. During infection virus proteins must interact 
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with numerous cellular molecules and will therefore adapt to the cellular 

environment to ensure successful infection. Host cell infection will also place 

them at risk from the host’s immune system and therefore they are under constant 

selective pressure from the host to maintain the association. Thus, viruses can 

develop a high degree of specialisation for a particular host species.  

The relationship between a virus and its host is therefore similar to that 

between a parasite and its host. Parasites are living organisms (uni- or multi-

cellular) which associate with another organism (the host) for nutritional gain. 

Viruses and parasites are both smaller than their hosts and reproduce at faster 

rates. As with viruses, in parasites it also appears that there is selection for 

specialisation. For the parasite, the benefits of specialisation can be ‘optimal 

foraging’ (i.e. continual exploitation of the most rewarding resource) and a more 

efficient use of the resources that gives it an advantage over invading competitors 

(Futuyma and Moreno 1988). Many parasites therefore demonstrate narrow host 

ranges and are highly specialised to their hosts (Janz, Nyblom and Nylin 2001). 

Since both viruses and parasites both benefit by maintaining a specialised 

association with their hosts, these associations may evolve in similar ways. 

 

The coevolutionary dynamics of parasite-host associations have long been a 

subject of interest (Klassen 1992); five key processes are considered (Page 2003). 

The commonly assumed mechanism acting on parasite-host associations is 

cospeciation. Cospeciation describes the process by which an associated host and 

parasite assemblage speciate together as the vicariance event (geographical 

isolation) causing host speciation affects the associated parasite species. 

Cospeciation therefore produces two “new” parasite-host associations among the 

descendant species. In virus-host associations, the virus residing within host cells 

is not directly affected by the vicariance event; however speciation of the host 

will cause separation of the virus population between the descendant hosts. 

Independent evolution of the separated populations will then result in divergence 

of the ancestral virus lineage (i.e., ‘codivergence’ of host and virus).  

A different outcome following host speciation is that the parasite species 

remains associated with only one of the descendant species of the host. This 

process is often referred to as ‘missing the boat’ or ‘incomplete lineage sorting’. 
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Alternatively, cospeciation occurs but one of the new parasite-host associations is 

terminated due to extinction of the parasite species. Extinction of the host species 

will, of course, result in extinction of the associated parasite species and 

therefore, as neither species remains, this is not a process of concern when 

studying the evolutionary history of observed parasite-host associations. I will 

use the collective term ‘sorting events’ to refer to processes resulting in the 

absence of a virus association on a host (i.e., missing the boat and virus 

extinction).  

 

As the parasite genome replicates, it may acquire random mutations which 

enable the organism to exploit a new resource or environment thereby resulting in 

speciation of the parasite independently of the host. When the descendent parasite 

species evolve to utilise different resources on the same host species, multiple 

parasite species will be observed to infect a particular host species. This process 

is commonly referred to in the literature as ‘parasite duplication’. If the mutations 

allow the parasite to utilise the resources on a different co-existing host species, 

then colonisation of this host will result in the formation of a new parasite-host 

association. This mechanism of parasite diversification is referred to as a ‘host 

switch’ or ‘host transfer’ and may result in closely related parasite species 

infecting distantly related host species. If the colonising parasite species 

encounters competition from a pre-existing parasite species, which is utilising the 

same resources, competition for those resources will result in the eventual 

extinction of one of the parasite species from the host.  

Similarly, mutations occurring in a virus lineage may cause it to diverge 

independently of the host. The divergent lineages may then exploit new cellular 

environments on the same host (referred to as ‘prior divergence’) or exploit 

cellular environments on new hosts (‘host transfer’).  

 

1.4.2.2  Fahrenholz’ Rule for Codiverging Parasite-Host Associations 

 

Comparisons of the phylogenies of associated hosts and parasites can provide 

indications of the processes that have produced the observed associations. The 

field of host-parasite cophylogenetic analysis rests on one key rule. Fahrenholz 
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(1913) made the general observation that closely related host species were 

infected by closely related parasite species and distantly related host species were 

infected by distantly related parasite species (Klassen 1992). Thus, the degree of 

divergence among parasites species tended to match that of their associated hosts. 

These observations, along with the assumption (of the time) that codivergence 

was the only process by which parasites could speciate, led Eichler (Eichler 

1942) to propose Fahrenholz’ rule, which states that strict host-parasite 

codivergence results in identical phylogenetic relationships for hosts and their 

associated parasites (Klassen 1992). Fahrenholz’ rule is therefore employed in 

methods of cophylogenetic analyses (Brooks 1981; Brooks 1990; Page 1994b; 

Page 1994a; Charleston 1998; Ronquist 2002) to test for evidence of parasite-host 

codivergence: identical phylogenies indicate strict codivergence, incongruent 

phylogenies indicate some that degree of parasite diversification must be 

explained via non-codiverging mechanisms. 

 

 

1.4.2.3   Do PV-Host phylogenies obey Fahrenholz’ rule? 

 

Assuming that the coevolutionary dynamics affecting virus-host associations 

are similar to those described for parasite-host associations, Fahrenholz’ rule may 

be applied to examine the evidence for codivergence of PV types with their hosts. 

Initial PV phylogenies generated from small data sets demonstrated large 

evolutionary distances between PV types from distantly related hosts and the 

evolution of primate and non-primate PV types along separate branches (Chan et 

al. 1992a). These observations were thought to support the PV-host codivergence 

hypothesis (Bernard 1994; Van Ranst et al. 1995; Rector et al. 2007). Further 

supported was obtained from phylogenies demonstrating that  diversification 

within the globally prominent HPV types 16 and 18 has followed the 

biogeographical patterns of their human hosts, therefore indicating codivergence 

within a host (Chan et al. 1992b; Ho et al. 1993; Ong et al. 1993; Bernard 1994).  

However, complete concordance between estimated PV phylogenies and the 

host phylogeny, as per Fahrenholz’s rule, was not observed. In particular, Chan et 

al. (1992a) found the bovine PV type BPV4 to be more closely related to some 
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human PV types than to other bovine PV types (BPV1 and BPV2). A further 

discrepancy is observed with the non-human primate PV types, RPV (now 

MmPV1) and CgPV1, which, rather than branching off at the base of a clade of 

HPV types in accordance with the host’s relationships, assume positions nested 

within clades of human PV types (Fig. 4 and 5, Chan et al. 1992a).  

As the PV database has increased over the last two decades new types have 

been detected in previously unknown hosts as well as in known hosts; 

phylogenetic analysis of these larger data sets (Chan et al. 1997a; Chan et al. 

1997b; Garcia-Vallve, Alonso and Bravo 2005; Bravo and Alonso 2007; 

Gottschling et al. 2007a; Gottschling et al. 2007b; Gottschling et al. 2011a; 

Gottschling et al. 2011b; Lange et al. 2012; Robles-Sikisaka et al. 2012) have 

uncovered multiple discordances in the pattern of host and virus divergence 

events (Figure 1.6, reprinted from Gottschling et al. (2007b: Fig. 2)), which 

clearly cannot be reconciled with a strictly codiverging mechanism of PV 

diversification among vertebrates.  

 

Conflicting branching patterns between PV and host phylogenies have been 

rationalised by the proposal of host transfer events. Several authors have 

highlighted the polyphyletic arrangement of various non-human primate PVs 

among large clades of α and β HPVs as an indicator of PV host transfer events 

(Chan et al. 1992a; Myers et al. 1994; Myers et al. 1996a; Chan et al. 1997b; 

Gottschling et al. 2007a). It was once thought that HPV7, prevalent in skin warts 

on the hands of butchers, may represent PV transfer from other animals to 

humans (Orth et al. 1981); however, estimated phylogenies places HPV7 among 

other HPV types and no related PV lineage has been detected in these animals to 

support this assumption.  

Only two PV types, the bovine PV types 1 and 2, have been isolated from 

more than one host species (Otten et al. 1993; Bloch, Breen and Spradbrow 1994; 

Antonsson and Hansson 2002; Chambers et al. 2003; Bogaert et al. 2008). Unlike 

normal PV infection of the epithelium these zoonotic BPVs produce non-

productive fibroblastic tumours, or sarcoids, in horses and donkeys. Among 

rabbits, the cottontail rabbit papillomavirus produces productive infections in its 
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natural host (the cottontail rabbit), but produces only poorly productive infections 

that can progress to cancers in domestic rabbits (Rous and Beard 1935).  

The evidence seems to suggest that PV types are unable to complete a 

productive life cycle in non-native hosts. The difficulty of successful host transfer 

of PVs is not surprising given the slow evolutionary rate, and thus long 

adaptation times, of DNA viruses. Specific obstacles may be presented by the 

highly adapted nature of molecular interactions between the virus and host 

regulatory proteins (Shadan and Villarreal 1993). Whilst the lack of physical 

evidence suggests against recent host transfer events, we cannot discount the 

possibility that ancestral host transfer events contribute to the observed 

phylogenetic incongruities. 

 

A salient feature of the PV database is that some hosts appear more than once. 

For instance, the phylogeny presented in Figure 1.6 contains 18 PV types isolated 

from Homo sapiens (human), 7 PV types from Bos Taurus (bovine), and 2 PV 

types from Canis familiaris (dog), Ovis aries (sheep), and Sylvilagus floridanus 

(cottontail rabbit) host species. Multiple associations with a particular host 

species can be formed when an associated virus lineage diverges independently 

of the host (i.e., prior divergence); however, if this was the case, all PV lineages 

associated with a particular host species would cluster together in a monophyletic 

clade. The fact that the PV types from human, bovine and dog hosts each fail to 

form a monophyletic clade suggests that if any prior divergence occurred, it was 

in an ancestral host species and not the observed host species.  

 

 

1.4.2.4   Elucidating the History of PV-Host Association Mechanisms 

 

The phylogenetic incongruities observed between the PVs and their hosts 

conflict with Fahrenholz’ rule for strictly codivergence. Instead, the incongruities 

are thought to encode an amalgamation of codivergence, within-host adaptive 

radiation (prior divergence), host transfer and sorting events (Gottschling et al. 

2007b). No attempt has been made, however, to decipher the evolutionary history 

of PV-host associations. In Chapter 4, I describe various methods of 
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cophylogenetic analysis that have been developed to determine the evolutionary 

causes behind observed host-parasite phylogenetic incongruities. I will describe 

the limitations of these methods that prevent their application to the PV-host 

phylogenies and present a new approach, based around temporal comparison of 

host and virus lineage splitting events, to characterise the processes behind viral 

divergence events and resolve virus-host phylogenetic incongruities. In the 

absence of known or estimable viral divergence times, I apply a biased sampling 

approach to divergence time estimation in Bayesian phylogenetic methods. The 

distributions of sampled times for various viral divergences are used to evaluate 

the support for codivergence, host transfer and prior divergence along the PV 

phylogeny.  The results indicate that the observed PV-host phylogenetic 

incongruities can be largely explained by substantial prior divergence of PV 

lineages in the ancestors of extant hosts. An ancestral host transfer event is also 

inferred. 
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Figure 1.6: A maximum likelihood PV tree generated from combined E1-E2-L1 aa 

sequences. Multiple PV types infecting Homo sapiens, Bos taurus and Canis familiaris 

fail to form monophyletic clades suggesting that the path of PV lineage evolution has 

deviated from that of its host on multiple occassions. Reprinted from Gottschling et al. 

(2007b: Fig. 2). 

 

 

1.4.3  Phylogenetic Incongruity of PV Genes 

 

  Characterisation of the mechanisms of PV diversification requires 

estimation of the phylogenetic tree relating PV types. To ensure that this 

characterisation was based on an accurate estimate of the PV evolutionary 

history, I first investigated the degree of phylogenetic compatibility among the 

PV genes. Phylogenetic compatibility is a necessary consideration as the 

evolutionary trajectory of individual genes may often deviate from that of the 

species at various points during its evolutionary history. Many bacterial and viral 

genomes have encountered lateral gene transfer, recombination or reassortment 

 42



events during their evolution (Lefeuvre et al. 2009; Simon-Loriere and Holmes 

2011; Koonin and Wolf 2012; Nelson et al. 2012). These events provide 

additional avenues of diversity and are important in ensuring the survival of the 

species; however, they also produce genomes with discordant evolutionary 

histories. For instance, when a recombination event occurs, the evolutionary 

history of the inserted portion may be different to that of the non-recombined 

genomic region (Figure 1.7). In such cases not only would it be incorrect to make 

evolutionary inferences from a single phylogeny but, in some cases, the 

discordant phylogenetic signals may even cause the estimation method to settle 

on a tree topology that fails to represent any of the true evolutionary histories 

along the sequence (Posada and Crandall 2002).   

 

 

      

A
B

C
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Recombination between
lineages B and C

 
 

Figure 1.7. An illustration of the effect of a recombination event on phylogenetic 

estimation. The phylogenies of the sequences are different before and after the 

recombination event (breakpoint) therefore phylogenetic estimation from the entire 

sequence length will produce a phylogeny that is incorrect for some if not all of the sites. 

 

 
1.4.3.1 Observed Phylogenetic Incongruities 
 
 

PV genomes, being unsegmented structures, are not capable of reassortment; 

however, recombination and lateral gene transfer events could have influenced 

the evolutionary history of these viruses. Despite a lack of physical evidence to 

support the occurrence of recombination or gene transfer, various phylogenetic 

estimates have revealed possible discordances between the genes of certain PV 

genomes. In particular, within the α genus, the high-risk PVs present different 
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phylogenetic arrangements for the early proteins and the late proteins (Bravo and 

Alonso 2004; Garcia-Vallve, Alonso and Bravo 2005; Narechania et al. 2005). 

All early genes appear to support the monophyletic grouping of the high-risk PVs 

in a sister clade to the low-risk alpha PVs; however, phylogenetic estimations 

from late genes present a polyphyletic arrangement of the high-risk PVs (Figure 

1.8, adapted from Narechania et al. 2005: Fig. 2). Phylogenetic analysis of 

multiple PV genera (Garcia-Vallve, Alonso and Bravo 2005) further revealed 

differences in the phylogenetic arrangements of the regulatory proteins, the 

structural proteins, and the transforming proteins; in general the PVs show 

consistent phylogenetic grouping of PV types by genus across all genes but differ 

in the respective placement of genus clades and of PV types within genus clades. 

 

1.4.3.2 Recombination Detection in PV sequences 

 

The observation of conflicting tree topologies for different PV genes has 

prompted studies searching for statistically significant phylogenetic conflicts 

which may indicate recombination events among PV sequences. Varsani et al. 

(2006) applied a suite of recombination detection programs to identify significant 

recombination signal in the genomes of 105 human and non-human PV types. 

Their analysis uncovered 7 potential recombination signals, 4 of which were 

supported by topological incongruities when the respective genetic regions were 

reanalysed. The L2 gene was identified again: 4 different recombination signals 

were detected, one of which involved the high-risk α PVs – the α-5, α-6, and α-7 

species – that are phylogenetically separated from the remaining high-risk α PVs 

in late gene phylogenies. The parent sequences of the recombinant were 

identified as distant relatives of the α-10 PV type HPV3 and the α-13 PV type 

HPV54. The PV types from the α-5, α-6, and α-7 species may therefore be 

descendants of a recombinant type.  

A second potential recombination event in the L2 gene involving α PV 

sequences was identified for HPV42 from the α-1 species with an α-5 PV type as 

one of the parent sequences. The L2 genes of the γ-HPVs were also found to be 

descendants of a recombinant sequence that comprised some of the L2 gene of an 
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ancestral β-PV type. Another recombinant sequence identified was PsPV1; once 

again recombination was located in the L2 gene and was thought to involve a 

relative of a β HPV sequence as one of the parent sequences, the nature of the 

other parent sequence could not be determined.  Two recombinant signals were 

located in the L1 gene: one involved recombination within the α PV genus and 

the other within the β PV genus. The remaining putative recombination event is 

located in the E1 gene of ν-HPV41; the recombinant region within this PV type is 

thought to contain sequence from an ancestor of COPV and another unknown PV. 

 

In a separate analysis of just the α HPVs (Angulo and Carvajal-Rodriguez 

2007; Carvajal-Rodriguez 2008), the coalescent composite likelihood method, 

which utilises models of evolutionary change (McVean et al 2002; Carvajal -

Rodriguez et al 2006), was used to detect recombination signals in the E6, E7, L1 

and L2 genes. The α HPVs were analysed in 4 distinct groups: significant 

evidence for recombination was found in the E6 and L2 genes of HPVs from all 

species of the high-risk group; in the L1 and L2 genes of a group of low-risk 

mucosal HPVs which are phylogenetically closely related (α-1, α-8 and α-10); in 

the L2 gene of another group of low-risk mucosal HPVs (α-3 and α-15); and in 

the E7 gene of a group of HPV16 variants. Specific details on the locations and 

particular sequences from which the signals were the strongest were not 

obtainable from the analysis. These results support those of Varsani et al (2006) 

in the identification of the L2 gene as a recombination hotspot for PVs, however, 

this may be an artifact from increased sequence divergence in the L2 gene and it 

is interesting to see that significant recombination signal was not detected in the 

more closely related group of HPV16 variants.  
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Figure 1.8. Phyogeny of the early genes and the late genes of the α HPVs. A 

single HPV type is used to represent each PV species within the α genus. Species 

5, 6, 7, 9, and 11 comprise of the ‘high-risk’ (*) genital PV types whilst species 1, 

8 and 10 comprise of the ‘low-risk’ genital PV types. The phylogenetic 

arrangement of the high-risk PVs differs in the two trees (branches leading to 

clades of high-risk PVs are highlighted in red): the high-risk PV types form a 

monophyletic clade in the early gene tree but are split into two (possibly three) 

distinct clades in the late gene tree. Adapted from Narechania et al. (2005: Fig. 2)  

 

 

1.4.3.3  Testing Phylogenetic Incongruence 

 

The observed phylogenetic incongruities and detection of multiple 

recombination signal among PV sequences, suggests against combined 

phylogenetic analysis of PV genes without first testing whether the observed 

differences are statistically significant. In Chapter 3, I describe some tests that 

can be performed to evaluate the significance of phylogenetic differences among 

data partitions and discuss the results of previous incongruence tests of PV 

sequences. These results are specific to the analysed data sets, which differ from 

the data set analysed in this thesis and therefore can not be applied to my data set. 

I have performed an independent analysis of phylogenetic compatibility among 

PV genes using Bayesian phylogenetic methods and report findings of significant 

phylogenetic incongruence between the E1, E2, E6, E7, L1 and L2 PV genes. 
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The results presented in Chapters 3 and 4 have been published in Shah, 

Doorbar and Goldstein (2010). 

 

 
 
 
 
 
 
 
 
 
 
 



 
 
 

Chapter 2 
 

Phylogenetic Analysis using Bayesian Methods 
 

 

 

This chapter provides an introduction to the theory and procedure behind 

Bayesian methods of phylogenetic analysis, which I have used to infer 

evolutionary events from PV genetic sequences. The evolutionary history of a 

virus family is best determined from molecular sequence data, i.e., genetic or 

protein sequences, as other biological data, such as morphological or serological 

characteristics, may be less discriminative and convey less information on 

evolutionary rates and speciation times.  

 

 

2.1   Multiple Sequence Alignment 
 

 

Molecular phylogenetic analysis is based on the implicit assumption that the 

sequences being analysed are homologs, i.e., they are all descendants of a 

common ancestral sequence. A phylogenetic estimate is a proposal of the 

evolutionary tree relating the homologs to each other. The root of the tree 

represents the common ancestor of the analysed sequences, which assume 

positions at the ends of the terminal branches, or tips, of the evolutionary tree. 

The relationships among the sequences are indicated through the lineage 

branching patterns (tree topology) and the extent of evolutionary change along 

each lineage (if estimated) is indicated through the branch lengths.  

Branching points (‘nodes’) along the tree represent the divergence of an 

ancestral lineage to form two daughter lineages. However, estimated phylogenies 

may postulate mutifurcating nodes (also referred to as ‘polytomies’), where a 

lineage diverges into more than two daughter lineages. Polytomies may either 
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represent a series of divergence events happened in close succession such that the 

exact order of lineage splitting events cannot be determined or the inability of the 

inference method to resolve the phylogenetic placement of a subset of sequences.  

 

For a set of observed homologous genetic sequences, the nucleotide base 

x∈{T/U(DNA/RNA), C, A, G} observed at each position, or site, in each sequence 

has evolved from a base in the genetic sequence of the LCA. Thus, individual 

sites across sequences will be related to each other through a common ancestral 

base. The exceptions to this are those sites which have been inserted into 

individual sequences at some point during the evolutionary process - these sites 

will not be shared by all sequences in the data set. Deletion events causing the 

removal from a particular sequence will also reduce the number of sites shared by 

all sequences.  

In order to infer the evolutionary relationships among the sequences, it is first 

necessary to identify site homologies across the sequences. This is achieved using 

alignment algorithms which generate an mn ×  alignment matrix where each row 

corresponds to one of the n sequences and each column corresponds to a 

homologous site. A scoring matrix indicating the cost of aligning the different 

nucleotide bases against one another is used to determine the optimal alignment 

of sites across the sequences.  

The alignment algorithm may introduce gaps into some sequences to achieve 

a full alignment of all sites. Alignment columns possessing the gapped ('-') 

characters may indicate insertions of the non-gapped sites in the respective 

sequences or deletions of sites from the corresponding gapped sequences. 

Alternatively, they may indicate highly divergent sites where it is difficult to 

obtain a favourable alignment of the observed bases. The patterns of insertion and 

deletion events can contribute valuable information for phylogenetic 

reconstruction (Lloyd and Calder 1991); however, the difficulty in accurately 

inferring these events from the alignment, along with the difficulty of modelling 

the evolutionary processes of insertions and deletions, means that gapped sites in 

the aligned data matrix are sometimes excluded from the phylogenetic estimation 

process. Thus, evolutionary trees are generated by considering only the 

mutational changes that have occurred among molecular sequences. 
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2.2   An Overview of Non-Bayesian Methods of Phylogenetic    
Analysis 

 
 
2.2.1 Distance Matrix Methods 
 
 

Phylogenetic estimation from aligned sequence data can be performed using a 

variety of methods. The distance matrix approach differs from other methods of 

sequence-based phylogenetic estimation in that evolutionary relationships are not 

inferred directly from the observed sequences, but from estimated evolutionary 

distances quantifying the expected amount of character change between pairs of 

sequences. A crude estimate of the pairwise sequence distances can be obtained 

from the proportion of non-identical sites between sequences. However, since 

only the most recent character replacements at each site are detectable from the 

observed sequences, this method of distance estimation will underestimate the 

amount of change between sequences when multiple substitution events have 

occurred per site. The use of probabilistic models of sequence evolution 

(described below) allows the raw estimates of sequence distances to be corrected 

for the possibility of ‘hidden’ substitutions.  

 

Phylogenetic estimation from the distance matrix then requires a search 

through all possible tree topologies relating the m sequences. For each topology, 

a least squares (LS) method is used to ensure that the branch lengths along this 

tree provide the closest fit to the estimated evolutionary distances between all 

pairs of sequences (Cavalli-Sforza and Edwards 1967): 

   
   S = ( )∑

<

−
ji

ijijd 2δ ,      (2.1) 

  
where dij is the additive distance between sequences i and j, obtained by summing 

the branch lengths along the shortest path from i to j, and δij is the evolutionary 

distance between i and j, estimated using a model of evolutionary change. For a 

given distance matrix, the optimal phylogeny can be specified as the one that 
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provides the best fit to the estimated distances, i.e. the one with the smallest value 

of the least squares measure, S. Alternatively, a minimum evolution (ME) 

criterion (Edwards and Cavalli-Sforza 1963; Kidd and Sgaramella-Zonta 1971; 

Rzhetsky and Nei 1993) can be specified to search for the phylogeny conveying 

the least amount of evolutionary change among the sequences, measured by the 

sum of all branch lengths.  

 

For large data sets, a search for either the LS or ME phylogeny is encumbered 

by the number of tree topologies that need to be evaluated. For a data set with m 

taxa, there are 
)!3(2

)!52(
3 −

−
− m
m

m  possible unrooted, labelled tree topologies that must 

be considered. Thus, for a data set consisting of 10 sequences, a search for the 

optimal phylogeny requires evaluation of the selected optimality criterion (e.g. 

the smallest tree length) for each of the 2,027,025 possible unrooted tree 

topologies. To facilitate the analysis of larger data sets, phylogenetic methods 

employ heuristic methods that optimise the phylogenetic estimate without 

searching through the entire tree space.  

 

In distance matrix methods, clustering algorithms are employed to 

approximate the best topology. Two commonly used algorithms are the 

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) (Sokal and 

Sneath 1963), which is applied to estimate a rooted phylogeny under the LS 

method, and Neighbour Joining (NJ) (Saitou and Nei 1987), which enables 

estimation of an unrooted phylogeny under the ME criterion. The UPGMA 

algorithm constructs the optimal tree from the distance matrix in a step-wise 

manner. At each stage the closest related pair of taxa/clades are joined together in 

a clade on the tree. The selected pair are removed from the distance matrix and 

replaced by the newly formed clade. Distances from this clade to the remaining 

taxa/clades are recalculated by taking the unweighted arithmetic mean of the 

distances from each of the original components in the newly joined cluster. The 

NJ method adopts a different approach in which a resolved bifurcating topology 

(i.e., one in which each internal node has only 3 connecting branches) is derived 

from an unresolved star tree topology (i.e., one possessing a single internal node 
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that is connected to all taxa). At each stage, the NJ algorithm pairs up the taxa or 

clades that produce the greatest reduction in the tree length. 

  

Distance matrix methods provide a fast method of phylogenetic estimation as 

the transformation of the aligned sequence matrix into a distance matrix provides 

a substantial reduction in the amount of data that has to be analysed. Simulation 

studies (Saitou and Nei 1987) have found the NJ method to be highly efficient at 

estimating the true tree topology for closely related sequences separated by small 

evolutionary distances. This is because the number of unobserved substitutions is 

small and therefore evolutionary distances can be estimated more accurately. 

However, when sequences are separated by larger evolutionary distances, the 

sampling error in the estimated distances may be great, affecting the accuracy of 

phylogenetic reconstruction. Developments to the NJ method, such as BIONJ 

(Gascuel 1997) and Weighbor (Bruno, Socci and Halpern 2000) are found to 

improve the accuracy of phylogenetic estimates under these conditions. 

 

 
2.2.2 The Maximum Parsimony method 

 

Other methods of phylogenetic estimation attempt to derive evolutionary 

relationships directly from the character changes observed at each homologous 

site, with the correct phylogeny assumed to be the one that provides the best fit to 

the observed evolutionary patterns among the sequences. The maximum 

parsimony (MP) method of phylogenetic estimation defines the best fitting tree as 

the one postulating the least amount of evolutionary change along the tree 

(Camin and Sokal 1965). The approach is similar in concept to the ME criterion 

utilised in distance matrix methods, however, the evolutionary models implied in 

MP are much simpler than the probabilistic models employed in distance 

methods and generally disregard the possibility of multiple substitutions per site.  

For a given tree topology, a dynamic programming algorithm is used to 

determine the minimum amount of evolutionary change required along each 

branch, starting from the tips, for which sequence data exists, and progressing 

down the tree towards the root. Each site is assumed to evolve independently 
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allowing the changes at each site to be considered individually. Along each 

branch, the minimum amount of evolution can either be evaluated in terms of the 

number of character changes (Fitch 1971) or, by employing a cost matrix to 

weight the different changes, in terms of the cost of character changes (Sankoff 

1975). The sum of either the number or cost of changes along each branch 

provides the measure of evolutionary change at each site (the site length); the 

sum of the site lengths provides the total measure of evolutionary change along 

the tree (the tree length). The MP phylogenetic estimate is the phylogeny with the 

smallest tree length.  

Not all sites of the sequences are utilised by MP methods. Sites which show 

no change of character or with only single representatives of characters are 

considered uninformative in parsimony methods as they are equally supported by 

all tree topologies. Thus, the MP tree is not derived from all available data. 

Further underestimation, by MP, of the amount of evolutionary change occurring 

along a tree comes from the assumption that changes are equally likely along 

each branch of the tree. Branches representing higher evolutionary rates or longer 

evolutionary periods will encounter more changes of state than branches 

representing lower evolutionary rates or shorter evolutionary periods but these 

differences are not modelled by the MP method.  

In some instances, MP methods have been identified as statistically 

inconsistent methods of phylogenetic estimation (Felsenstein 1978), meaning that 

even an infinite amount of data will not guarantee estimation of the correct tree. 

Specifically, a 'long branch attraction' problem has been identified for 

phylogenetic reconstruction of certain topological structures under MP. For 

sequences simulated along phylogenies with long branches separated by short 

internal branches, the greater number of changes occurring along the long 

branches means that it is possible for the terminal sequences to display identical 

site characters purely by chance (convergent/parallel evolution) despite having 

evolved from different ancestors. In MP estimation, the homoplasious (i.e., 

parallel) changes along the long branches are misinterpreted as homologous 

states inherited from their common ancestor, causing the long branches to be 

erroneously clustered together (Felsenstein 1978; Hendy and Penny 1989; 

Huelsenbeck and Hillis 1993). The influence of LBA can be reduced by including 

 53



more sequences closely related to those possessing long branches, thus removing 

the long branches from the tree. However, the identification of such sequences 

may be non-trivial.  

 
 
 
2.2.3 The Maximum Likelihood Method 

 

In maximum likelihood (ML) phylogenetic estimation, the optimal tree is defined 

as the one with the highest likelihood, that is, “the highest probability of evolving 

the observed data” (Felsenstein 1981). The probability of the observed sequences 

given a particular phylogeny is computed using the probabilities of character 

change specified by a model of sequence evolution. The evolutionary models 

employed to calculate the likelihood are also utilised in Bayesian phylogenetic 

estimation and are described in more detail below. For each topology, the set of 

parameter values constituting the evolutionary model (i.e., substitution model 

parameters and branch lengths) that maximise the likelihood of the tree is 

determined. ML phylogenetic estimation can proceed under simple evolutionary 

models consisting of very few parameters or under models of increasing degree 

of complexity. Complex models allow for a better representation of the 

evolutionary process; however, given a finite amount of data, estimation of 

optimal parameter values will be more difficult than for a simpler evolutionary 

model consisting of fewer parameters. ML phylogenetic estimation may therefore 

be difficult for more descriptive evolutionary models. However, ML phylogenetic 

estimates are found to be robust to violations of the specified evolutionary model 

(Yang, Goldman and Friday 1994) which is beneficial since even complex 

evolutionary models are likely to be simplifications of the real process. In 

addition, when used with a model that suitably reflects the complexity of the data 

set, the ML method is found to be statistically consistent (Yang 1994b).  
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2.2.4 Heuristic Methods for MP and ML Phylogenetic Estimation 

 

As with distance methods, for large data sets, both MP and ML phylogenetic 

estimations utilise heuristic methods to obtain an optimal phylogeny. In contrast 

to the clustering algorithms of distance methods, MP and ML perform tree 

rearrangements to explore different topologies in tree space. Starting from an 

initial tree topology, various perturbation methods can be used to generate new 

topologies. These methods include nearest neighbour interchange (NNI), tree 

bisection and reconnection (TBR), and subtree prune and regraft (SPR). The NNI 

algorithm randomly selects an internal (i.e., non-terminal) branch and proposes a 

change to one of the two neighbouring tree topologies derived from alternative 

arrangements of the four subtrees protruding from the selected branch. The NNI 

operator can also be extended to allow the swapping of any two randomly 

selected subtrees (known as a subtree swap operation). The TBR algorithm 

randomly selects an internal branch for removal from the tree; a new topology is 

derived by randomly selecting a branch from the resulting subtrees and 

reconnecting the two subtrees at the selected branches. The SPR algorithm is 

similar to TBR in that the tree is bisected at an internal branch; however the 

subtree that is pruned from the main portion of the tree is reattached via the same 

node to a randomly selected branch in the remainder of the tree, thus maintaining 

the order of branching events in that subtree.  

Traditionally, a hill-climbing approach was used to search for the optimal 

phylogeny, i.e., perturbations that improve the fit of the tree to the data are 

accepted until no further improvements are achieved. However, as the number of 

possible topologies increases, it becomes more likely that the sequence of 

rearrangements that must be performed to reach the optimal topology consists of 

rearrangements to topologies that reduce the fit to the data (Maddison 1991). 

Thus, hill-climbing algorithms may fail to reach the global optimum when tree 

space is large. A number of alternative search algorithms (e.g. genetic algorithms 

(Lewis 1998; Goloboff 1999; Brauer et al. 2002), simulated annealing (Salter and 

Pearl 2001; Barker 2004), and divide and conquer algorithms (Goloboff 1999)),  

which allow exploration through sub-optimal regions of tree space are steadily 

being implemented into phylogenetic software packages (Giribet 2007). 
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2.2.5 Confidence Measures for Estimated Phylogenies 

 

To assess the level of confidence that can be attached to estimated 

phylogenies Felsenstein (1985) proposed application of a non-parametric 

bootstrapping approach (Efron 1979). In the absence of additional data, 

bootstrapping provides a means of generating artificial data sets from the same 

distribution as the observed data, from which the variability of parameter 

estimates can be evaluated. For phylogenetic estimations, we wish to generate 

data sets representing the same underlying evolutionary process as the observed 

sequences. The artificial data sets, of the same length as the analysed sequences, 

are obtained by repeated sampling of sites, with replacement, from the original 

data-matrix. This makes the assumptions that each site evolves independently and 

that each site in the alignment is observed with the same frequency at which it is 

observed in the population of site patterns generated according to the underlying 

phylogeny. Hence, resampling from the alignment is equivalent to sampling from 

the distribution of site patterns produced under the tree (Felsenstein 1985). Each 

artificial data set represents a bootstrap sample which can then be analysed using 

the same phylogenetic reconstruction method (distance matrix, MP, or ML) as the 

original data to produce a bootstrap phylogeny.  

Topological uncertainties in the phylogenetic estimate from the real 

sequences are assessed by determining what proportion of the bootstrap trees 

display the same phylogenetic relationships. Thus each clade in the original tree 

estimate is assigned a bootstrap support value, which indicates the proportion of 

times the clade is observed in repeat samples. However, inferences of 

phylogenetic confidence from a non-parametric bootstrapping approach are more 

commonly made from a ‘majority-rule consensus tree’. This tree depicts the set 

of clades that are observed in the majority (i.e., at least 50%, although a higher 

threshold may be used if greater confidence is desired) of bootstrap trees. Taxa 

which fail to show a preferred clustering pattern in the majority of trees are 

placed into a polyphyletic clade at the base of the tree to indicate the uncertain 

nature of their phylogenetic positions. Clades with high bootstrap proportions 

may be assumed to be well supported by the majority of sites in the real 
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sequences and inspire confidence in the phylogenetic estimate, whilst low 

bootstrap proportions indicate regions where the phylogenetic signal may be 

highly variable among the sites.    

 
The determination of bootstrap support values for a given phylogeny requires 

substantial additional computation as phylogenetic estimation must be performed 

on each bootstrap data set. If the assumptions of the evolutionary model or 

phylogenetic method used are too simplistic for the sequences being studied, 

incorrect phylogenies will be estimated for both the original data set and the 

bootstrap data sets. The concern here is in obtaining incorrect bootstrap 

phylogenies consistent with the estimated phylogeny so as to produce high 

bootstrap support values for incorrect phylogenetic groupings. The bootstrap 

method therefore provides an indication of the level of precision of the original 

phylogenetic estimate rather than its accuracy. Various simulation studies have 

found bootstrap support values to provide conservative estimates of the 

confidence in the estimated topology (Hillis and Bull 1993; Alfaro, Zoller and 

Lutzoni 2003; Huelsenbeck and Rannala 2004). Hiilis and Bull (1993) found that 

bootstrap support values > 70% corresponding with clade probabilities > 95% 

and therefore branches with lower bootstrap support values should be inferred as 

uncertain. 

 

 

2.3     Bayesian Phylogenetic Analysis 
 
 
2.3.1 The Bayesian Statistical Framework 

 

Bayesian methods of phylogenetic analysis differ from the above methods by 

directly enabling determination of the uncertainty of all estimands, i.e. the model 

parameters and the phylogeny. In Bayesian statistics, inferences about any 

hypothesis or parameter, θ, are made from the posterior probability distribution 

of θ, which is the conditional probability distribution of θ given the observed data 

X (in phylogenetics, X may be the aligned matrix of molecular sequences). Thus, 

rather than searching for the optimal estimate, the Bayesian approach allows 
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determination of the conditional probability distribution for a given parameter. 

The posterior probability density of θ, )|( Xf θ ,  is given by Bayes’ theorem 

(Bayes 1763) as 

 

  
)(

)|()(  )|(
Xf
XffXf θθθ = .                   (2.2) 

 
)(θf

|(

 represents the prior (unconditional probability) distribution of θ  and is 

intended to represent our knowledge of θ gained independently of the data. 

)θXf  represents the likelihood function of θ, i.e., the probability of the 

observed data given θ. The product of )|( θXf and )(θf  represents the joint 

distribution of θ and X, ),( θXf . Thus, the posterior probability density 

)X|(f θ  is obtained by dividing the joint density ),( θXf  by the marginal 

probability of the data, .  acts as a normalising constant to ensure 

that the posterior density over all θ integrates to 1: 

)X (Xf(f )

  .                 (2.3) ∫= θθθ d )|()(  )( XffXf

Bayes' theorem demonstrates how posterior inferences of θ from the observed 

data are made by updating our prior knowledge of θ with the corresponding 

information contained in the data.  

 

 

Bayesian phylogenetic analysis is performed using the same probabilistic 

models of evolution as applied in distance matrix and ML phylogenetic methods. 

These models can accommodate substantial heterogeneity in the evolutionary 

process and may therefore involve a large number of parameters. Whilst ML 

methods may encounter difficulties in parameter estimation for complex models, 

the Bayesian approach provides a better framework for the analysis of data under 

multi-parameter models as it does not require parameter optimisation. When there 

is more than one unknown quantity in the model, Bayes' theorem provides the 

joint posterior distribution of these parameters. For example, Bayesian 

phylogenetic analysis may comprise of the following parameters: the tree 
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topology τ, the branch lengths t and various model parameters represented by the 

vector θ . The joint posterior distribution of these parameters is 

   

 
∫

=
θθθ

θθ
θ

d d d ),,|(),,(
),,|(),,(  ),,(

ttXftf
tXftfXtf

τττ
τττ |                          (2.4)

   
The posterior distribution for any single parameter can be obtained from the joint 

distribution by integrating over all other parameters. For example, the posterior 

distribution of tree topologies τ can be obtained from )|,,( Xtf θτ by integrating 

over all branch lengths t and model parameters θ :  

   
  ∫= θθ d d )|,,(  )|( tXtfXf ττ                     (2.5) 
   
By integrating over parameters that are not of interest in further inference (so-

called 'nuisance' parameters), their influence on the parameters of interest is 

ameliorated. Thus, inferences made from the posterior distribution of topologies 

are less likely to be influenced by sampling errors affecting the model parameters 

and branch lengths. The posterior probability of a particular tree topology then 

tells us the probability that that topology is true conditional on the observed data 

and the other parameters. The posterior distribution of topologies can be analysed 

to determine posterior probabilities for specific groupings of taxa, without 

requiring generation of new data sets as in the bootstrap method.  

 

 

2.3.2 Computing Bayesian Posterior Probabilities 

 

To perform a Bayesian phylogenetic analysis, Bayes' theorem states that we 

require prior probabilities for any unknown parameters and a method to compute 

the likelihood. 

 
 
2.3.2.1   Computing the Likelihood of an Evolutionary Hypothesis 

 

The likelihood of a tree tells us the probability that the observed data evolved 

along that tree. Calculation of the likelihood requires a means of calculating the 
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probability of evolutionary events – nucleotide changes – along the tree. Various 

probabilistic models can be applied in phylogenetic analysis of molecular 

sequences to calculate the probability, pij(t), of change from state i to state j 

during a period of time of length t.  

 

2.3.2.1.1  Models of Nucleotide Substitution 

 
To model substitution events at the nucleotide level it is assumed that these 

events occur randomly in time and form a Markov chain such that the probability 

of nucleotide change from state i to state j, is dependent only on state i, the 

current state, and not on the history of previous substitutions at that site. Under 

these assumptions, the substitutional process can be described as a continuous-

time Markov process in which the states of the Markov chain are defined by the 

four nucleotides. For ease of computation, it is also assumed that each site in a 

sequence evolves independently of other sites, and can therefore be analysed 

individually. The Markov chain generated by the evolutionary model therefore 

provides a probabilistic description of the sequence of nucleotide replacements at 

individual sites.  

 
Various nucleotide substitution models have been proposed; each model is 

derived from a substitution-rate matrix (Q) of instantaneous rates of change 

between states (i.e., nucleotides). The instantaneous rate of change from any 

nucleotide i to nucleotide j, qij, is determined by the equilibrium frequency πj of 

nucleotide j and the exchange rate rij between i and j. The substitution-rate matrix 

for one such model, the general time-reversible (GTR) (Tavare 1986) model, is 

 

  QGTR  = {qij} =                (2.6) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣
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⋅
⋅

⋅
⋅

fec
fdb
eda
cba

ACT

GCT

GAT

GAC

πππ
πππ
πππ
πππ

 
The GTR model allows the equilibrium frequencies to differ among nucleotides, 

subject to the constraint that all nucleotide frequencies sum to 1, and allows 

exchange rates to differ among nucleotide pairs. It does, however, impose the 
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restriction that substitution events are time-reversible, meaning that the amount of 

flow from nucleotide state i to j, πiqij, is equivalent to the amount of flow from j 

to i: 

    
   jijiji qq ππ   = ,        for all i≠j.     (2.7) 
 
Under this condition, jiij rr   = , and therefore a CTTC    rr == , b 

 
, c 

, d , e 
ATTA    rr ==

GTTG    rr == AC  rCA    rr == GCCG   r== , and f GAAG   r r == . The total substitution 
rate for a nucleotide i in the Q matrix is given by ∑

≠ijj
ijq

:
. Each row in the Q 

matrix must sum to 0 and therefore the diagonal elements, which represent the 
rates of leaving each state, are assigned rates that ensure this condition is met:  
 
    ∑

≠

−=
ijj

ijii qq
:

  .                 (2.8) 

 
Other time-reversible substitution models are derived by applying additional 

restrictions on the GTR model. For instance, the HKY85 model (Hasegawa, 

Yano and Kishino 1984; Hasegawa, Kishino and Yano 1985) constrains the rate 

parameters by categorising nucleotide changes as either transitions or 

transversions. Thus, α    AGTC == rr , the transition rate parameter, and 

β        CGCATGTA ==== rrrr , the transversion rate parameter. This model still allows 

for some heterogeneity in nucleotide exchange rates but reduces the number of 

free parameters from 9 in the GTR model to 5. The most constrained 4-state 

model is the JC69 model (Jukes and Cantor 1969) in which there is a single 

substitution rate for all substitution events and the nucleotide frequencies are all 

equal.  

 

 

2.3.2.1.2   Obtaining Probabilities of Nucleotide Change 

 

Following specification of a substitution rate matrix, the probabilities of 

nucleotide substitutions over a period of time t are obtained by taking the matrix 

exponential of the product of the rate matrix and t:  
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    ij tpt                   (2.9) 
 
Each element pij(t) in the transition-probability matrix represents the probability 

that given the current nucleotide state is i, it will be j a time t later. The 

substitution rates of the Q matrix can be converted into relative rates such that the 

average substitution rate is 1 per unit time. Since the probability of a nucleotide 

substitution is dependent on the product of the substitution rate and the time 

elapsed, this scaling makes the time t equal to the evolutionary distance 

(measured in units of expected number of substitutions per site). Thus, given a 

nucleotide substitution model, the probability of nucleotide change along any 

branch of length t substitutions per site is provided by the transition-probability 

matrix P(t). To obtain the elements pij(t), the ma

tQP e  )}({  )( ==  

trix exponential of Qt is 

calculated through diagonalisation of the matrix Qt :  

eQt = U diag{exp(λ1t), exp(λ2t), exp(λ3t), exp(λ4t)}U-1  (2.10) 

 12). For example, the transition-probability matrix under the 

KY85 model is 

(t) =         
 

 

 

where (λ1, λ2, λ3, λ4) constitute the eigenvalues of Q, whilst the columns of U 

form the right eigenvectors of Q and the rows of U-1 form the left eigenvectors of 

Q (Yang 2006: p.
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⎦⎣ RRRR ππππ

                    
                                                                                                                         (2.11) 
 
             
 

GAR     πππ += , TCY     πππ += , β-  λ2 = ,  (-  λ ) YR3 βπαπ += , and 
)  (-  λ RY4 βπαπ +=  (reprinted from Yang (2006: equation 1.20)).  
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Using this matrix, the probability of evolutionary changes along a tree, and hence 

the likelihood of the tree can be computed. For example, for a simple two taxon 

tree relating observed sequences A and B to their ancestral sequence V, the 

ranch lengths 

odel is given by  

          

at e te 

s tA B ctively, is o

likelihood of the tree T relating them defined by a topology τ and b

t, and the specified substitution m

 ∏ ∑
=

⎟
⎟

⎜
⎜= xxxxx tptpTP ssss

s
s BA ),(),(  ),|BA,(

BVAVV
θθθ π ,  (2.12) 

 
where θ is a vector consisting of the parameters of the specified substitution 

model, n is the number of sites, and sxV , sxA , and sxB  are the nucleotide states at 

site s in sequences V, A, and B, respectively. The assumption of independent 

evolution at each site allows us to consider the probability of nucleotide changes 

ach si independently. In addition, it is assumed that each lineage (branch) 

evolves independently. For each site s, the probability that the observed states sxA  

and xB  evolved from xV  along branch leng , respe btained 

by taking the product of the probability sxV

∈ ⎠

⎞

⎝

⎛n

s x1 G} A, C, T,{V

s s th  and t

π  of the state in the ancestral sequence 

and the transition probabilities ),( A
AV

θtp ss xx  and ),( B
BV

θtp ss xx  along each 

branch. sxV
π  corresponds to the nucleotide frequencies specified in the Q matrix 

of the chosen evolutionary model. Since the ancestral sequence is not observed, 

the identity of sxV  at each site s is unknown unt for  

nc

 along T can actually be calculated without reference 

 the ancestral species. This is because the direction of evolution is irrelevant 

el:  

  )

 and so, to acco this

u ertainty, the likelihood of the tree T is computed by summing over all possible 

states at each site in the ancestral sequence. 

 
In modelling substitution events as a reversible process, the probability that 

sequences A and B evolved

to

under a reversible mod

 

(  )( tptp jijiji ππ =                 (2.13) 
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Thus, in equation 2.12,  

 )
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s
AAV

s
V

θθ tptp ssss xxxxxx ππ = .              (2.14) 

pplying this equality, equation 2.12 becomes 

ogorov equation for transition probabilities under a Markov 
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The probability that sequences A and B evolved along T can therefore be 

obtained by calculating the probability that sequence B evolved from sequence A 

via sequence V. Under the reversible model of evolution, this is also equivalent to 

the probability that sequence A evolved from sequence B via sequence V. The 

Chapman-Kolm

p pl even further asrocess ws the calcu
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and the transition probabilities calculated using time-reversible Markov models 

therefore allow us to account for the unobserved substitutions (e.g. from A to V 

nda  V to B) that may have occurred in the evolutionary period between sequences 

A and B. 

 
For larger trees the likelihood is computed in the same manner as 

demonstrated for the two-taxon tree: taking the product of the frequency of the 

state at the root node and the transition probabilities along the branches on the 

tree. However, for a tree with m taxa, there will be m-1 internal nodes; if the 

sequences at all of these nodes are unknown then, for each site, there will be 4m-1 

possible configurations of nucleotide states along the tree and hence the 

likelihood calculation would have to sum over each of the  possible 
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configurations for each site. Felsenstein (1981) presented an efficient 'pruning' 

algorithm which substantially reduces the amount of computation required to 

calculate the likelihood f a tree. This algorithm computes the conditional 

conditional probability  is the probability of the states observed at site 

 o

probability of nodes along the tree at each site s. For any node v of the tree, the 

s in the 

tips descendant from , given that node v has state 

18)

 z are the nodes descendant from

it

te the cond

robability r its parent node, and so on, until the conditional probability f

the root node v=0 is obtained. The likelihood of the tree is then 

                  (2.19) 
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where y and  node v. If y (or z) is a tip node, 

y

is 1 when s
yx  is the observed state and 0 when it is not. If y (or z) is not a tip 

node, its conditional probability is computed in the same manner as above. Thus, 

we can start at the tips and progress down the tree, computing the cond al 

probability for each internal node, which is then used to compu
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.2.1.3   Among-Site Rate Variation 

 

The evolutionary model presented above considers all sites to be evolving at 

the same rate however this assumption may often be violated in reality (Fitch and 

Margolish 1967; Wakeley 1993; Excoffier and Yang 1999). Within protein-

coding genes, some sites may be more functionally constrained than others if the 

codons they comprise code for structurally and functionally important amino acid 

residues of the protein. Thus varying selective constraints across sites can result 
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in differential propensities for substitutions along a gene. The degeneracy of the 

genetic code itself confers a general pattern of differing constraints on each 

codon position: the four-fold degenerate third position of most codons undergo 

more substitution events than the first and second codon positions at which a 

nucleotide change is likely to result in translation of a different amino acid 

(Bofkin and Goldman 2007). Substitution rates can also vary among genes and 

ay therefore need to be accounted for if multiple gene sequences are being 

com

lass and K

invariant sites model, the rates rk are assigned such that the mean rate across sites 

m

bined in phylogenetic analysis.  

 
For a simple treatment of rate variation across sites, we can perform a visual 

inspection of a sequence alignment to identify invariant sites from mutating sites 

and apply a discrete two-rate class model in which the invariant sites evolve at a 

rate of zero and the mutating sites evolve at a constant, non-zero rate that may be 

fixed at a value such that the mean evolutionary rate across sites is 1 (Hasegawa, 

Kishino and Yano 1985; Palumbi 1989). Additional rate classes can be applied to 

further distinguish among varying rates of evolution at mutating sites. A model 

with K rate classes comprises of K parameters specifying the probability pk of 

each rate c  parameters specifying the rate rk of each class. As with the 

is 1 i.e., ∑ =
k

kk rp 1. The rate rk assigned to a particular site determines how 

much the nucleotide exchange rates are increased or decreased for that site and 

nsition-probability matri  fo ing to ra

wledge of the distribution of 

ites among the discrete rate classes is unavailable, the likelihood calculation 

er the k rate classes for each site s : 

 

therefore the tra x r a site belong te class k is 
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A three-rate class model can be used to account for different rates of evolution at 

each codon position: all first-position sites are assumed to evolve at rate r1, all 

second-position sites are assumed to evolve at rate r2, and all third-position sites 

are assumed to evolve at rate r3. When a priori kno

s

must average ov
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As this increases the time taken to compute the likelihood by a factor of k, 

rela

 

i 1986; Jin and Nei 1990; Yang 1993) has 

become the standard in phylogenetic analysis. The gamma distribution is 

y a shape parameter α an e pa

tive to a model with no rate variation among sites, use of the discrete rates 

model with more than three rate classes is not recommended (Yang 1996).  

 
For each site, the discrete rates model effectively draws the evolutionary rate 

from one of the K specified classes; a more realistic approach to modelling the 

rate variation would be to assume a continuous distribution of rates across sites. 

A variety of distributions have been used for this purpose but the application of a

gamma distribution (Nei and Gojobor

parameterised b d a scal rameter β: 
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K rates and K-1 free parameters for the rate-class frequencies), the continuous 

gamma distribution of rate variation offers a more detailed model of rate 

e 2.1 illustr

gamma distribution is 1/α and therefore small values of α (<1) model substantial 

olving at very high rates. As α increases, the 

ce in rates decreases such that the majority of sites evolve at similar rates; 

α→∝, the gamma-distributed model approaches a constant rate of evolution 

across all sites.  

 

 

 
Under a gamma distributed model of rate variation, a mean rate of 1 across sites 

is achieved by setting β equal to (Yang 1993). 

 

In contrast to the discrete rates model which consists of 2K-1 rate parameters (the 

variation that is specified by only one parameter: α. Figur ates the 

gamma distribution under various values of α. With β = α, the variance of the 

rate variation among sites with a large proportion of sites evolving at a low rate 

and a smaller proportion of sites ev

varian

as 
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Figure 2.1: Probability density function of the gamma distribution at different values of 

the shape parameter α. The gamma distribution is used to model rate variation among 

sites. Reprinted from Yang (1996: Fig. 1). 

 
 
Given α, the probability of the data at site s is obtained by integrating over the 

resulting gamma distribution of rates r: 
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Evaluation of this integral within a reasonable timescale becomes impossible as 

the size of the data set (number of sequences) increases. For moderate to large-

sized data sets, a discretised approach (Yang 1994a), in which the gamma 

distribution is sectioned into K distinct rate categories of equal density, is used to 

approximate the continuous gamma model of rate variation. Under a discrete-

gamma model, the probability at each site is derived as   

   

  ∑
=

==
K

k
k

ss rrxf
K

xf
1

),,|(1),,,|( θtθt ατ              (2.24) 

 
A substantial reduction in computational time is obtained by summing over the 

rates rK of the K rate categories rather than integrating over the entire gamma 

distribution. The rate rk of the kth rate category of the gamma distribution is 

represented by either the mean or the median rate of that category. Since the rates 
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rk are determined by the gamma distribution, the only parameter in the discrete-

gamma model is α, making the discrete-gamma approach more appealing than 

the discrete-rates model for incorporating rate variation among sites. The larger K 

is, the closer the approximation to the continuous distribution; for most data sets 

that demonstrate evidence of rate variation, at least 4 rate categories are required 

to provide a suitable approximation of the continuous distribution (Yang 1994a).  

 
 
2.3.2.1.4   Rate Variation Across Lineages 

 

When modelling the evolutionary process along a tree it is also necessary to 

consider the possibility of temporal rate variation. The molecular clock 

hypothesis (Zuckerkandl and Pauling 1965) states that the rate of evolution 

remains constant in time; however, as lineages diverge from one another, various 

differences may arise in the factors that govern the rate of molecular change (e.g. 

population size, generation time) and consequently molecular evolution may 

proceed at different rates in divergent species (Thorne, Kishino and Painter 

1998). Whilst the molecular clock hypothesis may hold for closely related 

sequences, for trees involving distantly related species, the evolutionary rate is 

unlikely to be the same across all lineages. The false assumption of a molecular 

clock, under which all sequences are assumed to have undergone the same 

amount of change since their common ancestor, can therefore affect the 

estimation of tree topologies and node divergence times along the tree.  

 
 
2.3.2.1.4.1    Testing the Molecular Clock Hypothesis 

 

A common method of evaluating the validity of the molecular clock 

assumption for a set of sequences is to perform a likelihood-ratio test (LRT) 

(Felsenstein 1988). An LRT provides a means of evaluating the support, shown 

by the data, for a particular hypothesis (the null hypothesis) in a likelihood 

framework. The maximum likelihood of the null hypothesis, given the data, is 

compared to the maximum likelihood of an alternative hypothesis, given the data. 

To test the molecular clock assumption, the null hypothesis specifies an 
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evolutionary model in which all branches of the phylogeny evolve at the same 

rate. An alternative hypothesis to evolution under a molecular clock is the 

independent rates hypothesis, where each branch is assigned its own rate. The 

molecular clock hypothesis represents a special case of the independent rates 

hypothesis when all branch rates have the same value. The nested nature of the 

two hypotheses means that the likelihood under the alternative hypothesis cannot 

be worse than the likelihood under the null hypothesis; thus, the LRT determines 

whether the increased likelihood under the independent rates hypothesis is 

statistically significant to justify rejection of the molecular clock hypothesis.  

 

The likelihood-ratio test statistic, lΔ2 , which is twice the difference of the 

log likelihoods under the two hypothesis, is approximately distributed according 

to a χ2 distribution. The statistical significance of the LRT statistic can be 

determined by comparison against the χ2 distribution with degrees of freedom 

equal to the difference in the number of free parameters between the two models 

being tested. In the ML framework, phylogenetic estimation of an m taxon tree 

requires estimation of the model parameters, the topology and the 2m-3 branch 

lengths. Under the molecular clock hypothesis, each taxon will have undergone 

the same amount of evolutionary change from the root and therefore all tip 

sequences must be equidistant from the root. This constraint reduces the number 

of branch length parameters requiring estimation under the molecular clock to the 

m-1 internal node heights. A likelihood-ratio test of the molecular clock 

hypothesis therefore has (2m-3)-(m-1) = m-2 degrees of freedom. 

 
 
2.3.2.1.4.2   Incorporating Rate Variation Along a Tree 

 

When there is significant evidence against a constant rate of evolution among 

lineages, the amount of evolutionary change vl along each branch l can not be 

assumed to be proportional to the time duration tl of each branch but must be 

determined by accounting for the evolutionary rate of the branch: 

 
    lll trv = ,               (2.25) 
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and therefore the transition-probability matrix for each branch is: 
 
                         (2.26) ll tr

lv QP e   )( =
 

A number of approaches have been developed to incorporate rate variation in 

phylogenetic analysis. In ML methods, local clocks (Hasegawa, Kishino and 

Yano 1989; Rambaut and Bromham 1998) are utilised to partition the tree into 

distinct regions, each of which evolves at a constant rate. A local clock model 

allows rate variation along the tree whilst also accounting for the possibility that 

closely related lineages are likely to evolve at a similar rate; it is therefore more 

economical than the independent rates model. The non-parametric rate smoothing 

(NPRS) (Sanderson 1997) and penalised likelihood (PL) (Sanderson 2002) 

methods specify independent rates for each branch; NPRS attempts to minimise 

the rate variation among branches by minimising the sum of squared differences 

in rates between adjacent branches whilst the PL approach specifies an additional 

parameter λ which determines how much deviations from a molecular clock 

model penalise the likelihood. In Bayesian methods of phylogenetic analysis, a 

variable rates model across the tree is used to specify the prior probability 

distribution of the evolutionary rate. Various stochastic models of rate variation 

have been proposed, some of which are described later in the chapter.  

 
 
 
2.3.2.2  Prior Probabilities 

 

The second component required for calculation of posterior probabilities is 

the specification of prior probabilities for all model parameters. In a phylogenetic 

analysis this will entail specifying prior distributions for the tree topology, branch 

lengths, and parameters of the evolutionary model. In the Bayesian framework, 

the prior distribution of a parameter θ is intended to represent our prior beliefs 

about the parameter and provides a means of incorporating knowledge of 

uncertainty about θ into the inference process. For the phylogenetic parameters, 

however, there is often little information available to guide us in specifying the 

most appropriate prior distribution for a data set. As a consequence, many 

parameters are assigned 'vague' prior distributions, designed to provide an 
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unbiased distribution over a range of values that is large enough to encompass the 

true (unknown) values. The application of vague priors in Bayesian analysis is, 

however, quite controversial: whilst vague priors are not entirely uninformative, 

the diffuse nature of the specified distribution does not provide any further 

probabilistic distinction between values within the accepted range thus limiting 

our ability to fully exploit the power of the Bayesian approach. Attention must 

also be paid to ensure that a vague prior specified for one parameter does not 

induce a biased prior on a related parameter. Such a scenario was illustrated by 

Felsenstein (2004: p. 302) using a uniform (0,5) prior on branch length t. Under 

the JC69 model of sequence evolution, t is related to the probability of nucleotide 

change at a site by:  

 

   }3/4exp{
4
3

4
3 tp −−=               (2.27) 

 
As this relation is not linear, a uniform prior on t does not translate into a uniform 

prior on p - instead the prior on p assumes an exponential form. The more diffuse 

the prior applied to t is, the more extreme is the effect on the prior distribution of 

p. Thus, vague, unbiased prior distributions may exert some influence on the 

estimated posterior distribution. However, if we are using a suitable evolutionary 

model and the data is informative about the parameters of that model, then the 

likelihood will dominate the posterior distribution and the prior distribution 

should have little influence on the conclusions drawn from the resulting posterior 

(Yang 2006).  

 

 

2.3.2.2.1  Prior Distributions for Model Parameters 

 

For parameters of the substitution model and additional models of rate 

heterogeneity, the exact nature of the prior applied is not a major concern as these 

parameters are generally found to have sharp likelihood profiles and vary little 

across trees (Yang, Goldman and Friday 1994). Thus, provided the corresponding 

prior distributions for model parameters assign a non-zero probability to regions 

of parameter space with high likelihood, they are not found to have a substantial 
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influence on the posterior. For nucleotide frequencies and substitution rate 

parameters, Dirichlet priors are commonly applied. When a discrete-gamma 

model of rate variation across sites is specified, the prior distribution of the 

parameter α is typically assigned a uniform distribution. An additional parameter 

pInv, modelling the proportion of invariant sites, may be specified as part of the 

variable rates model and is also assigned a uniform (0,1) prior. If the evolutionary 

model accounts for gamma-distributed rate variation across sites, then there is no 

need to specify pInv, as the gamma distribution will also account for invariable 

sites. Prior distributions on other phylogenetic parameters, namely the tree shape 

and branch lengths, require more consideration as they are capable of exerting 

greater influence over the resulting posterior distribution. 

 

 

2.3.2.2.2   Prior Distribution for Tree Topologies 

 

The main goal of a phylogenetic analysis is often to determine how the 

sequences in the data set are related to one other. This information is obtained 

from the topology of the tree which depicts the branching patterns of extant and 

inferred ancestral lineages. The prior probabilities of all possible tree topologies 

for the m sequences of the data set are therefore required for Bayesian 

phylogenetic estimation. Previous phylogenetic or cladistic studies may provide 

us with some prior information on the expected phylogeny of the group of 

organisms under study; however, the probability distribution over the entire tree 

space is not easily obtained. The set of possible topologies (the 'tree space') 

expands with the size of the data set and therefore it is more common to represent 

our ignorance of the prior distribution over tree space by assigning equal 

probability to all topologies. For a data set consisting of m taxa, this will assign a 

prior probability of 
)!52(

)!3(2 3

−
−−

m
mm

 to every possible unrooted tree topology. In 

some cases, the overall topology may be unknown but knowledge of subgroup 

relationships within the data set may exist. This information can be incorporated 

into the prior distribution by specifying monphyletic constraints on groups of 

taxa. These constraints indicate that the corresponding taxa all cluster together in 
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the phylogeny with probability of 1 causing the resulting prior on topologies to be 

non-uniform. 

 

 
2.3.2.2.2 Prior Distributions for Node Times 

 

2.3.2.2.3.1  Priors Generated from an Evolutionary Model 

 

The models of nucleotide substitution can be specified such that the mean 

evolutionary rate is 1.0 substitution per site, causing the branch lengths to 

represent the amount of time elapsed between divergence events. Thus, the prior 

distribution of branch lengths will be specified by the prior distribution of node 

times. This distribution is typically obtained by modelling the underlying 

branching process. The Yule pure-birth process (Yule 1925) models lineage 

speciation events along the tree with a birth rate parameter λ. For each lineage, 

the probability of a speciation event occuring in the infinitesimal amount of time 

dt is λdt. The Yule pure birth process evolves lineages along a tree until m 

lineages are obtained, from which the times of the m-1 speciation events are 

obtained relative to the time of the root (t1=1). Each tree generated under this 

model describes an 'unlabelled history', which comprises of the topology and the 

order of speciation events but lacks assignments of taxa to the external branches. 

For each unlabelled history τ generated under the Yule model, the probability 

density of node times t (conditional on a time t1=1 for the root node and tm=0 for 

the final m lineages) is  
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(Edwards 1970). For each unlabelled history, there are m!/2m-1 ways of labelling 

the external branches to generate distinct labelled histories, and therefore, under 

the Yule model, the prior probability density of node times for a particular 

labelled history τ with m lineages at time t=0 is 
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The probability density of node times over all (m-1)!m!/2m-1  labelled histories is 
then  
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Further detail can be added to the model by accounting for extinction of lineages 

during the evolutionary process, via a death rate μ, and the fact that phylogenetic 

reconstruction is usually performed using a sample of lineages from the complete 

set of extant taxa, via a sampling fraction ρ (Yang and Rannala 1997). When μ=0 

and ρ=1, the birth-death process corresponds to a pure birth process and the 

probability density of node times is that given in equation 2.31. 

 

The pure birth and birth-death models both produce a uniform prior over 

labelled histories (Edwards 1970; Yang and Rannala 1997); this is not equivalent 

to a uniform distribution on topologies, however. When m>3, the tree space 

viewed in terms of labelled histories is larger than that viewed in terms of 

topologies as multiple labelled histories may be derived from a single tree 

topology. This can be illustrated for tree topologies with m=4 taxa (Figure 2.2) 

for which there are 15 possible topologies and 18 possible labelled histories. The 

12 asymmetrically-shaped topologies produce 1 labelled history each whilst the 3 

symmetrically-shaped topologies each accommodate 2 distinct labelled histories. 

A uniform distribution on topologies which assigns 1/15 probability to each 

topology therefore gives greater weighting to the labelled histories associated 

with asymmetric topologies but less probability to labelled histories associated 

with symmetric topologies than would a uniform distribution on labelled histories 

and would therefore inadvertently introduce bias in the relative order of 

speciation events. Thus, the uniform prior on tree topologies is only suitable 

when knowledge of the branching pattern, and not speciation times, is desired. 
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Figure 2.2: The possible topologies and labelled histories for a four-taxon tree. The  15 

possible topologies consist of two types of branching patterns: pectinate (top) and 

symmetrical (bottom). There is only one way of ordering speciation events in the 

pectinate trees resulting in only one possible labelled history per topology. For the 

symmetrical topologies, however, the branching events of the two distinct clades occur 

at different times with respect to one another, resulting in two possible labelled histories 

per topology. A four-taxon tree therefore has 15 possible rooted topologies but 18 

possible labelled histories. 
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2.3.2.2.3.2    Fossil calibrations 
 

Independent information on the ages of ancestral species, such as that 

estimated from fossil specimens, can also be employed in phylogenetic analysis 

to date divergence events along the tree. When the sequences have evolved in a 

clock-like manner, the specification of at least one fossil date on a phylogenetic 

tree is sufficient to calibrate the tree to the actual timescale of evolutionary events 

and estimate the evolutionary rate. Molecular divergence time estimates derived 

using fossil calibrations may in turn serve as calibration information for clades 

that have limited representation in the fossil record.  

 

In Bayesian phylogenetic methods, the use of calibration dates is one of the 

few examples where prior probabilities can be derived from previously obtained 

information. The calibration priors for the respective nodes are typically specified 

using statistical distributions, rather than a point mass on each node, to account 

for errors and uncertainties in the prior estimates (Yang and Rannala 2006). 

When a fixed tree topology is assumed, the joint distribution of the calibration 

densities will reflect the influence of the topological constraints. For instance, if 

overlapping divergence time densities are applied on a pair of adjacent nodes, the 

prior density on the descendant node will be reduced for times coinciding or 

preceding those of the parent node and similarly for the density on times of the 

parent node that overlap with those of the child node.  

 
 
The joint distribution of the calibration densities must then be incorporated 

with the uncalibrated prior distribution on all node times obtained using the Yule 

model, for instance. In BEAST (Drummond and Rambaut 2007), the Bayesian 

phylogenetic package utilised in this thesis, this is achieved by multiplying the 

calibration densities with the Yule prior on divergence times to obtain the 

marginal calibration density. However, the resulting prior density on calibrated 

nodes can differ from the specified distribution and it is therefore important to 

compare the nature of the combined prior against the posterior distribution of 

divergence times at each node to determine the extent of the influence of the prior 

on the posterior estimates.   

 77



 
 
2.3.2.2.4   Prior Distributions for the Rate of Molecular Evolution 

 

The evolutionary tree can also be calibrated by specifying a prior distribution 

on the evolutionary rate. Under a molecular clock, the evolutionary rate can 

either be fixed to a known value or a statistical distribution can be applied to 

account for uncertainties in the estimated rate. For sequences demonstrating 

significant support against a constant rate of evolution, the prior distribution must 

account for variations in the evolutionary rate. Within the Bayesian framework of 

phylogenetic analysis, various models have been proposed to obtain a prior 

density for variable rates across lineages.  

 

The Bayesian inference program MultiDivTime (Thorne and Kishino 2002) 

models the degree of autocorrelation, represented by the autocorrelation 

parameter v, in rates between adjacent lineages (Thorne, Kishino and Painter 

1998; Kishino, Thorne and Bruno 2001). When v is small, the evolutionary rate 

will be similar among closely related lineages. When v is large, changes of rate 

between adjacent nodes will be uncorrelated. The amount of evolutionary change 

along a branch is then determined by the product of the time duration of the 

branch and the mean of the rates at the parent and descendant nodes of that 

branch. To implement this variable-rates model in a Bayesian framework, prior 

distributions need to be specified for the rate at each node and for the 

autocorrelation parameter.  

 

A very different approach to rate variation is implemented in MrBayes 

(Huelsenbeck and Ronquist 2001), where changes in the evolutionary rate along a 

tree are uncorrelated and are allowed to occur at any point in time along a branch 

(Huelsenbeck, Larget and Swofford 2000). Given an initial rate or rate 

distribution at the root node, changes in the rate along the tree are modelled as a 

Poisson process. At each point i of rate change, a gamma-distributed rate 

multiplier r, multiplies the rate m prior to i to give a new rate m′ after i. The 

amount of change, vl, encountered along a branch l is obtained by integrating the 

rates along l:  
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where tσ(l) and tl are the node ages at each end of branch l. Prior distributions are 

required for the initial rate m at the root node, the Poisson process parameter 

λ, which represents the frequency of rate change events, and the rate multiplier r.

  

  

Like MrBayes, BEAST (Drummond and Rambaut 2007) also employs 

uncorrelated models of rate variation; however, changes of rate occur only once 

per branch. For each branch, the prior distribution of rates can take the form of 

either an exponential or a log-normal distribution (Drummond et al. 2006). Thus, 

for branch l the probability density for the branch rate rl is 
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under a log-normal model. Depending on the model used, prior densities will be 

required for the hyperparameters λ or μ and σ. The prior distribution of branch 

rates is the product of the densities for each branch. 

 

A comparison of several different models of rate variation in Bayesian analysis 

revealed a high degree of concordance among divergence time estimates under 

the different models, indicating that the nature of the model is largely 

inconsequential as long as it allows changes in the evolutionary rate along a tree 

(Aris-Brosou and Yang 2002).  

 

 

 

 

 79



2.3.2.2.5 Influence of  phylogenetic priors 

 

The difficulty of determining suitable priors for phylogenetic parameters 

means that it is tempting to use the default settings of the selected Bayesian 

phylogenetic inference program. However, the use of an informative but incorrect 

prior can have significant consequences on the posterior distribution obtained 

from the analysis and therefore the specification of prior densities deserves 

careful attention. A cautionary tale is provided by the effect of the MrBayes 

default branch length prior on branch length estimates (Brown et al. 2010; 

Marshall 2010; Rannala, Zhu and Yang 2012). 

The default branch length prior applied in MrBayes is an exponential 

distribution with a mean of 0.1 substitutions/site. This distribution places 

substantial prior density on long branch lengths, thus implies a prior model in 

which substantial evolutionary change has occurred in each lineage. For instance, 

ML and Bayesian phylogenetic estimates derived from various genes of the frog 

genus Acris (Gamble et al. 2008: Fig 5 and 6, respectively) are observed to differ 

in scale by over an order in magnitude. Repeated analysis of this data set by 

Brown et al. (2010) under the same conditions as the initial analysis produced a 

ML tree length of 0.64 substitutions/site whilst the 95% credible interval (CI) of 

tree lengths from the Bayesian analysis was (0.81, 1.10). The effect of the prior 

was re-established whe reanalysis of data sets previously analysed under the 

default branch length prior in MrBayes with a more restrictive branch length 

prior lead to a shortening of the estimated tree length in all cases (Brown et al. 

2010; Marshall 2010). 

To remedy the branch length bias in Mr Bayes, Rannala et al. (2012) propose 

the use of a different prior. A compound Dirichlet prior, which applies a diffuse 

prior on the tree length (the sum of all the branch lengths in the tree) and a 

Dirichlet prior on the lengths of all branches in the tree, improves the estimation 

of realistic branch lengths by MrBayes by regulating branch lengths through the 

tree length prior (Rannala, Zhu and Yang 2012).   

Longer branch length priors can impact the MCMC analysis through various 

means. An important point to note in analyses run in MrBayes is that the MCMC 

chain is initialised with a tree with large branch lengths (all branch lengths are 
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assigned a starting value of 0.1 substitutions per site). Thus, the chain starts off in 

a region of parameter space which is likely to possess a low likelihood for most 

real data sets. The application of branch length priors that place substantial 

weight in this region of parameter space then makes it difficult for the chain to 

move towards regions of higher likelihood and shorter branch lengths. 

Difficulties in MCMC mixing and convergence may also ensue due to multiple 

local peaks in the posterior that arise from the different prior and likelihood 

distributions (Rannala, Zhu and Yang 2012).  

 
 
2.3.2.3   Computing the Marginal Probability of the Data 
 

 

The specification of an evolutionary model from which probabilities of 

nucleotide change can be derived and prior densities for all parameters allows the 

posterior probabilities of phylogenies to be derived using Bayes' theorem 

(equation 2.2). However, calculation of the posterior probabilities requires 

calculation of the normalising constant f(X). This is the marginal probability of 

the data and therefore requires integration over all of parameter space, i.e., over 

all possible tree topologies and, for each topology, integration over all branch 

lengths and parameter values. As the number of taxa studied grows, the number 

of tree topologies that must be evaluated to calculate f(X) grows exponentially 

e.g., for a data set comprising of 6 taxa, 105 unrooted topologies must be 

considered but the addition of just one taxon expands the tree space to 945 

unrooted topologies. In addition, the increase in the number of branches with 

each additional taxon, increases the dimensionality of the integral that must be 

evaluated for each topology. Thus, for all but the smallest data sets (m ≤ 5), 

evaluation of f(X) is computationally unfeasible within a reasonable timescale. 
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2.3.3 MCMC Simulation of the Posterior Distribution 

 

2.3.3.1   The MCMC Algorithm  

 

For larger data sets, Bayesian phylogenetic estimation is achieved using 

Markov chain Monte Carlo (MCMC) sampling algorithms, which provide a 

means of sampling from the posterior distribution of interest without requiring 

calculation of f(X). Given the observed data, an evolutionary model and 

associated prior probabilities, MCMC algorithms allow us to sample a Markov 

chain whose stationary distribution is the joint posterior distribution of our 

parameters and therefore inferences from the posterior distribution can be made 

from the sampled chain. Bayesian phylogenetic analysis using an MCMC 

algorithm proceeds as follows: 

 

1. Each state in the Markov chain is defined by a particular phylogeny (τ, ν) 

and set of model parameter values (θ). The initial state (ki={τ, ν, θ}) of 

the Markov chain can be either specified using the results of a previous 

analysis of the data or obtained by randomly sampling from the prior 

distributions of each parameter. The likelihood )|( i  and joint prior 

probability )( if k  is calculated for the initial state. 

f kX

2. In the next iteration of the algorithm, the Markov chain samples new 

values for τ, ν, and θ. New values are obtained using proposal 

mechanisms specified for each parameter. The proposed values k*= {τ∗, 

ν∗, θ∗ } are either accepted or rejected depending on the acceptance ratio, 

α : 
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where  is the joint posterior probability of the parameter values in 

the state and q(·|·) is the proposal density, i.e., the probability of the 

proposed changes in states. In evaluating the ratio of the posterior 

)|( Xkf
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probabilities of each state, the marginal probability of the data, f(X), 

which forms the denominator in Bayes' theorem and remains constant 

over all states, cancels out and therefore calculation of α simply requires 

computation of the ratios of the prior densities, the likelihood, and the 

proposal densities under the proposed and current states: 
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 If α ≥ 1, the proposed values are accepted and ki+1 = k∗. If α < 1, the 

 proposals are accepted with probability α, i.e., a random number, r, is  

            chosen from a  uniform distribution (U(0,1)) and if α > r the proposals are  

            accepted, otherwise they are rejected and ki+1 = ki. 

 The likelihood and joint prior probability for state ki+1  is calculated. 

3. Step 2 is repeated for a large number of iterations (typically >105, 

depending on the complexity of the model and the size of the data set) to 

allow sufficient sampling from the posterior distribution. In each iteration, 

the acceptance ratio specifies the probability of the proposed changes to 

phylogenetic and model parameters being accepted. 

 

 
2.3.3.2   MCMC Proposal Mechanisms 
 

 

The proposal mechanisms used to move between states in parameter space 

form an essential component of MCMC algorithms. A simulation will typically 

begin at a random point in parameter space and it is the proposal densities and 

evaluation of the acceptance ratio at each stage of the simulation that guides the 

chain of sampled states to converge on the posterior distribution. Three necessary 

conditions to ensure the posterior distribution is achieved are that the proposal 

mechanisms must allow random sampling, they must produce a Markov chain 

that is aperiodic and must produce a chain which allows all states to be reached 

from any other state, i.e.,  proposal densities between any two states i and j must 

be non-zero. Under the Metropolis algorithm (Metropolis et al. 1953) of MCMC 
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sampling all proposal densities are symmetric, i.e., the proposal densities between 

states i and j are the same in either direction, thus the proposal ratio is not a 

component of the acceptance ratio. Other MCMC algorithms e.g. the Metropolis-

Hastings method, correct for asymmetric proposal densities via the proposal ratio 

(a.k.a. the Hastings ratio) (Hastings 1970). The proposal ratio computes the ratio 

of proposal densities in the reverse direction, thus correcting for biases in the 

proposal densities. For instance, say the change of state from i to j is twice as 

likely as a change in the reverse direction, the ratio of q(i|j)/q(j|i) will only allow 

these proposals to be accepted with probability 0.5. This correction ensures that 

the sampled Markov chain (and hence inferences of the posterior distribution) is 

not affected by proposal biases. 

 
Different proposal mechanisms, or operators, are employed to assist the 

Markov chain move through parameter space. The type of operator applied 

depends on the nature of the parameter. To propose new values for numerical 

parameters either a sliding-window mechanism or a scale factor mechanism is 

used. Scale factor operators generate a random multiplier to either decrease or 

increase the current value of a parameter. Under a sliding-window mechanism, a 

new parameter state is selected from a distribution centred on the current 

parameter state. The size of the window, a pre-specified constant, determines the 

potential size of the jump in parameter space made by the Markov chain. Sliding-

window proposals can be made by specifying either a uniform or normal 

distribution, with the window size determined by the width or variance, 

respectively. Large jumps can facilitate greater exploration of the parameter 

space; however, if most of the posterior density of a parameter is concentrated in 

a small region of parameter space then many of the proposed changes will be 

rejected and the chain will spend a number of iterations stuck in the same state. 

Conversely, small jumps restrict the chain to only small movements in parameter 

space and will therefore require a much larger number of iterations to effectively 

sample the posterior distribution. Thus the window size can greatly affect the 

extent of mixing in the Markov chain.  
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For the proposal of new tree topologies, operators based on the topological 

rearrangement algorithms commonly applied in heuristic tree searching methods, 

i.e., NNI, TBR, and SPR, can be used. The TBR algorithm takes larger jumps in 

tree space than SPR, which in turn is able to take larger jumps in tree space than 

NNI. Local changes to branch lengths within a tree can be performed by sliding a 

randomly selected node a distance up or down a path running from the root to one 

of the nodes' descendant tips. If the node traverses either the parent or one or 

more descendant nodes lying on that path, a topological change will also occur.  

For trees free of the molecular clock constraint, under which all tips must be 

equidistant from the root, Larget and Simon (1999) proposed a combined branch 

length and topological operator for making local tree changes. For any randomly 

selected internal branch, two of its four adjacent branches (one from either side) 

are randomly selected and the lengths of these three selected adjacent branches 

are altered by a randomly selected multiplier between 0 and 1. Following local 

branch length modification, one of the two nodes joined to the middle branch is 

selected for translocation (along with its subtending subtree) to a new position 

along the path described by the three branches. Topological changes arise if the 

size of the translocation is greater than the branch length. In an MCMC 

simulation, each iteration may consist of multiple topological moves, and several 

topological operators may be employed to ensure adequate sampling of tree space 

is achieved. 

 
 
2.3.3.3  Determining Convergence of an MCMC Simulation 

 

The MCMC algorithms produce a Markov chain of sampled parameter states 

in which each state is dependent only on its preceding state. At the start of the 

simulation the chain will randomly sample states from parameter space, however, 

as the simulation progresses the acceptance ratio will cause the chain to converge 

to a stationary distribution. Convergence can be monitored by observing the 

simulated sequence of states for each parameter. In the early stages of the 

simulation, known as the 'burn-in period' the chain may sample from widely 

different areas of parameter space. However, when the chain has converged it 

will appear localised to a particular region of parameter space and will 
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predominantly sample states from within that region.  If the algorithm has been 

appropriately set up and run for a sufficient number of iterations, this stationary 

distribution will correspond to the target distribution, i.e., joint posterior 

distribution of the parameters.  

 

In Bayesian phylogenetics, the nature of this distribution is not known due to 

the difficulties encountered in deriving the marginal probability of the data f(X). 

Thus, it is not possible to determine if the simulated chain has converged on the 

true posterior distribution. For large, multi-parameter models, the posterior 

distribution is likely to be multi-modal and it is therefore possible for a chain to 

converge on a distribution that is localised in one high density region of 

parameter space rather than the complete posterior distribution. When the true 

posterior distribution is unknown, a comparison of the stationary distributions of 

multiple, independent Markov chains generated from different starting points 

provides the best means of assessing whether the target distribution has been 

achieved. One measure used to statistically determine the degree of consistency 

among independent chains is the potential scale reduction statistic R̂ , which 

estimates “the factor by which the scale of the current distribution for [an 

estimand] x might be reduced if the simulations were continued in the limit 

n→∞” (Gelman and Rubin 1992). This is achieved by comparing the variance, 

, of the target distribution represented by all the chains with the variance, W, 

of the distributions represented by each individual chain (i.e., the within-chain 

variance):  

2τ

  

    
W

R
2

ˆ τ
=                (2.36) 

 
For m chains, each of length n (following removal of the burn-in states),  

measures the variance of estimand x in the mn sampled states and is determined 

from the weighted average of the within-chain variance, W, and the between 

chain variance, B (Yang 2006: p. 173):  

2τ
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When chains have converged on the true posterior distribution, the within-chain 

variance will be similar to the variance of the target distribution and therefore 

1ˆ ≈R . If the chains have not converged on the posterior distribution, the variance 

of the target distribution (i.e., all sampled states) will be greater than the within-

chain variance and therefore 1ˆ >R . 

 
If there are indications that the chain has not converged on the posterior 

distribution, either the simulation can be run for longer or the proposal 

mechanisms can be modified to improve mixing among regions of parameter 

space. For more complex distributions, a Metropolis-coupled MCMC (MC3) 

algorithm (Geyer 1991) can be run in which heated chains are run alongside the 

standard ('cold') chain. The MCMC algorithms for the heated chains are run in 

the same manner as the cold chain however the target densities for the heated 

chains are modified so as to flatten the posterior distribution and thereby facilitate 

mixing between different regions of parameter space. In each iteration an 

additional proposal mechanism is employed to propose a swap of states between 

a hot chain j and the cold chain i, enabling movement to a state that may have 

been rejected in the cold simulation. Inferences are then made from the posterior 

distribution sampled by the cold chain.  
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2.3.4    Deriving Phylogenetic Inferences from the Posterior Distribution 
 

 

For chains demonstrating convergence on a single distribution it is expected 

that all states after the burn-in period are sampled in proportion to their posterior 

probabilities and therefore provide an approximation of the joint posterior 

distribution. The posterior distribution of any particular parameter, for instance, 

θ1 from θ ={ θ1, θ2, …, θn }, can be obtained from the joint posterior distribution 

by integrating over the remaining parameters: 

  nff θθττθ d....d d d )|,,()|( 21 ∫= νXθνX                 (2.40) 

 
The joint posterior distribution is represented by the distribution of sampled states 

from the MCMC simulation, and therefore the marginal distribution for θ1 is 

readily obtained from the Markov chain by summing over the remaining 

parameters. Inferences regarding are then based on analysis of the resulting 

posterior distribution which specifies the probability distribution of θ1 given the 

other parameters and the observed data. 

 

To make phylogenetic inferences from the posterior distribution, one can 

either extract the tree topology with the highest posterior probability, i.e., the 

maximum a posteriori (MAP) tree, or obtain a majority-rule consensus tree that 

summarises the entire sample of tree topologies in the chain. In both the MAP 

and consensus trees, branch lengths represent the mean values from the posterior 

distribution and each internal (i.e., non-terminal) branch is associated with a 

posterior probability that represents the proportion of sampled states in which the 

partitioning of taxa conferred by that branch is observed. The posterior 

probabilities for each branch are referred to as posterior clade probabilities and 

tell us the probability that the clade formed by the group of taxa subtending from 

that branch is true given the data and the evolutionary model. The posterior clade 

probabilities therefore provide an indication of the accuracy of phylogenetic 

groupings that the bootstrap support values, determined when using other 

methods of phylogenetic estimation, are unable to provide. 
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A concern with Bayesian methods of phylogenetic inference is that they may 

produce inflated posterior clade probabilities that can lead to false conclusions of 

certainty in the estimate topology (Yang and Rannala 2012).  A simulation-based 

example of this is observed in the ‘star-tree paradox’ (Lewis, Holder and 

Holsinger 2005; Yang and Rannala 2005; Yang 2007) where Bayesian 

phylogenetic analysis converges on a single optimal bifurcating topology for data 

simulated along a four-taxon star-tree (i.e., a tree possessing only one internal 

node), even as the amount of data increases to infinity.  In this example, the 

inflated posterior probabilities were attributed to the specification of an 

inappropriate internal branch length prior which biased the posterior distribution 

towards trees with a long internal branch (Yang 2007). This example again 

illustrates the influence of inappropriate priors on a Bayesian analysis. However, 

the prior distribution is not the only factor affecting the posterior. 

Simulation studies (Buckley 2002; Huelsenbeck and Rannala 2004; Lemmon 

and Moriarty 2004) invegstigating the reliability of clade posterior probabilities 

highlight the effect of the evolutionary model on posterior probabilities. These 

studies all found that an under-specificied evolutionary model, i.e., one that 

accounts for less heterogeneity among evolutionary processes, results in over-

estimated posterior probabilities on the resulting phylogenetic estimates. Over-

specified models had less impact on the posterior probabilities, i.e., the posterior 

probability was close to the probability that the tree was correct (given the 

evolutionary model). The authors therefore recommend the complex evolutionary 

models (without over-parameterising) for Bayesian phylogenetic analysis. 

However, as even the most complex evolutionary models available fail to account 

for all aspects of the molecular evolutionary process, the influence of the 

evolutionary model on the posterior distribution for a real data set is uncertain.  

 

Variability in the posterior distribution of an estimand is typically presented 

using credible intervals. A 95% credible interval indicates the range of estimated 

values (or trees) which has 0.95 probability of containing the true value. As the 

posterior probability of any single tree is the probability that it is the true tree 

(given the observed data, the evolutionary model, and the prior probabilities), the 

95% credible interval of trees can be constructed by taking the smallest set of 
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trees producing a total posterior probability of 0.95. However, unlike numerical 

parameters, the credible interval of phylogenies can be difficult to represent. If 

the interval consists of a few trees, the variations can be viewed individually but 

for large trees, where the number of possible topologies is large, the credible 

interval may also comprise of too many topologies and therefore uncertainties in 

an estimated topology will be inferred from the posterior clade probabilities. 

 

 

2.4   Summary 
 

 

The Bayesian approach provides a more flexible method of phylogenetic 

analysis than distance-based, MP and ML methods. Complex evolutionary 

models can be incorporated with ease enabling a more accurate consideration of 

the process of molecular evolution, the estimation process is enhanced through 

the use of prior information regarding parameters, and uncertainties in parameter 

estimates are accounted for in the resulting posterior probability distribution. 

However, to obtain meaningful results from Bayesian phylogenetic analysis it is 

necessary incorporate this complexity wisely. In particular, evolutionary models 

and prior distributions for the model parameters should be investigated for their 

effect on the posterior distribution before inferences are made. Ensuring 

convergence and efficient mixing of the MCMC chains is also vital in 

determining that the posterior distribution has been sampled.    
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Chapter 3 

 

Evaluating Phylogenetic Incongruence Among PV Genes 
 

 

 

3.1 Introduction 
 

This chapter focuses on determining the extent of phylogenetic compatibility 

among the PV genes in my data set. Topological differences among phylogenies 

derived from different PV genes have been reported (Bravo and Alonso 2004; 

Garcia-Vallve, Alonso and Bravo 2005; Narechania et al. 2005; Gottschling et al. 

2007b) but it is important to determine whether the observed disparities are 

simply due to sampling errors, in which case a combined analysis of all genes 

together should provide a more accurate estimate of the evolutionary history of 

the taxa, or if the differences reveal real differences in evolutionary histories. A 

statistical evaluation of the observed phylogenetic differences among PV genes is 

therefore required before any further evolutionary analyses can be performed. 

 

3.1.1 Hypotheses for evaluating phylogenetic incongruence 

 

When different data partitions from the same set of taxa present phylogenies 

with conflicting topologies then, assuming confidence in the phylogenetic 

estimation method, the topological incongruities among the partitions can be 

evaluated from two perspectives. The differences can be evaluated under the null 

hypothesis that the partitions are phylogenetically independent (Lapointe and 

Legendre 1990; Lapointe and Legendre 1992; Miyamoto and Fitch 1995; 

Campbell, Legendre and Lapointe 2011), thereby testing for significant 
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correlations in the phylogenies derived from each partition. Alternatively, one 

may propose that the observed differences are due to sampling errors, i.e., errors 

in phylogenetic estimation that result from the use of an incomplete set of data. 

By evaluating the null hypothesis that the data partitions share a single 

phylogenetic structure (Rodrigo et al. 1993; Farris et al. 1994; Huelsenbeck and 

Bull 1996), significant support for phylogenetic incongruence among the 

partitions can be identified.  

 

3.1.1.1 Testing for phylogenetic congruence 

 

The null hypothesis of phylogenetic independence among partitions of a 

group of taxa is evaluated by measuring the degree of topological similarity 

among the trees estimated from each partition. This implies that we can be 

confident in the estimated phylogenies, which may not always be correct. 

Topological similarity can be measured using a tree metric such as the partition 

distance (Robinson and Foulds 1981; Penny and Hendy 1985), which calculates 

the number of partitions (i.e. splits of taxa) that are not shared by all trees. 

Measures of the degree of concordance among distance matrices derived from the 

estimated phylogenies have also been used in tests of phylogenetic congruence 

(Legendre and Lapointe 2004; Campbell, Legendre and Lapointe 2011).   

The value of the chosen congruence-test statistic estimated from the real data 

is then compared to a distribution of such values obtained for data constructed 

under the null hypothesis of phylogenetic independence (the null distribution). 

Thus, if the test statistic falls in the upper tail of the null distribution (the top 5% 

is a commonly-used threshold), the null hypothesis is rejected. A rejection of the 

null hypothesis of phylogenetic independence signifies that, despite observed 

differences, the trees are more similar than expected by chance. The observed 

differences can be attributed to random error and further phylogenetic analysis of 

the data can be performed using a ‘total-evidence’ (Kluge 1989) approach (i.e., 

all partitions can be analysed together).  
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3.1.1.2 Testing for phylogenetic incongruence 

 

Examples of statistical tests examining the null hypothesis of phylogenetic 

congruence include the incongruence length difference (ILD) test (Farris et al. 

1994) and the likelihood heterogeneity test (LHT, Huelsenbeck and Bull 1996). 

These tests evaluate whether the individual partition phylogenies provide a 

significantly better ‘fit’ to the data than a single (‘total evidence’) phylogeny 

estimated when the partitions are analysed together. A rejection of the null 

hypothesis indicates significant evidence against a shared phylogeny for all 

partitions and therefore warns against the combination of data partitions in a total 

evidence phylogeny. A failure to reject the null hypothesis suggests that the 

topological differences observed among individual partition phylogenies can be 

attributed to sampling error. 

 

The main topic of consideration in thesis is the characterisation of the 

processes causing phylogenetic incongruities between the Papillomaviridae 

family and their vertebrate hosts. This characterisation will be compromised if it 

is based on a total-evidence PV phylogeny estimated from genes that have 

conflicting evolutionary histories. Thus, I have chosen to evaluate the null 

hypothesis of phylogenetic congruence among the genes rather than evaluate the 

hypothesis of phylogenetic independence. Only genes that do not demonstrate 

significant evidence against the null hypothesis of phylogenetic congruence will 

be combined in further phylogenetic analysis. This follows the ‘conditional data 

combination’ approach (Bull et al. 1993; De Queiroz 1993; Miyamoto and Fitch 

1995; Huelsenbeck, Bull and Cunningham 1996).  
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3.1.2 Tests of phylogenetic incongruence 

 

3.1.2.1 The Incongruence Length Difference Test 

 

The ILD test (Farris et al. 1994) tests the null hypothesis that distinct data 

partitions, e.g., X and Y, are phylogenetically compatible in a parsimony 

framework by evaluating the difference between length of the total-evidence 

phylogeny (LX+Y) and the total length of the phylogenies estimated for each 

individual partition (LX + LY):  

 

  )( YXYXXY LLL +−= +δ                  (3.1) 

 

When distinct partitions for a set of taxa have different evolutionary histories, the 

length of the estimated total-evidence MP tree will be much greater than the sum 

of tree lengths for the individual partitions as the method will likely struggle to 

find a total-evidence tree topology that fits all the partitions equally well. As a 

result, for some sites the estimated total-evidence tree will propose a greater 

number of character changes than the optimal tree for those sites and hence, the 

more phylogenetic discordance there is between partitions, the greater the value 

of δ will be.  

The significance of the calculated ILD for the observed sequences is 

ascertained by non-parametric bootstrapping of the observed data partitions i.e. 

randomly repartitioning sites in the total-evidence matrix into new partitions of 

the same size as X and Y, and performing the ILD test on the repartitioned data. 

This is repeated at least 100 times to provide a distribution of permuted δ values 

against which δXY for the real data can be evaluated. If δXY falls in the top 5% of 

the distribution then X and Y are taken to demonstrate significant phylogenetic 

incongruence. 

 

As the ILD test is based on MP phylogenetic estimation, it will suffer the 

limitations of this method, most notably the difficulty in distinguishing between 

homology and homoplasy. In not accounting for the possibility of multiple 

substitution events, MP methods bias against homoplasious changes and 
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therefore may underestimate the amount of evolution that has occurred. In 

addition, simulation studies (Dolphin et al. 2000; Barker and Lutzoni 2002; Darlu 

and Lecointre 2002) have shown that when the amount of homoplasy is different 

among the partitions under investigation, the performance of the ILD test is 

affected in two ways. First, as the amount of evolutionary change apportioned to 

homoplasy is minimised in parsimony estimation, the tree lengths of partitions 

with more homoplasious characters will be underestimated, resulting in a larger 

ILD value. Second, when bootstrapping sites from the total data matrix, the 

homoplasious character sites will be spread out among the bootstrapped partitions 

resulting in larger tree lengths for the individual perturbed partitions and hence, a 

smaller ILD for most replicates. Thus, the ILD test is associated with a high type-

I error rate resulting in the false rejection of the null hypothesis of congruence 

among partitions.  

 

 

3.1.2.2 The Likelihood Heterogeneity Test  

 

The LHT (Huelsenbeck and Bull 1996) examine phylogenetic compatibility 

among data partitions in a likelihood framework; the test statistic in the LHT is 

the difference in the ML of the total-evidence topology and the total MLs of each 

tree estimated for the individual partitions: 

 

δ = LLX+Y – (LLX + LLY)     (3.2) 

 

Unlike MP, where the fit of the data to the tree is measured by the number of 

estimated substitutions, in ML methods, the log-likelihood is a function of the 

parameters specified in the evolutionary model. The parameter values may 

therefore also influence the analysis of phylogenetic compatibility among data 

partitions. A plausible scenario is that different data partitions all support the 

same tree topology but have different evolutionary rates. ML methods allow us to 

decouple topological incongruence from “process” incongruence by optimising 

parameter values for individual partitions even under the topological constraints.  
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The significance of the estimated δ (δobs) can be determined by estimating the 

null distribution of δ i.e., the distribution of δ under the null hypothesis of 

phylogenetic congruence between partitions, using parametric bootstrapping (aka 

Markov/Monte Carlo simulation, Goldman 1993). Whereas non-parametric 

bootstrapping generates new data sets by resampling from the observed data 

matrix (as observed in the ILD test); parametric bootstrapping uses the model 

parameters to generate new data. So the maximum likelihood evolutionary model 

(including the tree topology) estimated for the combined data partitions are used 

to simulate the evolution of new sequences under the null model. This allows us 

to determine the extent of stochastic variation in δ estimates when the data 

partitions are phylogenetically congruent and assess whether δobs falls within this 

range, thereby implying phylogenetic compatibility of the data partitions, or 

outside this range, thereby implying phylogenetic incongruence of the partitions.  

 

 

3.1.3 Previous studies of phylogenetic incongruence among PV genes 

 

To date, there have been two studies that have explicitly tested phylogenetic 

incongruity among PV genes; these were each performed on different data sets 

and using different methods. Narechania et al. (2005) assessed the significance of 

the topological incongruities observed between trees inferred for the early genes 

and the late genes of the α HPVs using a localised ILD (LILD) test (Thornton 

and DeSalle 2000). Whereas the ILD test allows the identification of significantly 

incongruent partitions, the localised ILD test identifies significant incongruence 

at specific phylogenetic nodes of a given partition. In contrast, Gottschling et al. 

(2007b) analysed a more diverse set of PV types, comprising 18 different PV 

genera. Significant phylogenetic incongruence among the E1, E2, L1 and L2 

genes of this data set was examined by performing the ILD test in a pairwise 

manner (implemented as the partition homogeneity test (PHT) in the PAUP suite 

of phylogenetic software (Swofford 1998)).  
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3.1.3.1   Phylogenetic incongruence among genes of the α HPVs 

 

The LILD test employed by Narechania et al. (2005) to study phylogenetic 

incongruence among the α HPVs evaluates the tree length difference between an 

MP gene tree estimated under the constraint of a particular node and the MP gene 

tree obtained in the absence of any such constraint. The nodes used to constrain 

individual gene trees are taken in turn from a tree topology presumed to relate the 

taxa. This test therefore aims to identify tree nodes causing significant 

incongruence between a gene trees and the overall phylogeny. It is therefore 

useful for identifying sequences to remove from the data set when there is 

specific interest in performing a combined phylogenetic analysis of multiple 

genes.  

In the absence of a PV topology derived from independent data, Narechania 

and colleagues estimated the total-evidence phylogeny from a concatenated data 

set of the E1, E2, E6, E7, L1, and L2 genes and proteins. The significance of the 

tree-length difference obtained for each total-evidence node-gene pair was 

determined by evaluation against a null distribution of tree length differences 

obtained by non-parametric bootstrapping of the concatenated data matrix to 

allow identification of nodes in the total evidence phylogeny which are 

significantly incongruent with single gene phylogenies.  

The total-evidence phylogeny, estimated using Bayesian phylogenetic 

methods, possessed well-supported (p>0.99) monophyletic clades  of PV types 

grouped within the same PV species classification, and monophyletic grouping of 

the high-risk PV species 9, 11, 7, 5, and 6. The parent node of this high-risk clade 

in these trees is referred to by the authors as the “oncogenic node”. The LILDs 

obtained at the oncogenic node for both the L1 and L2 genes was found to be 

statistically significant (P ≤ 0.01), strongly suggesting that the existence of a 

single oncogenic node in the evolutionary history of the α HPVs is not supported 

by either of the late genes.  

In total, 12 significant LILDs were found; these corresponded to various 

node-gene pairs, with all but two of these significant incongruities identified in 

the late genes. Four of the 10 significant LILDs in the late genes were associated 

with nodes in the high-risk clade, whilst the remainder were located within a 
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clade comprised of low risk mucosal and cutaneous PV species 

(α−4, α−15, α−3, and α−2). A significant LILD in the E7 gene was observed at 

the basal node for the clade of the PV species 4, 15, 3, and 2. Significant LILDs 

in the early genes were observed at the basal node for the clade of the PV species 

4, 15, 3, and 2 in the E7 gene and within the high-risk clade of either the E1 or E6 

gene (Narechania et al. (2005) indicate significant LILD at node 12 in the E1 

gene in Fig. 5 but report significant LILD at node 6 in the E6 gene in the text). 

 

A potential source of error in the analysis of Narechania et al. (2005), is the 

use of the total-evidence phylogeny to represent the PV phylogeny since the 

authors are making the a priori assumption that the genes share the same 

evolutionary history. This phylogeny is then used to examine incongruities with 

each gene tree. If genuine phylogenetic incongruence does exist amongst the 

genes, the conflicting phylogenetic signals may produce a total-evidence tree 

topology that fails to reflect any of the gene histories; if this is the case the LILD 

test will be investigating incongruence at nodes which never occurred in the 

evolutionary history of the PVs.  

In this particular study however, the results may still be of some significance 

as, for the α PVs at least, it is observed that there is substantial resemblance 

between the topologies of the total-evidence tree and the early gene phylogenies, 

particularly with respect to the arrangement of the high-risk HPVs. This is likely 

a consequence of the greater proportion of sites from the early genes E1, E2, E6, 

and E7 in the total-evidence matrix. Based on the early gene topology of the 

total-evidence tree and the findings that the majority (10/12) of significant 

incongruities with the total-evidence tree occurred for the late genes, their results 

certainly highlight significant incongruities between the evolutionary histories of 

the late genes and the early genes of mucosal α HPVs. Additional pairwise 

similarity scans of the α HPVs revealed a distinction in similarities to high-risk 

and low-risk α PVs for the E6 and L2 ORFs, which may suggest that the early 

gene-late gene phylogenetic incongruities of the high-risk α PVs may be driven 

by changes in these two ORFs.  
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3.1.3.2   Phylogenetic incongruence among the genes of multi-genera PVs 

 

Gottschling et al. (2007b) applied the PHT (i.e., the ILD test performed on 

pairs of genes only) on the E1, E2, L1 and L2 genes of 53 PV types from 18 

different genera to determine which PV genes may be combined in phylogenetic 

analysis. Significant phylogenetic heterogeneity (P ≤ 0.001) was determined for 

the E1-L2, E1-L1, and L1-L2 paired gene (first and second codon positions only) 

partitions. Analysis of the respective protein sequences, however, found 

significant incongruence only in partition pairs involving the L2 protein and of 

these three partition pairs only the E1-L2 partition had P ≤ 0.001. Once again, L2 

was identified as a source of phylogenetic incongruence among the PV genes 

though only 35% of the sites from the full L2 alignment were used in the test 

(phylogenies for the other genes were derived from more than 75% of sites from 

the original alignment).  

Differences in the results obtained for the nucleotide and amino acid 

sequences may indicate the effect of differences in the amount of data analysed 

using each data type. Tests of phylogenetic congruity performed on the 

nucleotide sequences using the first and second positions of each codon examined 

twice the number of sites than were available in the amino acid sequences. 

However, the amino acid sequences provide more character states (20 amino 

acids vs. 4 nucleotides) and may therefore provide greater phylogenetic 

resolution, despite the availability of less sites. 

PV gene trees generated for the data set studied revealed certain taxa (HPV-

16, HPV-1, HPV-63, and PlPV) which assume different phylogenetic position in 

the individual gene trees; removal of these taxa was found to remove any source 

of significant incongruence among the PV genes, including L2. This may either 

indicate the possibility of recombination involving each of the removed 

sequences or simply that insufficient sampling has resulted in an inability to 

resolve the phylogenetic positions of these taxa.  

The overall finding of this study of phylogenetic incongruence among PV 

genes was that the E1, E2, and L1 proteins can be combined in phylogenetic 

analyses. However, as the tests of phylogenetic heterogeneity were performed on 

a reduced data set in which PV-genus species possessing multiple HPV types 
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were each represented by a single HPV type (e.g. HPV type 6 was used to 

represent HPV types from the α-10 PV species), the conclusions made in this 

study may not hold for expanded data sets of PV sequences. For instance, the 

results obtained by Narechania et al. (2005) suggest that the inclusion of more 

high-risk and low-risk PV types from the α HPVs would render the L1 aa tree 

topology significantly incongruent with the topologies of the E1 and E2 aa trees. 

Thus, when performing phylogenetic analysis of a PV data set, it is necessary to 

first evaluate the evidence for phylogenetic incongruence among the genes or 

proteins of the specific data set under analysis, if this has not been performed 

previously. 

 

 

I chose to investigate phylogenetic incongruence among PV genes using a test 

based on the methods of the LHT (Huelsenbeck and Bull 1996) but implemented 

in a Bayesian framework, as suggested by Nylander et al. (2004). This approach 

was also used by Stevenson et al. (2007) to evaluate observed phylogenetic 

incongruities among genes in members of the spirochete species Leptospira 

interrogans. Bayesian methods are preferable to an ML approach as they can 

account for any phylogenetic and model uncertainties. This allows us to ensure 

that the tests of phylogenetic incongruence are not influenced by a single 

incorrect phylogeny.  

 

 

3.2  Method 
 

3.2.1 The PV data set 

 

Amino acid and nucleotide sequences of the PV genes E1, E2, E6, E7, L1 and 

L2 were obtained from Genbank (Benson et al. 2005). The data set consisted of 

the nucleotide sequences of 108 PV types from 14 different genera (Appendix 

A.1). The PV types RaPV1, MnPV1, TmPV1, EcPV1, EcPV2, CPV3, and 

ChPV1 were initially included in the data set but demonstrated variable 

phylogenetic positions and thus have been omitted from further analyses. The 
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genes E1, E2, L1 and L2 are present in all 108 PVs, while 6 PV types (PePV1, 

PsPV1, TtPV2, BPV3, BPV9, and BPV10) lack either an E6 or E7 ORF and 

therefore incongruence tests involving the transforming genes were performed 

using a data set of 102 PV sequences. The protein sequences were aligned 

individually using Muscle (Edgar 2004). Nucleotide alignments were then 

constructed from the amino acid alignments using Pal2nal (Suyama, Torrents and 

Bork 2006). Gapped positions in the resulting nucleotide alignments were 

removed resulting in alignment lengths of 1389, 480, 300, 192, 1266, and 681 

sites for the E1, E2, E6, E7, L1, and L2 genes, respectively. 

  

 

3.2.2 Testing the Molecular Clock  

 

Likelihood ratio tests were performed first to evaluate support for a constant 

rate of evolution in each gene. Tests of the molecular clock hypothesis were 

performed by estimating ML phylogenies for each gene under models of clock-

like and non clock-like evolution using the PAML phylogenetic analysis software 

(Yang 1997). In each case, a HKY + Γ(4) (Hasegawa, Yano and Kishino 1984; 

Yang 1994a) model was specified to model nucleotide changes. The significance 

of the likelihood ratio test statistic, which is twice the difference of the 

likelihoods under each model, was determined by comparison against a χ2 

distribution with degrees of freedom equal to the difference in the number of 

parameters between the clock-like and non clock-like models. 

 

 

3.2.3 A Bayesian test of phylogenetic incongruence 

 

I analysed the sequence data using the BEAST software (Drummond and 

Rambaut 2007) for Bayesian phylogenetic estimation. For each analysis, I 

specified the HKY + Γ(5) + Inv evolutionary model, with each codon position 

partitioned and branch rates selected from a relaxed clock log-normal distribution 

(Drummond et al. 2006). The HKY model (Hasegawa, Yano and Kishino 1984) 

is a fairly general model which is commonly used in nucleotide sequence 
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analyses. It provides a distinction between transition and transversion 

substitutions with different parameters for each type of event and unequal 

nucleotide frequencies which is more representative of the sequences to be 

studied. The HKY model is used over the more generalized GTR model as the 

difference of 4 parameters between the two models benefits us with a substantial 

reduction in computational time, given our large data set.  

To account for variations in the evolutionary rate at different sites I modeled 

rates across sites using a gamma distribution with 5 rate categories (Γ(5)). In 

addition, a parameter pInv relating to the proportion of invariant sites was 

specified. The inclusion of a separate parameter for invariant sites is in fact 

unnecessary as the gamma distribution accounts for such sites and therefore there 

is slight overparameterisation in my model. Future phylogenetic analyses should 

ensure against over-parameterisation of the evolutionary model as the inclusion 

of too many correlated parameters can affect the convergence of the MCMC 

algorithm and unduly increase the influence of the prior distribution on the 

posterior (Rannala 2002).  

The HKY + Γ(5) + Inv model was applied to each codon position to account 

for the different selective pressures that generally act on each position. I used a 

relaxed clock model following rejection of the molecular clock assumption. A 

Yule model of speciation was specified for the tree prior. In each analysis, the 

initial tree was generated randomly.  

 

 

To determine if any of the six genes shared the same evolutionary history and 

could be combined in further phylogenetic analysis, I investigated the 

phylogenies of the genes in pairs. By employing a Bayesian approach, the 

evidence for incongruence between any two genes could be determined in the 

absence of confident phylogenetic trees for either. For each gene pair I ran two 

separate MCMC chains, each sampling over two separate phylogenetic trees – 

one for each gene.  

I applied the methods of Huelsenbeck and Bull (1996) to determine whether 

constraining the sampling process to only consider pairs of trees with identical 

topologies would produce a significantly worse fit to the observed data, 
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quantified as change in the total log likelihood, indicating differences in tree 

topologies and evidence for incongruence. For each gene pair, the first MCMC 

chain sampled topologies which were constrained to be the same for both genes 

whilst the second MCMC chain samples independent topologies for each gene. In 

both chains, evolutionary parameters were constrained across gene partitions but 

branch lengths were allowed to vary for each gene tree. The possibility of 

phylogenetic incompatibility due to process incongruence (i.e. different 

mutational processes) was also investigated by modifying the test above to 

remove the constraint of identical evolutionary parameter estimates for each gene 

in both the constrained and unconstrained chains. The analysis was repeated 

again to ensure convergence of the sampled distributions. 

 

Phylogenetic incongruence among PV genes may be attributed to convergent 

evolution at the amino acid level or recombination. To determine whether 

convergent evolution provides a plausible explanation, I performed the 

incongruence tests using only the third codon positions. The redundancy of the 

genetic code means that nucleotide substitutions at the third codon position are 

incapable of changing the amino acid coded for and therefore selective pressures 

driving convergent evolution will not act at third codon positions. Tests of 

phylogenetic compatibility at the third codon sites were not performed on the 

transforming genes due to the shorter alignments and higher evolutionary rates of 

these genes. 

 

For each paired-gene run, the MCMC algorithm was run for 30,000,000 

generations with sampling of states every 1,000 generations. In each chain, the 

first 5,000 sampled states were discarded as the burn-in period of the algorithm 

(i.e., the time taken for the chain to reach equilibrium), leaving 25,000 states for 

analysis. Each state in the Markov chain is sampled dependent on the previous 

state and therefore there will be some degree of correlation among states in the 

chain. The effective sample size (ESS) for a parameter indicates the number of 

independent points that have been sampled. It is calculated by dividing the 

number of post-burn-in sampled states by the auto-correlation time (the average 

minimum number of states between two uncorrelated sample points). For each 
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chain I used the Tracer software distributed with BEAST to determine the ESSs 

of sampled parameters. Tracer flags ESS values less than 200 as the chain may 

not contain enough independent samples to provide a sufficient representation of 

the posterior distribution. For all chains, sampled parameters of the evolutionary 

model had high ESS values (the lowest ESS was 1991.59), whilst the likelihood, 

prior and posterior had ESS values ranging from 329.895 to 2886.523. Thus, 

each chain contained a sufficient number of independent samples to suggest a 

good amount of mixing and sampling from the posterior distribution.  

To ensure convergence of each chain on the posterior distribution, MCMC 

runs were repeated, starting from a different, randomly obtained initial staring 

point. The sampled distributions for all parameters, likelihood and posterior 

distributions can be compared to see if similar distributions are obtained across 

multiple, independent runs. I calculated the PSRF statistic (equations 2.37 – 2.40) 

for each MCMC component. The distribution of calculated PSRF values for all 

components, across all chains run, had a mean of 1.02 (s.d. = 0.027), indicating 

generally good agreement of sampled distributions between independent MCMC 

chains run under the same set of constraints for each gene partition. Convergence 

of all chains on the same distribution may therefore be inferred. 

 

Each MCMC chain samples over many different topologies, to make 

topological comparisons the maximum a posteriori (MAP) tree for each gene was 

obtained from the phylogenies sampled for individual gene MCMC runs 

performed using the same evolutionary model as specified above. The posterior 

probability associated with each branch in the MAP tree tells us the probability 

that the grouping of taxa observed subtending from that branch (i.e., the 

subtending clade of taxa) is correct, given the data and the evolutionary model. 

Clade posterior probabilities greater than 0.9 (p>0.9) are taken to provide 

significant support for the estimated clade. Clades associated with lower posterior 

probabilities indicate uncertain phylogenetic relationships.  

 

 

In Bayesian statistics, different hypotheses or models are compared through 

the Bayes factor (Jeffreys 1935). The Bayes factor (BF10) comparing model M1 
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against M0 is derived from Bayes’ theorem as the ratio of the marginal 

likelihoods under the two models:  

  
)M|(
)M|(

0

1
10 Xp

XpBF =                  (3.3) 

For a model M with parameters θ,  

 

   θθθ d )()|()M|( ∫= pXpXp     (3.4) 

 

BF10 tells us how much the data favour M1 over the null hypothesis (M0). Kass 

and Raftery (1995) provided guidelines for the interpretation of Bayes factors 

(Table 3.1) Converting the BF to a logarithmic scale by taking twice the natural 

logarithm of BF10, they suggested that positive support for H1 (and against H0) 

may be inferred when 2lnBF10 >= 2, with values greater than 10 indicating very 

strong support for the alternative hypothesis.  

 

 

 

2ln(BF10) Evidence against H0 

0-2 Not worth more than a bare mention 

2-6 Positive 

6-10 Strong 

>10 Very strong 

 

Table 3.1: Interpretation of Bayes factor values determined for the comparison of two 

distinct models or hypotheses. Reprinted from Kass and Raftery (1995). 

 

Bayesian phylogenetic analysis is performed using MCMC sampling 

methods, which enable estimation of the posterior distribution without 

performing the difficult calculation of the marginal likelihood. Thus, the BF for 

different phylogenetic models is not easily obtained. Newton and Raftery (1994) 

applied the Monte Carlo method for approximating integrals to the evaluation of 

the marginal likelihood for a model M (as defined in equation 3.4). They found 
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that given a sample from the posterior distribution, the marginal likelihood is 

estimated by the harmonic mean of the sample likelihoods: 

 
1

1
i ),,|(

11)M|(
−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

N

j jjjXfN
Xf

θντ
    (3.5) 

 

The BF can therefore be estimated from the ratio of the harmonic means of the 

likelihoods of the MCMC chains generated under each model. The harmonic 

mean estimator (HME) possesses the important property of statistically 

consistent; however, it is associated with problems of infinite variance and a 

tendency to over-estimate the marginal likelihood (Newton and Raftery 1994), 

which is a consequence of under-sampling of points from regions of low 

likelihood in a finite sample.  

A proposed alternative to the HME applies the thermodynamic integration 

(TI) method of statistical physics to the estimation of the marginal likelihoods 

under/for each hypothesis (Lartillot and Philippe 2006). In the model-switching 

application of TI, the sampling process is used to integrate along a continuous 

path connecting two models defined on the same parameter space. The integral of 

this path provides the BF for the two models and is approximated by sampling at 

discrete points along the path, with a Markov chain being run at each point. 

Lartillot and Phillipe found TI to provide a more reliable estimate of the BF than 

the HME; however, the computational demands of the method limit its 

applicability to large datasets.   

More recently, a stepping-stone (Fan et al. 2011; Xie et al. 2011) method, 

which applies importance sampling to the path sampling approach of TI, has been 

proposed for approximating marginal likelihoods. In the estimation of marginal 

likelihoods, the SS method is found to provide a similar degree of accuracy to TI; 

however, it is a less computational intensive method that TI as it does not require 

sampling from the posterior distribution (Fan et al. 2011). Thus, the SS method 

may be deemed the preferred method of ML estimation and should be 

investigated for future testing of hypotheses of phylogenetic incongruence among 

partitions.  
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In order to estimate the BF of chains run on the PV genes, I rely on the 

observation by Lartillot and Philippe (2006) that marginal likelihoods estimated 

using the HME and TI were similar when the models tested were of similar 

dimensions. In analyzing phylogenetic incongruence among PV genes, the two 

models tested consist of the same parameters and the only difference between 

them is the constraint placed on the tree topology; thus I am making the 

assumption that the HME will perform as well as TI here.  

 

For each gene pairing, I calculated the marginal log likelihoods, estimated by 

calculating the log of the harmonic mean of the likelihoods at each state using 

Equation 3.5, for both the topologically constrained and the unconstrained 

MCMC chains. 

 

  Marginal log likelihood = ∑
=

n

i
iLLn

1
))exp(/(ln                 (3.6) 

 

To account for the uncertainty in BF estimates, I determined the 95% confidence 

interval (CI) by resampling 1000 times from the posterior distributions of the 

unlinked and linked chains and calculating the BF for each bootstrapped sample. 

Resampling was done in accordance with the method used by Suchard et al. 

(2003) in which blocks of states, rather than individual states, are sampled from 

the MCMC chain so as to preserve the correlated nature of consecutive states 

during the MCMC simulation. The auto-correlation time (lag), i.e. the minimum 

length between uncorrelated states in an MCMC chain was obtained from the 

sampled chains using the Tracer application in BEAST. The bootstrap method 

provides only an approximation of the error in the BF since we are not actually 

sampling new chains from the posterior distributions; however, the computational 

resources required to determine the error using the latter method are too great to 

make it worthwhile. 
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3.3   Results 
 

3.3.1 Testing the molecular clock assumption 

 

Table 3.2 shows the results of the likelihood ratio test performed to evaluate 

support for the molecular clock hypothesis in the E1, E2, E6, E7, L1, and L2 

genes. For each gene we find significant support (P<0.001) against the null 

hypothesis of a constant evolutionary rate and hence reject the assumption of a 

molecular clock. 

 

 

 lnL(H0=MC) lnL(H1=NC) 2ΔlnL Df χ2 P-value 

E1 -94528.66 -93563.04 1931.24 106 <0.001 

E2 -40356.20 -39931.92 848.56 106 <0.001 

E6 -23581.55 -23215.96 731.18 100 <0.001 

E7 -14177.63 -13987.23 380.8 100 <0.001 

L1 -81862.18 -81162.88 1398.6 106 <0.001 

L2 -52814.43 -52335.73 957.4 106 <0.001 

 

Table 3.2:  Results of likelihood ratio tests performed on each gene to evaluate support 

for a constant rate of evolution. MC indicates the null hypothesis of a molecular clock 

and NC indicates the alternative hypothesis of non clock-like evolution. df indicates the 

degrees of freedom in each test. 

 

 

3.3.2   Bayesian tests of phylogenetic incongruence 

 
In all fifteen pairings of the E1, E2, E6, E7, L1, and L2 genes, higher log 

likelihoods were observed for chains run with independent topologies for each 

gene than when both genes were constrained to the same topology at each state in 

the chain; this is true whether the evolutionary parameters are constrained or not 

(Appendix A.2 and A.3), suggesting that differences in evolutionary history 

contribute to the differences in likelihoods. The Bayes factor was used to 
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determine whether the differences between topologically constrained and 

unconstrained chains for each gene pairing were significant. All gene pairings 

produced values of 2lnBF > 20 (Tables 3.3 and 3.4) thus demonstrating 

significant support for topological incongruence among the PV genes.  

I performed two runs of the constrained and unconstrained topology chains 

for each gene and generated BF estimates for each run so as to determine the 

consistency of the estimates. For most gene pairs the BFs from the separate runs 

are similar and where larger differences are observed there is overlap in the 

associated 95% credible intervals (CIs). The E7-E2 pairing provides the only 

instance of non-overlapping credible intervals for the BF from separate runs: 

(19.51, 30.44) vs. (36.14, 57.33). The range of the 95% CI is observed to be 

about 20 log units on average. For all gene pairs, the CIs for estimated BFs point 

to significant evidence for independent gene topologies.  

 

For MCMC chains generated with independent evolutionary parameters for 

each gene, the greatest values are observed when an early gene is paired with a 

late gene, with the E1-L2 pairing giving BF values of 263.8456 (254.6650, 

271.8332) and 264.5274 (255.7516, 274.4575), the E1-L1 pairing giving BF 

values of 200.1557 (191.1177, 203.5548) and 203.5124 (195.0476, 208.3344), 

and the E2-L2 pairing giving BF values of 109.7836 (99.2848, 130.0872) and 

111.7983 (109.3592, 122.8943). However, the L1-L2 pairing also demonstrated 

substantial evidence of phylogenetic incongruence with BF values of 103.1562 

(97.0436, 105.9685) and 106.1399 (93.3945, 121.0006). Similar results are 

obtained from chains generated under a heterogeneous evolutionary model across 

gene partitions.  

 
The results of the incongruence test performed on third codon sites of the core 

genes are shown in Table 3.5. For each gene pairing, the MCMC chain generated 

for unlinked topologies had a higher log likelihood than the MCMC chain 

generated for linked topologies and in all cases the BF values indicate significant 

phylogenetic incongruence at the third codon positions of the genes.  
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 2lnBFUC(1st chain) 2lnBFUC(2nd chain) 

Linked EP 

E1-E2 111.58 (85.22, 136.48) 120.45 (108.58, 128.69) 
E1-L1 400.32 (382.24, 407.10) 407.02 (390.10, 416.67) 
E1-L2 527.70 (509.34, 543.66) 529.05 (511.50, 548.92) 
E2-L1 155.00 (146.78, 166.10) 139.09 (127.17, 172.31) 
E2-L2 219.56 (198.56, 260.18) 223.60 (218.72, 245.79) 
L1-L2 206.32 (194.09, 211.94) 212.28 (186.79, 242) 

Unlinked EP 

E1-E2 136.16 (118.50, 151.29) 97.80 (85.18, 124.56) 
E1-L1 378.92 (360.80, 389.70) 388.68 (361.29, 397.96) 
E1-L2 503.55 (490.69,511.39) 509.55 (486.36, 520.97) 
E2-L1 153.69 (133.00, 159.47) 154.04 (116.83, 161.38) 
E2-L2 275.77 (250.87, 281.63) 234.01 (213.68, 272.90) 
L1-L2 213.17 (191.92, 235.10) 199.39 (177.82, 215.04) 

 

Table 3.3: Results of phylogenetic incongruence test of the core PV genes: calculated 

Bayes factors for paired genes with independent (unconstrained) tree topologies against 

paired genes with the same (constrained) tree topology. Values in parenthesis indicate 

the 95% CIs for the Bayes Factor estimates.   
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 2lnBFUC(1st chain) 2lnBFUC(2nd chain) 

Linked EP 

E6-E1 113.21 (105.22, 118.59)              98.38 (90.25, 111.65) 
E6-E2 134.04 (117.10, 141.14) 115.25 (99.86, 136.40) 
E6-E7 79.57 (73.40, 97.29) 80.61 (73.33, 101.05) 
E6-L1 192.35 (184.29, 213.20) 157.29 (141.84,218.75) 
E6-L2 216.84 (210.67, 232.61) 218.39 (198.72, 243.42) 
E7-E1 55.31 (37.13, 70.90) 60.13 (48.09, 69.90) 
E7-E2 69.22 (49.00, 77.21) 31.53 (25.92, 43.60) 
E7-L1 103.46 (96.94, 112.16) 137.58 (102.49, 145.85) 
E7-L2 106.18 (91.42, 133.68) 90.24 (84.44, 133.54) 

Unlinked EP 

E6-E1 91.08 (74.19, 117.71) 111.59 (80.64, 117.71) 
E6-E2 117.82 (108.71, 124.44) 143.46 (112.31, 151.53) 
E6-E7 88.39 (73.28, 107.90) 92.70 (83.17, 109.02) 
E6-L1 234.42 (218.23, 249.71) 219.30 (208.60, 235.34) 
E6-L2 214.83 (209.03, 223.91) 227.80 (203.84, 239.83) 
E7-E1 45.97 (37.30, 70.26) 54.56 (44.34, 88.76) 
E7-E2 24.03 (19.51, 30.44) 51.78 (36.14, 57.33) 
E7-L1 102.59 (86.33, 127.21) 82.24 (75.26, 112.96) 
E7-L2 120.28 (114.35, 125.67) 163.85 (113.70, 182.10) 

 

Table 3.4: Results of phylogenetic incongruence test of the PV oncogenes: calculated 

Bayes factors for paired genes with independent tree topologies against paired genes 

with the same tree topology. Values in parenthesis indicate the 95% CIs for the Bayes 

Factor estimates.   
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 2lnBFUC (1st chain) 2lnBFUC (2nd chain) 

Linked EP 

E1-E2 88.12 (68.34,114.34) 103.63 (87.26,108.89) 

E1-L1 103.63 (130.79, 150.85) 139.14 (126.20, 164.95) 

E1-L2 164.61 (156.17, 170.79) 151.88 (141.62, 167.91) 

E2-L1 115.62 (92.99, 140.50) 112.57 (109.26,118.73) 

E2-L2 125.63 (95.34, 147.39 113.58 (100.80, 141.97) 

L1-L2 68.64 (59.23, 85.91) 61.06 (51.71, 90.88) 

Unlinked EP 

E1-E2 90.74 (80.63, 96.43) 100.50 (52.14, 127.46) 

E1-L1 147.79 (126.65, 159.44) 143.22 (136.61, 164.66) 

E1-L2 142.11 (127.67, 164.59) 156.91 (150.04, 167.13) 

E2-L1 119.45 (104.57, 130.46) 87.62 (73.60, 123.80) 

E2-L2 100.92 (86.20, 142.55) 138.22 (129.32,147.46) 

L1-L2 78.32 (73.58, 94.78) 94.79 ( 80.41, 105.41) 

 

Table 3.5: Results of phylogenetic incongruence tests of the core PV genes (third codon 

sites only): calculated Bayes factors for paired genes with independent (unconstrained) 

tree topologies against paired genes with the same (constrained) tree topology. Values in 

parenthesis indicate the 95% CIs for the Bayes factor estimates.     
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3.3.3 Estimated phylogenetic differences among PV genes 

 

The maximum a posteriori (MAP) PV trees obtained from the sampled 

phylogenies for each gene are provided in Appendix A.6-11. No two genes 

produce identical MAP tree topologies; however, some similarities do exist. 

Overall, the estimated gene trees display high posterior probabilities (p<0.9) for 

genus-based groupings of PV types. In the E1 and L1 gene trees, monophyletic 

clades of taxa representing each genus are observed with posterior probabilities 

greater than 0.99. A similar observation is made in the other gene trees, with a 

few exceptions. Uncertainties are observed in the grouping of the E2-α genus 

(p=0.57), the L2-λ genus (p=0.71), the E6-λ genus (p=0.78), and the E6-ε genus 

(p=0.55). In addition, E6 sequences from the κ genus fail to cluster together and 

are instead observed to be distantly related. In the E7 tree, the κ PVs and the γ 

PVs each form paraphyletic clades. All 6 gene trees also place the δ and ε PVs 

together in a monophyletic clade of fibropapilloma-causing PVs (p>0.99). The ν 

and σ PV lineages, which were isolated from cutaneous papillomas in human and 

porcupine species, respectively, cluster together with a posterior probability of 

1.0 in the trees of 5 PV genes but with less certainty in the E7 gene tree (p=0.8). 

 

Topological differences between the gene trees are observed in the relative 

ordering of the genus clades. However, the proportion of inter-genus branches 

(i.e., branches joining together PV types from different genera) in each gene tree 

with p<0.9 is as follows: 0.15 (E1), 0.57 (E2), 0.75 (E6), 0.93 (E7), 0.36 (L1), 

and 0.71 (L2), thus indicating substantial topological uncertainty deeper in the 

trees of the E2, E6, E7, and L2 genes. Further comparison of the gene topologies 

is therefore restricted to the E1 and L1 gene trees.  

 

Figure 3.1 shows a splits network generated by combining the MAP 

topologies for the E1 and L1 genes in SplitsTree. A split is defined as the 

partition of taxa obtained following removal of any branch in the tree. SplitsTree 

obtains all the splits for the E1 and L1 MAP trees and creates a network 

consisting of edges for each split observed in the two trees. Regions of the gene 
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trees which are congruent are represented by single edges in the network and are 

‘tree-like’ in appearance; however, if two taxa (or sets of taxa) are connected to 

each other in different ways in the two gene trees this is represented in the 

network by a set of parallel edges or ‘reticulations’. Such regions in the network 

therefore display where incongruities between the evolutionary histories of the 

two genes lie.  

 

The network shows several incongruent regions, the majority of which are 

located at the base of the network, but incongruent regions are also observed at 

the base of the clade of α PVs. Direct comparison of the E1 and L1 gene MAP 

tree topologies reveals several key differences. The ν+σ PV clade occupies a 

basal position in the E1 gene tree and is excluded from the clade formed by all 

other mammalian PVs, besides the δ+ε PV clade, with p=1.0. However, in the L1 

gene tree the ν+σ PV clade clusters within the μ+κ PV clade (p=0.94). Different 

positions are also observed for the PsPV1+TtPV2 clade, which associates with 

the α PVs (p=1.0) in the E1 gene tree, but with the ξ PVs (p=0.98) in the L1 gene 

tree.  

Another notable difference in the two gene trees concerns the arrangement of 

the high-risk species α-5, α-6, α-7, α-9, α-11, and α-12. In the E1 gene tree, 

these high-risk species PV types cluster together (p=1.0); however, in the L1 

gene tree the high-risk PV types are split: PV species α-9, α-11, and α-12 cluster 

with the low-risk PV species α-8 and α-10 (p=0.91), whilst PV species α-5, α-6, 

and α-7 form a distinct clade (p=0.97).  
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Figure 3.1: A splits network generated from the E1 and L1 MAP phylogenies using 

SplitsTree. Sets of parallel edges in the network indicate locations of topological 

incongruence between the trees. 

 

 

3.4 Discussion 
 

A Bayesian phylogenetic approach has been used to examine phylogenetic 

compatibility among the genes of a divergent set of PV sequences. In contrast to 

previous studies of phylogenetic incongruity among the PV genes (Narechania et 

al. 2005; Gottschling et al. 2007b), the tests employed here are not conditioned 

on the assumption that the individual gene tree topologies can be determined with 

absolute confidence or, that a total-evidence phylogeny constructed from all 

genes represents the “true” phylogeny. Instead, the MCMC methods employed in 

Bayesian phylogenetic analysis allow us to integrate over uncertainties in the 
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specific topology of each gene so that the results are not biased by incorrect 

topologies.  

 

The statistical support for phylogenetic incongruence was determined by 

estimation of the Bayes factor for linked vs. unlinked topologies for paired genes. 

The calculated Bayes factors are much larger than the values suggested by Kass 

and Raftery (1995) as indicators of significant evidence for one hypothesis over 

another. However, it has been noted that large errors may be associated with the 

harmonic mean estimator used to estimate the marginal likelihoods of MCMC 

chains under each phylogenetic hypothesis. I have attempted to determine the 

uncertainty in the estimation by calculating individual Bayes factors for repeated 

chains and determining the 95% credible interval of the Bayes factor for each 

chain by bootstrapping the sampled likelihoods. Accounting for these errors, the 

tests performed detected significant phylogenetic incongruence in all pairings of 

the E1, E2, E6, E7, L1 and L2 genes. Significant phylogenetic incongruence 

between the genes remained when accounting for differences in the evolutionary 

process acting on each gene. The overwhelming conclusion from the tests 

performed is therefore that no two PV genes (for the set of PV types studied) can 

be combined in phylogenetic analysis.  

 

Topological incongruities were observed at multiple branches between the 

gene phylogenies and involved rearrangements between multiple sets of taxa. 

The MAP trees derived for the E1 and L1 genes, which are the most conserved of 

the PV genes, both demonstrated high posterior clade probabilities (p>0.9) along 

their trees and therefore produce strongly supported conflicting phylogenies. The 

uncertainties observed in phylogenetic estimates for the E2, E6, E7, and L2 genes 

may be due to shorter alignments that provided fewer sites possessing strong 

phylogenetic signal. Entropy measurements performed on PV genes from a 

diverse set of PV types have identified the presence of more than double the 

number of highly variable (Shannon entropy > 1.6) sites in the E2, E6, E7, and 

L2 genes than the E1 and L1 genes (Batista et al. 2011). The inference of 

accurate phylogenies from these genes may therefore be difficult for diverse sets 

of taxa. In such cases we might have expected that gene pairings of the E2, E6, 
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and E7 genes with the E1 gene, and of L2 with L1, would have aided 

phylogenetic estimation of the shorter genes, resulting in higher likelihoods for 

the constrained chains than the unconstrained chains. This was not observed, 

however, and we may assume from this that, although the phylogenetic signal in 

each of the four genes is poorer than of the core genes, it is still strong enough to 

demonstrate phylogenetic incongruence among the genes.  

The inference of different evolutionary histories for each gene is an intriguing 

finding. The E1 and E2 genes express proteins which perform regulatory 

functions during the viral life cycle. The E1 and E2 proteins even interact with 

each other to initiate viral genome replication. The E6 and E7 genes both 

manipulate cellular pathways to ensure a replicative state is maintained in 

differentiated epithelial cells. The L1 and L2 genes are expressed in the latter 

stages of the viral life cycle; their protein products make up the viral capsid. 

Given the overlapping functions of E1 and E2, E6 and E7, and L1 and L2, it 

would be expected that in each of these pairs, the evolutionary histories of the 

genes would be highly similar and this assumption has been made previously for 

a similar data set of PV types to that studied here (Garcia-Vallve, Alonso and 

Bravo 2005). This illustrates the importance of testing phylogenetic congruence 

of PV genes before making further inferences from the estimated phylogenies. 

Some interesting patterns are observed from the conflicting topologies 

derived for the E1 and L1 genes. Three topological rearrangements, concerning 

the positions of PsPV1+TtPV2, the σEdPV1+ νΗPV41, and the α−5+α−6+α−7 

HPVs, are observed with high support (p>0.9) between the two gene trees. In the 

E1 gene tree, the cetacean genital PsPV1+TtPV2 cluster with the genital PV 

containing clade of primate α PVs (p=1.0), the porcupine σEdPV1 + human 

νHPV41 are distantly related to all other PV types, and the high-risk 

α−5+α−6+α−7 HPVs form a monophyletic clade with other high-risk α PVs 

(p=1.0). However, in the L1 gene tree the cetacean genital PsPV1+TtPV2 cluster 

with the bovine non-genital ξ−PVs (p=0.98), the porcupine σEdPV1 + human 

νHPV41 cluster with the human μHPV63 and lagomorph κ PVs (p=0.94), and 

the high-risk α−5+α−6+α−7 HPVs form a paraphyletic ‘high-risk’ clade within 

the α PV clade (p=0.97).  
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Thus, it appears that phylogenetic groupings within E1 gene tree reflect the 

biological and pathological characteristics of the lineages, whereas groupings in 

the L1 gene tree reflect similar host preferences. Since the E1 gene has a key role 

in replication, this may suggest against PV host-specificity being governed by 

replication factors within the cell as has been postulated for the polyomaviruses 

(Schneider et al. 1994). Instead, host-specificity may be exclusively governed by 

the specificity of the capsid proteins (L1 and L2) for the host cell surface 

receptors allowing virion attachment and entry into the cell (Webby, Hoffmann 

and Webster 2004). 

 

Narechania et al. (2005) proposed that phylogenetic incongruities between 

the early genes and the late genes of the high-risk α HPVs may be a consequence 

of  convergent evolution, in either the early genes or late genes, arising due to 

development under similar evolutionary pressure. The patterns observed above 

may agree with such a hypothesis. For example, convergent evolution may have 

occurred among the early genes of the cetacean PVs and the α primate PVs due 

to similar environments presented by genital tissue. The incongruence tests 

performed here on the core genes using only the third codon sites, which are 

immune to the influence of convergent evolution, revealed significant 

phylogenetic incongruence at these sites, which strongly suggests against the 

hypothesis of convergent evolution. However, the phylogenies estimated for each 

gene did not agree with estimates from the full gene and displayed greater 

topological uncertainty. Thus, we cannot be sure that the significant BF values at 

the third codon positions indicate genuine phylogenetic differences or if they are 

due to random phylogenetic signal. A more detailed examination of the 

possibility of convergent evolution among PV sequences is required. 

  

Strongly supported conflicting phylogenies for different genes from the same 

set of taxa can also suggest the possibility of recombination events. The E1-L1 

splits network (Figure 3.1) generated using SplitsTree (Huson and Bryant 2006) 

shows several incongruent regions, the majority of which are located at the base 

of the network and therefore may suggest multiple ancestral recombination 

events. Despite a lack of physical evidence for recombination among PVs, 
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several recombination detection studies have reported findings of significant 

recombination signal in PV sequences (Varsani et al. 2006; Angulo and Carvajal-

Rodriguez 2007; Carvajal-Rodriguez 2008). These studies identified 

recombination signal in the L2 gene of multiple PV types, which may explain the 

greater topological uncertainty observed in the L2 gene phylogeny. The L2 gene, 

encodes a capsid protein, which interacts with host cell receptors and is 

immunogenic. Recombination in this region may therefore provide a means of 

generating more genetic diversity to infect new hosts and/or evade host immune 

mechanisms. The phylogenetic incongruities observed between the E1 and L1 

genes, may therefore indicate recombination in the L1 gene, which, like L2, 

encodes a protein that forms a part of the viral capsid and is also immunogenic.  

The number of cetacean PV types has increased since this analysis was 

performed, with two classified PV genera (omnikron and upsilon) comprising of 

PV types infecting multiple cetacean species and 1 cetacean PV type infecting 

Phocoena phocoena (PphPV3) currently without genus classification 

(Gottschling et al. 2011a; Robles-Sikisaka et al. 2012). Phylogenetic estimations 

with these new types show well-supported conflicting phylogenetic arrangements 

of the cetacean PVs in early gene and late gene trees, with only PphPV3 (isolated 

from the harbour porpoise – Phocoena phocoena) demonstrating a consistent 

phylogenetic placement (with the α PVs) across the genomic regions (Gottschling 

et al. 2011a; Robles-Sikisaka et al. 2012). The fixed position of PphPV3 among 

the incongruent gene phylogenies suggests a scenario of recombination among 

similar hosts: the ancestral relative of PphPV3 recombined with another ancestral 

cetacean PV lineage to produce a lineage with early genes from the PphPV3 

ancestor and late genes from the unknown cetacean PV ancestor (Gottschling et 

al. 2011a).  The biological plausibility of this scenario suggests that further 

studies of recombination among PVs should focus on the cetacean PVs in 

addition to the high-risk HPV types.   

Extracting evidence of recombination from sequence data is a non-trivial 

exercise since the ability to detect recombination rests largely on obtaining the 

correct alignment of the sequences; however, the occurrence of a recombination 

event itself and any subsequent mutational events in the recombinant region may 

adversely affect the ability to derive the correct sequence alignment. In addition, 

 119



a recombination breakpoint is inferred wherever statistically significant 

phylogenetic conflicts are estimated between adjacent segments of sequence, thus 

the process of phylogenetic estimation must also be accurate. Bayesian methods 

of recombination detection (Husmeier and McGuire 2003; Minin et al. 2005; 

Martins Lde, Leal and Kishino 2008; Bloomquist, Dorman and Suchard 2009; 

Webb, Hancock and Holmes 2009) allow statistically significant changes in tree 

topology along a sequence to be identified whilst accounting for model 

uncertainties and may therefore provided a less biased approach to investigating 

recombination among PV sequences.  

 

Genuine topological differences observed in the phylogenies estimated from 

different genomic regions of the same set of taxa imply the influence of 

convergent evolution and/or recombination on the evolution of the sequences. 

However, we cannot discount the possibility that the conflicting phylogenies are 

a result of errors in the phylogenetic estimation process. These systematic errors 

can arise if an inappropriate method or evolutionary model is used to analyse 

molecular sequences. For instance, MP methods of phylogenetic estimation have 

been shown to be inconsistent (will not converge on the right tree even with 

infinite data) when the rates of evolution vary considerably among the branches 

of a tree (Felsenstein 1978). Simulations studies (Huelsenbeck and Rannala 2004; 

Lemmon and Moriarty 2004; Grievink et al. 2010) have shown the effects of 

underspecification of the evolutionary model on accurate phylogenetic estimation 

by ML and Bayesian methods. If the evolutionary model used fails to provide a 

good representation of the evolutionary process that produced the observed 

sequences, phylogenetic estimations for one or all of the partitions are liable to be 

incorrect. This may result in the observation of phylogenetic incongruence where 

none exists. More importantly, the incongruities may have high statistical 

support, as is observed in the PV gene trees, and thus falsely suggest genuine 

differences in the evolutionary histories.  

Although the mathematical models used are not able to capture all aspects of 

the evolutionary process, the recommendation is that one should account for as 

much heterogeneity in the evolutionary process as is possible (Lio and Goldman 

1998; Huelsenbeck and Rannala 2004; Lemmon and Moriarty 2004). A 
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parameter-rich evolutionary model can, however, slow down the phylogenetic 

estimation process and therefore various hypothesis tests can be performed to 

determine which components of the evolutionary model have the greatest impact 

on phylogenetic estimation (Goldman 1993; Huelsenbeck and Rannala 1997). 

In the present analysis, I used a fairly general model of evolution that 

represents a great deal of variation in the evolutionary process. I partitioned each 

gene by codon position; for each codon position an evolutionary model that 

accounted for differences in rates of transitions and transversions between bases, 

unequal nucleotide frequencies, rate variation among sites and rate variation 

across lineages (following rejection of a molecular clock hypothesis) was 

specified. However, I did not investigate the appropriateness of the priors that 

were applied to the model parameters. For all parameters the default prior 

settings of BEAST were used and in future analysis it would be sensible to first 

the impact of each prior on the joint prior and the posterior distribution.  

 Phylogenetic estimation may also be affected by unequal taxon sampling 

(Heath et al. 2008). The correct phylogenetic placement of taxa that are only 

distantly related to other taxa is difficult to achieve as the larger evolutionary 

distances make it difficult to infer the exact amount of evolution between these 

taxa. Thus, one should attempt to have a balanced data set by either removing 

taxa with no close relations or including more closely related sequences. 

The PV data set analysed is quite imbalanced as it includes many closely 

related primate PV types and a smaller proportion (23/108) of less-closely related 

non-primate PV types. The fact that most of the incongruent regions indicated in 

the E1-L1 splits network occur at the base of the gene trees, could suggest a 

difficulty in resolving deeper divergences. However, in order to perform an 

analysis of virus-host association mechanisms (see Chapter 4), the inclusion of 

PV types from a wide variety of hosts was necessary. Some reduction in the 

number of primate PV types included could have been possible, although a 

reduction down to only single representative types for PV species may allow for 

topological uncertainties within genus clades. Efforts to increase knowledge of 

PV diversity among vertebrates have resulted in genome sequences from more 

non-human species. However, these types appear to have increased the number of 

PV genera (Bernard et al 2010) rather than sampling more diversity within a 
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particular genus and thus, the identification of more distantly related PV types 

may further increase the problem of accurate phylogenetic inference for the 

complete PV family.  

 

The direct consequence of this analysis and the observation that incongruent 

nodes are located at various locations in the gene trees is that a combined 

phylogenetic analysis of PV genes will only be possible with small, closely 

related data sets of PVs. Evidence of this is apparent in the combined E1-E2-L1 

protein topologies estimated for a data set of diverse PV types by Gottschling et 

al (2007), which places the PsPV1 and TtPV2 clade of Cetacean PVs as an 

outgroup to all other mammalian PVs, whilst the individual gene phylogenies 

estimated in this analysis indicate a close relationship with the α PVs in the early 

genes and a close relationship with the ξ BPVs in the late genes. 

 

 

 
 



 
 
 

Chapter 4 

 
Analysis of PV-Host Phylogenetic Incongruence Using a 

Biased Sampling Approach 

 
 

 

4.1 Introduction 
 

Phylogenetic analysis of PV types infecting different hosts has revealed a 

branching pattern that is not consistent with the evolutionary history of their hosts 

(Gottschling et al. 2007b). In studies of parasite-host systems, congruent phylogenetic 

patterns are taken to be highly indicative of host-linked parasite evolution via a 

cospeciating mechanism, as per Fahrenholz's rule. Observed disparities between the 

host and parasite phylogenies imply that some parasite diversifications occurred 

independently of host speciation events. Host-independent evolutionary changes in 

parasite lineages can occur via parasite duplication on the same host species (prior 

divergence) or transfer and successful colonisation on new host species (host 

transfer). Inferring these events from the observed host-parasite associations and the 

respective evolutionary histories is the task of cophylogenetic analyses. Different 

methods have been developed, each of which examines the coevolutionary history of 

parasite-host associations to different extents.  

Cophylogenetic methods may be applied to characterise the mechanisms by which 

observed virus-host associations were formed as these associations are affected by 

mechanisms similar to those affecting parasite-host assocations. However, the 

application of these methods to study PV-host associations is difficult due to various 

short-comings of the methods and the complex nature of the discrepancies observed 

between phylogenies of the PVs and their hosts. I will describe some of the different 
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approaches and the issues preventing their use before presenting the approach taken to 

examine phylogenetic incongruities between the PVs and their mammalian hosts. 

 

 

4.1.1 Characterisation of virus-host phylogenetic incongruities 

 

4.1.1.1  Commonly used cophylogenetic methods of host-parasite analysis 

 

4.1.1.1.1 Brooks' Parsimony Analysis (BPA) 

 

BPA (Brooks 1981; Brooks 1990) is one of the oldest programs in the field of 

cophylogenetic analyses and, whilst it is a common tool in studies of cladistic 

biogeography, the initial development of the method was targeted towards 

phylogenetic analysis of host-parasite systems. The method was developed as a 

solution to Hennig’s “parasitological method” which proposed the utilisation of 

parasites “as markers of evolutionary relationships among hosts” (Brooks 1981) but 

lacked the means to resolve phylogenetic incongruities between parasites and their 

hosts.  

In the BPA approach, parasite taxa are evaluated as character states of the host 

and their distributions are used to reconstruct host relationships in the same manner as 

morphological and molecular data. Homology among host taxa may be assumed if 

they are found to share the same or closely related parasite associations. To 

distinguish between homology and homoplasy i.e. convergent/parallel evolution of 

host-parasite associations, the method requires data from multiple parasite species 

infecting the same group of host species. The parasite phylogenies (either known or 

estimated) are converted to parasite-host cladograms in which parasite taxa labels are 

replaced with the names of the associated host species. Under strict cospeciation, the 

individual parasite-host cladograms should depict identical relationships of the host 

species, which can then be inferred as representing the relationships among the host 

species.  

Brooks used parsimony analysis to resolve topological differences among 

parasite-host cladograms. The relationships observed in each parasite-host cladogram 

are converted into binary representation and collected in an additive binary matrix 
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from which the most parsimonious host cladogram i.e., the one that is supported by 

the majority of parasite phylogenies is obtained using the Wagner algorithm or 

Hennigian argumentation. Multiple occurrences of a host species in a parasite-host 

cladogram, which arise when multiple parasite lineages are associated with the same 

host, are dealt with by introducing dummy host species to distinguish among the 

multiple lineages. The absence of a host species in one or more parasite-host 

cladograms indicates that no parasite association has been detected but may exist and 

is therefore coded as missing ('?') data in the additive binary matrix.  

 

Differences between the BPA-estimated host cladogram and individual parasite 

phylogenies allow inferences to be made regarding the extent of host tracking by the 

parasites and the likely causes of disparate branching patterns. In BPA, congruent 

phylogenetic patterns are attributed to associations that arose via descent i.e., due to 

cospeciation, but also parasite duplications or lack of parasite speciation following 

host speciation. Multiple occurrences of a host species in the binary matrix will 

produce instances of homoplasy in the estimated host cladogram. The BPA method 

assumes that the underlying events causing homoplasy produce distinct phylogenetic 

patterns and can therefore be readily characterised. When homoplasy occurs within a 

single, monophyletic clade, it is found to be strongly indicative of parasite 

duplication. Homoplasious events across different clades, however, suggest that the 

multiple parasite lineages do not share a recent common ancestor and so the observed 

associations must be due to host transfer events. 

 The observed parasite associations are examined to infer the exact mechanism of 

host transfer: a ‘post-speciation dispersal’, which produces host range expansion such 

that more than one host species is associated with the same parasite lineage, is 

inferred when homoplasy involves the same parasite lineage; alternatively, 

“speciation by host-switching”, is inferred for homoplasious characters involving 

different parasite lineages from the same parasite group.  

Missing parasite associations of hosts are also characterised using the simplest 

explanation: if the majority of parasite groups demonstrate associations with a host 

species, then absent parasite taxa from this host are interpreted as extinction events, 

and if most parasite groups lack any association with this host, then the situation is 
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assumed to involve a lineage sorting event i.e., the host was never infected with these 

parasites (also referred to as 'primitive absence' in BPA terminology). 

 

Although BPA was not conceived for the direct comparison of host and parasite 

phylogenies, the method has been investigated for such purposes (Siddall 1996; 

Dowling 2002; Siddall and Perkins 2003). Referred to as ‘Type II BPA’, parasite 

characters are mapped onto the host tree, with the most parsimonious reconstruction 

sought via Farris optimisation.  

 

As a method for reconstructing ancestral host-parasite association mechanisms, 

BPA presents several difficulties. The various characterisations described above are 

made by a posteriori interpretation of the estimated host cladogram. This means that 

there is no way to assess the degree of confidence associated with the inferred 

reconstruction. In addition, characterisation of ancestral events will become more 

difficult and uncertain as the number of taxa and the degree phylogenetic discordance 

increases. The BPA method will also be sensitive to uncertainties in parasite 

phylogenies and alternative topologies will require individual analyses.  

Examinations of the BPA method have also revealed problems of ‘ghost lineages’ 

in the solutions (Page 1990a; Dowling 2002). The ghost lineages are additional 

instances of ancestral parasite lineages which appear due to the postulation of host 

switches or extinction events of descendent lineages. For any host lineage upon which 

the placement (removal) of a parasite taxon leads to the inference of a host transfer 

(extinction) event, the ancestral lineages of that host will also incur host transfer 

(extinction) events, resulting in an overestimation of the number of host switching and 

extinction events.  

 

4.1.1.1.2   TreeFitter  

 

Unlike BPA, the TreeFitter approach (Ronquist and Nylin 1990; Ronquist 1995) is 

specifically designed for the determination of ancestral host-parasite association 

mechanisms. An evolutionary model consisting of successive specialisation (i.e., 

association by descent) and host switching (association by colonisation) events is 

applied to fit the parasite tree into the host tree. The most parsimonious fit is 
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determined by the designated event-costs. Successive specialisation events are 

assigned a uniform cost of 1 whilst the relative switching cost - generally greater than 

1 - may be determined by the user.  

The tree-fitting process proceeds first with the calculation of a cost matrix which 

details the minimum cost of transfers between all pairs of host tree branches. 

Movement between branches proceed in one of three ways: from a parent branch to a 

descendant branch, from a descendant branch to a parent branch and laterally between 

branches separated by at least one branch. The first of these transfer events represents 

a cospeciation event, which is considered a special case of successive specialisation, 

and so all such transfers are assigned a cost of 1. Transfers from a descendent species 

to its parent species are assigned infinite cost thus ensuring that they are never 

postulated. All other transfer events are either defined by a single host switch event or 

by a combination of host switch and successive specialisation events, depending on 

the relative switching cost applied. The calculated cost matrix is then used to 

determine the most parsimonious host state at each node in the parasite phylogeny via 

post-order traversal i.e., starting from the tips, where the host state is known, and 

progressing down the tree to the root node. 

To prevent back transfers occurring across the tree, a 'segment coding' technique 

is employed whereby each branch is partitioned at the speciation times of other 

branches. This ensures that only host transfer events between co-existing segments of 

branches are permitted, which forms an important consideration when evaluating 

transfers between distantly related branches. Temporal considerations are easily 

incorporated when the relative speciation times are known, i.e., if the host and parasite 

trees each conform to a constant rate of evolutionary change, but when this is not the 

case the method has to evaluate against all possible sequences of host speciation times 

– a process only feasible for very small sets of host taxa.  

 

Determination of the most appropriate host switching cost may present a problem 

since there is often little information available to quantify the likelihood of host 

switching events. The optimal host switching weight should be one that neither 

precludes nor overestimates host switching events; Ronquist (1995) suggested 

examining a range of weights for a particular host-parasite system and using the 

weight that provides the greatest reduction in the number of successive specialisation 
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(tracking) events postulated since reconstructions biased against host switching events 

will have to postulate an unnecessarily large number of tracking events to explain the 

observed associations. Other concerns stem from the one-host-per-parasite 

requirement of the method: this restricts the reconstruction potential of the method 

since all host-switching parasite lineages must terminate their association with the 

pre-existing (source), host and duplication events cannot be invoked.  

 

4.1.1.1.3  Reconciliation methods: TreeMap and Jungles 

 

Reconciliation methods have become the standard approach to resolving host and 

parasite phylogenetic incongruities. Their origins stem from the separate, but 

conceptually similar, field of gene tree-species tree incongruence. More so than with 

parasites, genes are expected to track their hosts with complete fidelity yet the 

predicted evolutionary histories often differ due to additional evolutionary events 

acting on the genes such as gene duplications, gene losses, and lateral gene transfers. 

Goodman et al. (1979) suggested that the estimation of gene trees required a 

consideration of the various gene-specific events in addition to mutational changes at 

the sequence level. They proposed reconciling the incongruent gene trees estimated 

from sequence analysis with the species trees by postulating either a gene duplication 

event, which results in paralogous gene lineages within a species, or a gene loss event, 

which may comprise of either gene deletion or gene inactivation/reactivation 

processes, at each incongruent cladogenetic event in the tree. The most parsimonious 

explanation of the gene tree, i.e., the reconciliation requiring postulation of the least 

number of gene events, is sought. 

 

Page (1994a; 1994b) adapted the reconciliation method for the host-parasite 

problem; the method is implemented in the software package TreeMap (Page 1995). 

In phylogenetic terms, gene duplication events are analogous to adaptive radiation of 

a parasite within a host species, as both events produce multiple gene/parasite lineages 

per species/host, and gene losses are analogous to extinction or sorting events of 

parasite lineages, as the associate lineage is rendered absent from the host lineage. 

Following the methods of Goodman and colleagues in gene tree-species tree 

reconciliation, TreeMap invokes cospeciation, duplication and sorting events on the 
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parasite tree to explain the observed incongruities with the host tree. Given the host 

and parasite phylogenies and the existing associations between terminal host and 

parasite taxa, TreeMap performs a post-order traversal on each tree such that each 

internal node is assigned the union of the host sets of its descendant nodes. Each 

ancestral parasite node is therefore labelled by the group of host species parasitised by 

their descendants. A reconciliation of the host and parasite phylogenies is achieved by 

matching host sets of the parasite nodes to the nearest equivalent host set of nodes on 

the host tree. A cospeciation event is assigned when mapped host and parasite nodes 

possess identical sets of descendant host species’. Duplication events are assigned 

whenever a parasite node and its ancestral node both map to the same node on the 

host tree. Sorting events are inferred from the termination of host tracking by parasite 

lineages. By mapping to similar host sets, TreeMap aims to derive a reconciliation 

that maximises cospeciation events along the parasite tree.  

 

The mapping process employed by TreeMap does not readily allow for the 

detection of host transfer methods. Figure 4.1 illustrates the problem with a simple 

example. A host transfer event of the parasite on the ancestral species of extant hosts 

A and B to host C is mistaken as an ancestral duplication event based on the mapping 

obtained between host sets. The method therefore lacks the means to distinguish a 

host transfer from an ancestral duplication followed by lineage sorting. This 

ambiguity increases the number of potential solutions. Initial developments of the 

reconciliation method avoided consideration of host transfer events in an effort to 

reduce the complexity of the problem. This was found to have an adverse effect on the 

reconciliation process: TreeMap reconciliations failed to produce the maximum 

number of cospeciation events possible due to the postulation of additional 

duplication-lineage sorting events required to resolve the incongruent branching 

patterns. Page (1994a) therefore suggested invoking host transfer events that 

permitted an increase in the overall degree of cospeciation observed between the host 

and parasite trees. Under this scheme, parasite lineages postulated as host transfer 

events had to be removed from the parasite tree to allow mapping of the remaining 

parasite nodes to the host tree. Since the removal of colonising lineages also resulted 

in the removal of their descendant lineages, and therefore precluded further 

characterisation of subsequent events, Page (1994b) proposed an alternative solution 
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that incorporated host transfer events into the mapping process. For each host transfer 

event considered, the host set assigned to the colonising parasite lineage is removed 

from its ancestral lineage so as to inform the mapping algorithm that the association 

between the transferred parasite and its colonised host is not an ancestral one and 

thereby prevent a mapping of the ancestral parasite node to the ancestral host node. 

The combination of duplication, host transfer and sorting events then required to 

resolve the incongruities between the host and parasite trees is simply that which 

provides the most number of cospeciation events.  

 

TreeMap has since benefitted from the development of another approach, Jungles 

(Charleston 1998), which is now implemented in TreeMap 2. Jungles analyses the 

same information as TreeMap i.e., a host tree, parasite tree and the associations 

between the terminal taxa, to construct a network of optimal solutions (an example is 

provided in Figure 4.2, reprinted from Charleston (1998: Fig. 7)) for the evolutionary 

history of associations between the host and parasite groups. In this network each 

vertex describes a potential association of a parasite node with the host tree; this 

association may either be with a node or an edge in the host tree. Direct mappings of 

parasite tree nodes to host tree nodes are indicative of cospeciation events. 

Duplication and host switching events are both assumed to occur in the absence of a 

host speciation event and so are inferred whenever parasite tree nodes map to host tree 

branches. The arcs of the jungle link together vertices (i.e., associations) of the 

ancestral parasite species with those of their descendant species thus maintaining the 

correct order of parasite speciation events in the jungle. The properties of each arc 

provide a distinction between a duplication event and a host switch event: if the host 

(ha) associated with the ancestral parasite species is itself an ancestor of the host (hb) 

associated with the descendant parasite species, then a duplication event will be 

inferred; if ha is not an ancestor of hb, a host switching event is inferred. Sorting 

events are inferred whenever the path between ha and hb traverses additional host 

species. 

 

To derive the optimal reconstruction from this network of potential associations, 

event costs are assigned and the lowest scoring reconstruction is extracted via a 

dynamic programming algorithm. The most parsimonious solution, i.e., the one with 
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the maximum number of cospeciation events, is achieved by assigning a negative cost 

to cospecation events and positive costs to non-cospeciation events. The default costs 

do not differentiate between duplication, lineage sorting and host transfer, though host 

transfer events may be assigned a higher cost – if they are believed to occur less 

frequently than duplications and sorting events. The optimal reconstruction of 

ancestral host and parasite associations determined by Jungles is therefore highly 

dependent on the event costs assigned.  
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Figure 4.1: The difficulties of inferring host transfer events in TreeMap. a) A four-taxon 

host tree (black) overlaid with the phylogeny of the associated parasite group, which fails to 

track the host tree entirely due to a host transfer event from the ancestor of hosts A and B to 

host C. The individual host and parasite phylogenies are shown on the right with the ancestral 

parasite nodes numbered. b) Using the TreeMap method, a post-order tree traversal is 

performed to assign host sets to the internal nodes of the parasite tree. The mapping dictates 

that nodes 6 and 7 of the parasite tree both map to the root node of the host tree, the observed 

phylogenetic incongruity is therefore interpreted as being due to a duplication event (at node 

7) followed by 3 lineage sorting events. The possibility of a host transfer event cannot be 

considered under this scheme. c) Using Page’s modification to allow consideration of host-

switching lineages, we now explicitly consider parasite taxon 3 to have been acquired by host 

C via a host transfer event, therefore host C is removed from all ancestral nodes of parasite 3 

and parasite node 6 is “undefined”.  The reconciliation produced from this mapping then 

presents the true sequence of events. 
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As with TreeFitter, determining the best costing scheme for a host-parasite system 

presents substantial difficulty for the user since this information cannot be empirically 

derived. Under the default event costs, where the non-cospeciating events are 

weighted equally, the host switch vs. duplication-lineage sorting problem will arise at 

all conflicting branching points. As a result, it is highly likely that multiple equally 

parsimonious solutions will be obtained, which may even differ to the extent that the 

set of cospeciating nodes proposed in each solution do not overlap. To obtain a single 

solution one may have to investigate a range of event costs: any reconstruction found 

to be optimal under a number of costing schemes should be favoured as the most 

probable explanation of the incongruent phylogenies. The greater the degree of 

topological incongruence between a parasite tree and its host's tree, the more 

combinations of events that serve as plausible explanations, making it increasingly 

difficult for these methods to derive a unique solution for ancestral association 

mechanisms without additional information to discern between alternative solutions.  
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         a. 

        
                     b. 

 
Figure 4.2: Analysing host-parasite associations using Jungles. a) A tanglegram 

depicting the respective cladograms of associated host and parasite taxa and the associations 

(dotted lines) between the terminal taxa. b) A jungle constructed from the above tanglegram, 

displaying all potentially optimal reconciliations of parasite nodes with the host tree. 

Reprinted from Charleston (1998: Fig. 7). 

 

 

 134



4.1.1.2 Statistical methods in host-parasite cophylogenetic analysis 

 

The methods described above are commonly used to predict ancestral host-

parasite association mechanisms; however, they all lack a sound statistical basis upon 

which the predicted events may be evaluated. A statistical reconstruction estimating 

the probability of reconstructions would be more preferable. The maximum likelihood 

and Bayesian methods applied in phylogenetics may be extended to cophylogenetic 

analyses to provide statistical interpretations of host-parasite phylogenetic 

incongruities. A few developments have already been made in this area.  

 

 

4.1.1.2.1  Statistical analysis of evolutionary distances 

 

Correlations in evolutionary distances of associated host and parasite taxa may 

provide an indication of the extent of cospeciation: if there is complete or substantial 

cospeciation among the two groups then we would expect evolutionary distances 

between taxa in the parasite tree to be proportional to those of the associated taxa in 

the host tree. Two different tests of cospeciation have been proposed based on the 

analysis of evolutionary distances. To identify cases of significant cospeciation, both 

methods test the null hypothesis that the host and parasite species are randomly 

associated and therefore do not share a coevolutionary history. Only statistically 

significant correlation values between host and parasite evolutionary distances will 

cause rejection of the null hypothesis and provide significant evidence in favour of 

cospeciation.  

 

4.1.1.2.1.1  The  Mantel test 

 

The Mantel test (Mantel 1967) examines the evidence for host-parasite 

cospeciation by evaluating the extent of correlation between the evolutionary 

distances of extant taxa. Hommola et al. (2009) modified the Mantel test to allow 

multiple associations among host and parasite species. Host and parasite distance 

matrices, DH and DP, indicating the distance (either phylogenetic or observed) 

between all pairs of terminal taxa in the host and parasite trees are constructed. The 
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associations between terminal host and parasite species are then considered in pairs: 

for each host-parasite interaction, the distance between the corresponding hosts is 

recorded in one vector and the distance between the corresponding parasites is 

recorded in another vector. The test then calculates Pearson's correlation coefficient, 

robs, for the host and parasite distance vectors. Under the null hypothesis of 

independent evolution, no significant correlation is expected between the distances. 

Significance is determined by permuting the terminal taxa on the host and parasite 

phylogenies and repeating the analysis using the observed host-parasite associations 

to obtain a distribution of correlation coefficients for the randomised data. If robs is 

greater than this distribution at the determined α level, this provides evidence of 

significant correlation in the host and parasite distances and the null hypothesis is 

accordingly rejected in favour of cospeciation. The method provides a simple test of 

cospeciation and does not offer further characterisation of phylogenetic incongruities.  

 

4.1.1.2.1.2  ParaFit  

 

A slightly-more elaborate analysis of evolutionary distances is provided by 

ParaFit (Legendre, Desdevises and Bazin 2002). ParaFit assesses the extent of host-

parasite cospeciation by investigating the ‘fourth-corner problem’ (Legendre 1997). 

Given a matrix A detailing the presence/absence of parasite associations with a group 

of host species, the fourth-corner problem refers to the estimation of the relationship 

between specific characteristics of the associated hosts and parasites and 

determination of whether the estimated parameters of the relationship are indicative of 

a non-random association. Patristic distance matrices calculated from the parasite and 

host phylogenies are converted to principal coordinate matrices (B and C, 

respectively) from which ParaFit calculates the fourth-corner matrix, D:  

   D = CA’B         (4.1) 

The elements of D (dij) therefore consist of the cross products of principal coordinates 

of associated host and parasite taxa and are evaluated for evidence of cospeciation by 

deriving the test statistic ParaFitGlobal: 

  ParaFitGlobal =  ∑ 2)( ijd         (4.2) 

The significance of the ParaFitGlobal is determined by randomising each row in A, 

i.e., randomising the associations, computing D for the randomised associations and 
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hence obtaining the distribution of ParaFitGlobal under the null hypothesis of random 

association of host and parasite species. Rejection of the null hypothesis indicates 

significant evidence for cospeciation of the parasites and their hosts. ParaFit includes 

a further test to identify which terminal associations in particular display significant 

evidence of cospeciation. This is achieved by removing a terminal association (k) and 

determining whether the difference between the new value of the test statistic 

ParaFitGlobal(k) is significantly worse than that of ParaFitGlobal. If the removed 

association was a consequence of cospeciation, then it is expected that its removal 

will decrease the value of ParaFitGlobal. In this manner ParaFit provides a means of 

identifying which terminal associations are due to cospeciation and which are not, 

thus allowing incongruent host and parasite phylogenies to be pruned down to the 

cospeciating lineages. Although ParaFit is one of the few methods accommodating 

multiple associations between host and parasite species, the method can only evaluate 

terminal associations and therefore further examination of ancestral associations is not 

possible.  

 

 

4.1.1.2.2   Likelihood ratio tests of cospeciation 

 

A series of likelihood ratio tests were proposed for evaluating the evidence for 

cospeciation between incongruent host and parasite trees (Huelsenbeck, Rannala and 

Yang 1997). Applying the methods of Huelsenbeck and Bull (1996) to examine 

topological congruence among data partitions, these tests determine the statistical 

significance of the difference in maximum likelihood when various phylogenetic 

parameters are optimised over the host and parasite sequences together and when they 

are independently optimised for each data set. The proposed tests systematically 

examine the null hypothesis of cospeciation, and hence, congruence, between host and 

parasite phylogenies at the topological, temporal, and substitution rate levels.  

 

Under the null hypothesis of cospeciation, in which parasite speciation events 

occurred only in response to speciation events of the associated host, the estimated 

host and parasite phylogenies should be topologically identical. Observed 

incongruities may be due to stochastic error or rare occurrences of non-cospeciating 
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events. The likelihood ratio test of topological congruence therefore examines 

whether the observed phylogenetic incongruities are significant or whether they 

appear more likely to be artefacts of the estimation process. Under the null hypothesis, 

the data sets are analysed together with the tree topology constrained to be identical 

across both data sets whilst all other parameters are free to vary. Under the alternative 

hypothesis of no cospeciation, i.e., random association of hosts and parasites, the data 

sets are analysed independently with the topological constraint lifted. The ratio of the 

maximum likelihood under each hypothesis is obtained and its significance is 

determined by parametric bootstrapping under the null hypothesis. Significant support 

against the null hypothesis indicates that genuine phylogenetic incongruities exist 

between the host and parasite groups, and that the non-cospeciating events may 

obscure detection of any coevolutionary history that exists between the species. If, 

however, the observed phylogenetic differences do not provide enough evidence to 

reject the null hypothesis, the possibility of cospeciation exists and can be further 

tested.  

 

Assuming identical branching patterns in the host and parasite phylogenies, one 

can then examine the degree of concordance between the times of corresponding 

branching points, i.e., speciation times. In the absence of actual speciation times, if 

both groups display support for a constant rate of evolution among their respective 

data sets, the amount of evolution observed in each lineage will be proportional to the 

amount of time between speciation events. The branch lengths can therefore be 

evaluated for temporal congruence of host and parasite speciation events. Under the 

null hypothesis, the topologies and corresponding branch lengths are constrained to be 

identical between the host and parasite trees. Under the alternative hypothesis, the 

constraint of identical branch lengths is relaxed; however, the topological constraint 

remains since topological identity is assumed. Significance of the likelihood ratio test 

of node times may be determined by parametric bootstrapping, as above, or more 

simply by comparing twice the value of the test statistic against a χ2 distribution with 

n-2 degrees of freedom, where n is the number of taxa (this is the difference in the 

number of nodes for which speciation times are estimated in the unconstrained and 

constrained analyses).  
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Rejection of the null hypothesis of identical node times suggests a scenario in 

which the host and parasite phylogenies have identical topologies but different 

speciation times. Such a scenario cannot be reconciled with a strictly cospeciating 

mechanism of parasite evolution and indicates the influence of additional parasite 

diversification mechanisms on parasite evolution. The relationship between relative 

speciation times of the host and parasite nodes will indicate the likely nature of the 

mechanism. If significant support against temporal congruence is not found, 

cospeciation of hosts and parasites may be inferred.  

The final test proposed evaluates the evidence for identical evolutionary rates 

given identical topologies and branch lengths. Tests of identical evolutionary rates 

will be more applicable when host and parasite taxa are represented by the same 

family of genes or proteins. A failure to reject the null hypothesis of identical 

evolutionary rates, suggests substantial synchrony in the coevolutionary history of the 

host-parasite system; however, rejection of the null hypothesis in this test does not 

refute the former conclusion of cospeciation. 

 

These likelihood ratio tests are applicable when investigating associations limited 

by one-host-per-parasite, but cannot readily accommodate multiple associations 

between species. There are several solutions proposed to deal with this: one can 

increase the data set by adding replicate sequences for taxa involved in multiple 

associations, although this may affect tests of node times and evolutionary rates; 

eliminate the complexity by removing taxa involved in multiple associations; or 

reduce the multiple associations in a stepwise manner to identify non-cospeciating 

taxa (Huelsenbeck, Rannala and Yang 1997). Another approach may be to reduce 

multiple associations to a one-to-one correspondence and evaluate the multiple 

associations independently. None of these methods are ideal, however, as they involve 

modifications of the real data set and thus, a loss of information. 

 

In addition to the likelihood ratio tests above, Huelsenbeck and colleagues applied 

Bayesian phylogenetic methods to determine the posterior probability of identical 

topologies between gophers and their louse parasites. The method involves individual 

estimation of the host and parasite posterior distributions and summation of the 

products of posterior probabilities for all pairs of identical topologies sampled. The 
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advantage of this method over the likelihood ratio tests is that the Bayesian approach 

accounts for all possible identical topologies not just the most optimal topology. 

Inferences of topological congruity therefore average over uncertainties in the exact 

tree topology relating the sequences. In theory, one could then apply the constraint of 

topological congruence in a subsequent Bayesian analysis of the host and parasite 

sequences and extract the posterior probability of identical branch lengths from the 

posterior distributions; however, the large number of rooted trees possible for n>5 

sequences means that unless knowledge of evolutionary rates is available, the 

probability of observing identical trees with identical branch lengths is likely to be 

very small, even if cospeciation has occurred. 

 

4.1.1.2.3   Bayesian estimation of host switching 

 

Host transfer events have generally presented difficulties in cophylogenetic 

analyses; however, Huelsenbeck, Rannala and Larget (2000) developed a method that 

specifically evaluated host switching events along the incongruent phylogenies of 

gophers and their louse parasites. They introduced a host switching rate parameter, λ, 

into Bayesian phylogenetic analysis of the host and parasite sequences, H and P. The 

host switching events are modelled using a Poisson process on the host tree; the 

number of host switching events, the source branches of each switch, the target 

branches of each switch, and the times of the host switching events proposed at each 

state in the MCMC chain are recorded in a vector, e. Proposed host switches will 

cause temporal and topological  discordances between the host and parasite trees 

(unless a host switch occurs between sister taxa in which case topological differences 

will not be observed). Estimation of the parasite phylogeny under a host switching 

model is therefore linked to that of the host phylogeny such that in the absence of any 

proposed host switching events the topologies and speciation times of both trees are 

identical. 

 

The joint posterior probability density of λ and the host and parasite substitution 

model parameters, θH and θP, is then  
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and the likelihood function of λ, θH, and θP integrates over host switching events, host 

speciation times and host phylogenies thus preventing uncertainties in these 

parameters from influencing the likelihood: 
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The posterior distribution of e enables identification of host lineages associated 

with high posterior probabilities of host switching events and the times of these 

events, which can be used to examine specific scenarios of host switching in the 

parasite phylogeny. The advantage of utilising sequence data in the estimation of host 

switches is that the method is not restricted to predicting host switches at locations of 

topological incongruence only. This is observed in the gopher-louse system analysed, 

where there is a high posterior probability of a host switch between two taxa (G. b. 

majusculus and G. b. halli) displaying a phylogenetic pattern which is concordant 

with the associated host relationships (Huelsenbeck, Rannala and Larget 2000: Fig. 

13).  

 

The use of Bayesian MCMC methods allows estimation of a host switching rate 

and host transfer events of parasite lineages without conditioning these events on one 

particular tree topology and is therefore highly advantageous for the analysis of virus 

systems. The evolutionary model can be extended to model specificities such as 

evolutionary distance-dependent host switching probabilities. The computational time 

will, however, be much greater than for TreeFitter or TreeMap and this may present 

an obstacle in analysis of large data sets. An additional limitation is that, in its current 

implementation, the method is only applicable when there is a one-to-one 

correspondence of host and parasite taxa. This is because the stochastic nature by 

which host switching events are modelled may produce host switches within a host if 
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duplicate/dummy taxa are allowed. Under this assumption it is also difficult to 

incorporate duplication and extinction/lineage sorting events, which would be 

required for a more complete statistical evaluation of the mechanisms affecting 

ancestral lineages of associated hosts and parasites.  

 

 

4.1.2  A suitable approach for analysis of the PVs 

 

The one-host-one-parasite requirement that is common to most of the above 

methods presents a dilemma for the analysis of PV-host phylogenetic incongruence 

since some hosts are infected by multiple PV types. The paraphyletic arrangement of 

PV types infecting the same host means that it is difficult to select one representative 

PV type per host species. In many methods the constraint can be circumvented by 

introducing replicate host sequences; however, the paraphyletic arrangement of PV 

types infecting the same host means that the introduction of replicate host sequences 

does little to reduce the complexity of the problem. In humans alone there are over 

100 different PV types; these HPV types comprise 5 distinct PV genera, which are 

distantly related to each other. Thus, to elucidate the mechanisms by which PV 

associations were formed with humans, at least 5 different HPV types (representing 

each genus clade) must be considered. Likewise, using representative BPVs would 

demand a minimum inclusion of 4 different BPVs as the lack of monophyly among 

BPVs means that the number of host-virus associations cannot be reduced any further 

without excluding significant diversification events (i.e., of viruses on distinct host 

species) from the analysis.  

 

 

4.1.2.1 Previous studies of PV-host phylogenetic incongruence 

 

The general acceptance, among PV researchers, of a strictly codiverging 

mechanism of PV diversification to new host species means that there is a lack of 

studies applying cophylogenetic methods to resolve incongruities between 

phylogenies of the PVs and their hosts.  Prior to the publication of Shah, Doorbar and 

Goldstein (2010) just one case existed: Jackson (2005) analysed a small dataset of 17 
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PV types from 16 mammalian host species (Figure 4.3, reprinted from Jackson 2005: 

Fig. 9b) with Jungles. The polyphyletic lineages of human and bovine PVs were 

reduced to one type per host in order to facilitate detection of codivergence events 

(although two PV types infecting Colobus guereza – CgPV1 and CgPV2 – were 

retained).  

The reconciliation analysis performed both with and without host transfer events, 

produced a set of potentially optimal solutions with 26 and 24 maximum 

codivergence events, respectively, both of which were found to be statistically 

significant numbers. The most parsimonious solution under each model was not 

derived on account of the fact that the event costs required could not be accurately 

assigned. The proposed codivergence events in these solutions included the chimp-

bonobo, human-chimp, human-monkey, cat-dog, human-rabbit, and cervidae (deer-

elk) PV divergences. The correlation in genetic distances for codiverging host and 

parasite taxa (Figure 4.4, reprinted from Jackson 2005: Fig. 12) is not as convincing, 

however, with r2 = 0.596 (although error bars are not shown). This may indicate a 

conflict in the support for cospeciation between the branching patterns and 

corresponding speciation times, as only the topological structure was examined for the 

reconciliation.  

 

 

4.1.2.2 Topological comparisons lack discriminative power 

 

The reconciliation methods, TreeMap and Jungles, currently provide the only 

method of cophylogenetic analysis that models codivergence (cospeciation), host 

transfer, prior divergence (parasite duplication) and lineage sorting events and have 

therefore become a popular tool to resolve phylogenetic incongruities between hosts 

and their associates (i.e., the parasite or virus). Howver, the statistical power of tree 

reconciliation methods is affected by a bias towards codivergence/cospeciation and, 

consequently, these methods will struggle to identify trees displaying ‘false 

congruence’ (Jackson 1999).  

A key requirement of tree-fitting/reconciliation methods is “if the parasite and 

host trees are identical (isomorphic) when the labels of the parasite terminals are 

exchanged with the labels of their associated hosts, then the method must produce 
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only one optimal solution, fitting the elements in the parasite tree to the corresponding 

elements in the host tree” (Ronquist 2002, p.28). In other words, when complete 

topological congruence is observed, the reconciliation should consist of only 

codiverging events. However, whilst Fahrenholz’ rule states that strict codivergence 

produces congruent topologies, converse is not always true. Instances of false 

congruence (also referred to as 'pseudo-cospeciation', Hafner and Nadler 1988) arise 

when congruent branching patterns, which are the result of non-cospeciating (non-

codiverging) events acting on the respective lineages, are mistakenly attributed to 

cospeciation (codivergence).  

A simple example of how false congruence can arise for two sister host taxa (A 

and B) parasitized by sister parasite lineages (1 and 2, respectively) is presented in 

Figure 4.5.  When the parasite clade is overlayed on the host tree (Figure 4.5a), the 

identical topologies suggest that the parasite lineages have codiverged with their 

associated hosts. However, the observed associations and phylogenetic relationships 

can also be explained either by invoking a duplication event followed by two sorting 

events (Figure 4.5b) or by invoking a host transfer event (Figure 4.5c). The observed 

associations may in fact stem from a more complicated scenario involving a 

combination of these events but only the last event to occur would be inferable. 

 

Simulation studies (Charleston and Robertson 2002; De Vienne, Giraud and 

Shykoff 2007) have generated instances of false congruence between host and parasite 

phylogenies by a mechanism of preferential host switching i.e., between closely 

related hosts. Reconciliation methods applied to characterise diversification 

mechanisms along the simulated parasite phylogenies falsely postulate a significant 

number of cospeciation events. This illustrates the difficulties faced by any method 

that attempts to characterise the mechanisms behind incongruent host and parasite 

trees by only examining the respective topological structures. Considering the fact 

that more than one possible explanation exist for congruent branching patterns, the 

number of possible solutions for incongruent topologies must be even greater. 

Discerning between these solutions requires knowledge of the likelihood of each 

event; however, this is rarely known.   
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Figure 4.3: A PV-host tanglegram generated using Jungles. A representative data set was 

used, excluding multiple bovine and human PV types each of which span more than one clade 

and therefore contribute significantly to phylogenetic incongruities between the PVs and their 

hosts. Reprinted from Jackson (2005: Fig. 9b). 
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Figure 4.4: The correlation between genetic distances of Jungles-predicted cospeciating host 

and PV nodes; r2 = 0.596. The number of data points appears too few to permit confident 

inference of a linear correlation between host and virus speciation times, whilst the absence of 

a molecular clock of evolution among the diverse PV lineages renders the use of PV genetic 

distances invalid. Reprinted from Jackson (2005: Fig. 12). 

 

 

 

a.   b.   c. 

A B1 2 A B1 2 A B1 2 
Figure 4.5: Three different explanations for topological congruence between sister host (A 

and B) and parasite (1 and 2) lineages. a) cospeciation of the host and parasite lineages; b) a 

duplication/adaptive radiation of the ancestral parasite lineage associated with the ancestral 

host species, followed by two sorting events during host speciation resulting in each 

descendent host inheriting only one of the two parasite lineages; or c) transfer of the parasite 

lineage associated with one host to another, in this case unoccupied, host species. 
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4.1.2.3 Utilisation of divergence times 

 

Charleston (2002) presented an example of false congruence among the 

phylogenies of the simian lentiviruses and their primate hosts by utilising the times of 

host and virus divergence. Topological congruities previously attributed to 

codivergence of the primates and the lentiviruses (e.g., Beer et al. 1999) were 

contradicted by vast disparities (on the order of millions of years) between the 

corresponding divergence times, which should be similar under a scenario of 

codivergence. Page (1990b) evaluated temporal congruence between host and parasite 

speciation events to resolve ambiguities from a reconciliation analysis of the gopher 

and louse data set and, unsurprisingly, found that the temporal information 

contradicted the evolutionary scenarios produced by the reconciliation. Speciation 

times have also been utilised in the methods of Huelsenbeck, Rannala, and Yang 

(1997) and Huelsenbeck, Rannala, and Larget (2000) to evaluate evidence for 

codivergence and host transfer, respectively.  

 

A comparison of the relative times of branching events is more informative than 

the branching patterns as the various events that cause diversification of parasite 

lineages each occur at different times relative to speciation of the associated hosts. 

This is evident in Figure 4.5: in a) parasite duplication on a host species occurs prior 

to the divergence event that produced the extant parasitized hosts, in b) parasite 

diversification via host transfer occurs after the speciation event of the extant 

parasitized hosts but for c) cospeciating lineages, the host and parasite speciation 

events occur within a similar time frame (it would be naïve to assume that host and 

parasite speciate at exactly the same time). The distinctive host-parasite temporal 

relationships characterising each event offer an alternative approach to resolve host-

parasite phylogenetic incongruities. 

 

In the study of virus data sets, however, utilisation of temporal data is difficult as 

viruses do not leave fossils from which the ancestral divergence times may be 

estimated. Viral divergence times may still be estimated from evolutionary distances 

if the evolutionary rate is known. Various estimates of the PV evolutionary rate have 

been derived from different subsets of PVs (Van Ranst et al. 1995; Tachezy et al. 
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2002; Rector et al. 2007; Herbst et al. 2009) but the individual estimates fail to 

converge on the same rate and, more importantly, the estimates were obtained 

assuming correspondence between viral and host divergence times, i.e., making the 

assumption of codivergence, which is the hypothesis that we are interested in testing. 

In addition, I found significant evidence against a constant rate of evolution among 

our data set of heterogeneous PV types, thus prohibiting examination of virus-host 

genetic distances in place of actual divergence times (as was performed by Jackson 

2005).  

 

To characterise the events that influenced PV diversification and the formation of 

new host associations, I chose to develop a method in which the temporal 

relationships between corresponding host-virus divergence events could be evaluated. 

In the absence of known estimates of PV divergence times and a constant rate of 

evolution among PV lineages, I took advantage of Bayesian methods to estimate the 

posterior distribution of PV divergence times at each node. Besides providing a 

statistical analysis, the Bayesian phylogenetic approach is advantageous in that it 

allows sampling of different phylogenies, thus accommodating topological 

uncertainties in the virus phylogeny. If the Bayesian estimation is performed 

correctly, each PV divergence, i.e. internal node, will be sampled according to its 

probability of being correct. The posterior probability density of divergence times at 

nodes with high posterior probabilities can then be compared to the corresponding 

host divergence times to infer the likely diversification mechanism of the viral 

lineages and thereby elucidate the likely mechanisms behind the observed 

phylogenetic incongruities. The Bayesian phylogenetic method implemented in the 

BEAST software was used to perform the analysis.  
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4.2   Method 
 

4.2.1  Sampling of viral divergence times 

 

My initial approach was to use the sampling algorithms incorporated in Bayesian 

phylogenetic methods to investigate how often sampled divergence times for the 

papillomavirus sequences corresponded to the known host divergence times. In the 

absence of an accurate evolutionary rate for the viruses, however, the viral divergence 

time is equally likely to be at any time in the past; the probability that the estimated 

viral divergence times correspond to the rather narrow interval of the host speciation 

time is extremely remote, as is the probability that the viral divergence time occurred 

after the origin of life or within the lifetime of the universe. Thus, the estimation of 

divergence times in the PV tree required calibration information either in the form of 

an evolutionary rate or by specifying times for some of the divergence events. 

However, for the PVs there was no reliable evolutionary rate estimate available and it 

would be illogical to apply fixed constraints to node times that imply assumptions 

about cospeciation that presuppose the relationships that we are interested in 

investigating.  

The solution arrived at to deal with this problem was to apply a biased sampling 

approach, based on the importance sampling techniques used in stochastic 

simulations, to the sampling of divergence times. Importance sampling provides a 

way of guiding random sampling algorithms to reduce the variance of the sampled 

points such that meaningful inferences about the process under investigation can be 

made from the resulting distributions. The aim is to “avoid taking sample points 

where the value of the function is negligible and to concentrate the sample points 

where the value of a function is large” (Borcherds 2000). For instance, we can be sure 

that speciation events of the PV sequences involved in the analysis did not occur in 

the last few years, and nor did they occur prior to the existence of eukaryotes, so it 

makes sense to discourage the chain from sampling at these extremities.   

 

For the sampling of PV divergence times, it is assumed that codivergence of the 

virus with its host is common, and therefore MCMC sampling of viral divergence 

times is biased in favor of large number of codivergence events. However, an 
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important feature of this approach is that the assumption is made without fixing any 

specific viral divergences to be codiverging only (as is the case when using known 

divergence times to calibrate a tree). Thus, sampled viral divergence times may or 

may not correspond to those of the associated host. The overall assumption of 

codivergence allows the identification of PV nodes which show significant evidence 

against this assumption. This is achieved by imposing a penalty term in the log-

likelihood calculation for each node where codivergence is violated.  

Violations of codivergence occur when the sampled divergence time for a node 

does not coincide with the speciation time of the corresponding host. When host and 

virus divergence times coincide, no penalty is imposed on the likelihood. When a 

sampled virus divergence time does not match that of the corresponding host, a 

penalty will be imposed on the log likelihood of the tree thus discouraging substantial 

sampling of times that disagree with those of the host. Significant violations of 

codivergence at a specific node will only be observed when adherence to 

codivergence has a more severe effect than that imposed by the violation penalty on 

the overall likelihood. This approach should result in enhanced sampling of trees and 

timings where codivergence is common, but avoids the imposition of any fixed 

constraints.  

 

Importance sampling techniques enable the random sampling process to focus 

predominantly on areas of higher density; however, it is necessary to account for the 

resulting bias in the sampled points by proportionally downweighting any sample 

points which we biased for and proportionally upweighting sample points we biased 

against (Borcherds 2000). Unfortunately, in the sampling of PV divergence times, this 

would result in a situation similar to that encountered prior to the imposition of the 

biases; the calculation, appropriately corrected, would again be dominated by the vast 

space of possible trees where cospeciation occurs at some random time in the past. 

The resulting posterior probabilities would be too small to permit inference of 

ancestral events.  

 

An alternative approach is to consider violations of codivergence at individual 

nodes as a measure of the evidence against codivergence, given the overall bias 

towards cospeciation. At each node, the posterior density of times sampled before the 
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host speciation times will represent the magnitude of violations of codivergence in 

favour of prior divergence, and the posterior density of times sampled after the host 

speciation times represents the magnitude of violations of codivergence in favour of 

host transfer. The observed violations will represent a conservative estimate due to the 

general assumption of codivergence The magnitude of these violations can then be 

translated into statistical significance through a parametric bootstrapping (Monte 

Carlo simulation) procedure.  

Parametric bootstrapping allows us to assess the probability that a similar or 

greater degree of violation would be observed if cospeciation had in fact occurred at 

that node. This is achieved by constructing synthetic data modelled on a 

papillomavirus phylogeny in which speciation times of all of the nodes under 

investigation have been adjusted to conform to cospeciation. For nodes which show 

significant violations of cospeciation, the nature of the mechanism will be revealed by 

the timing of viral divergence relative to that of host divergence – significant 

violations prior to host speciation indicate prior divergence, whilst violations after 

host speciation indicate host transfer.  

 

The biased distribution applied to each node takes the form of a uniform 

distribution within the bounds of the host speciation range, outside these bounds it is 

flat but assumes a non-zero value (Figure 4.6). The same penalty is applied to 

divergence times on either side of the host speciation range as I am not making any 

further assumptions about the relative likelihood of host transfer over prior divergence 

and vice versa. A flat distribution for all times outside the host-speciation range 

means we are not considering time-dependent effects on the probability of non-

cospeciating events, i.e., that a host transfer may become more unlikely with 

increasing time after the host speciation.  

The analysis was performed using the BEAST program for Bayesian phylogenetic 

analysis as the BEAST algorithm accommodates the sampling of different topologies 

during a run and the estimation of divergence times under a variable rates model 

across lineages, both of which are required in the analysis of the PVs. To implement 

the log likelihood penalty in BEAST, I modified the getLogPriorComponent method 

of the class dr/inference/prior/UniformParameterPrior.java such that the likelihood 

value returned when the sampled parameter is outside the bounds of the uniform 
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distribution is equal to the natural logarithm of the penalty value. To allow sampling 

outside of the host speciation range I modified the isWithinBounds method of 

dr/inference/model/Parameter.java to return TRUE even when the sampled time lay 

outside the bounds of the uniform distribution, i.e., the host speciation range.  

To determine a suitable penalty for the data set, i.e. one that permits sampling 

outside the host speciation times but still restricts the sampling of times to the desired 

time scale, I experimented with values within the range 0 < x < 1.  Log likelihood 

penalties of ln(0.5) and ln(0.1) were found to be too weak to restrict the sampling of 

times to within the host speciation range whilst the ln(0.0005) penalty was found to be 

too stringent with the result that independent chains failed to converge over the 

number of states sampled. The intermediary penalties ln(0.05) and ln(0.005) did allow 

sampling within the time scales of interest, however, and I observed convergence of 

multiple chains, making these penalties ideal for this analysis. 

 

Owing to the phylogenetic incongruities observed between the E1 and L1 genes of 

the PVs, I analysed each gene independently. The biased sampling of divergence 

times cannot be performed at all internal nodes of the PV gene trees as the inclusion 

of multiple human and bovine PV types, means that the trees contain clades where all 

PV divergences appear to have involved the same host species. For such nodes there 

is therefore no corresponding host speciation event that has occurred and therefore no 

host speciation time which can be utilised to bias the sampling of the viral divergence 

times. Biased sampling, using host speciation times, was performed specifically at PV 

nodes    which formed the most recent common ancestor (MRCA) to PV lineages 

from different hosts and for which the corresponding host divergence times were 

available. By a process of visual inspection of the E1 and L1 gene MAP phylogenies 

obtained in Chapter 3, I identified 19 nodes (excluding the root node), in each gene 

tree, which met the first criterion. These nodes are highlighted in Figure 4.7. A priori 

knowledge of the viral phylogeny (or the posterior distribution of trees) is necessary 

in order to identify nodes at which biased distributions can be applied, but some 

degree of topological uncertainty in the phylogeny can be accommodated as we 

restrict bias sampling to those nodes which can be confidently identified by their high 

posterior probabilities.  
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Of the 19 nodes identified in the E1 and L1 gene MAP trees, posterior 

probabilities greater than 0.90 were observed at 17 and 15 of these nodes, 

respectively. In each gene tree, the lowest node posterior probability was observed at 

the human-monkey PV split for which posterior probabilities of 0.6 were observed in 

both gene trees. The low posterior probability associated indicates that there is 

uncertainty in the phylogenetic placement of the monkey PV type RhPV1 (now 

MmPV1). However, an examination of multiple independent MCMC chains revealed 

consistency in the MAP topology and posterior probabilities of this clade. Thus, I 

proceeded with the biased sampling at this node in spite of its lower posterior 

probability.  
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Figure 4.6. Profile of the biased distribution applied to test cospeciation at viral nodes. The 

distribution is biased towards cospeciation and therefore all virus divergence times sampled 

from within the range of the host speciation times is assigned a probability of 1. All times 

sampled outside this range are assigned a lower but non-zero probability thus penalising but 

not prohibiting sampling of non-cospeciating times. Log likelihood penalties of ln(0.005) (x = 

0.995) and ln(0.05) (x = 0.95) were applied in turn. 

  

 

For each node selected for biased sampling, I specified the corresponding set of 

terminal taxa and assigned the modified “uniform distribution prior” on the node age; 
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the upper and lower bounds of the distribution were dictated by the corresponding 

host speciation time range obtained from molecular estimates along a mammalian 

supertree (Bininda-Emonds et al. 2007).  The data set analysed by Bininda-Emonds et 

al. (2007) comprised more mammalian species (a total of 4,510) than previous studies 

that have attempted to date the mammalian (or vertebrate) tree (Kumar and Hedges 

1998; Springer et al. 2003). This tree also includes all host species’ included in our 

data set, allowing us to investigate diversification mechanisms at the maximum 

number of inter-host nodes. However, it is noted that there are errors in this analysis 

which may have affected the estimated times.  

In the estimation of the mammalian tree topology, Bininda-Emonds and 

colleagues used a supertree approach in which the full tree, comprising all species in 

the data set, is derived by combining ‘source’ trees generated from subsets of the full 

data set. The set of source trees are represented in a matrix, from which the supertree 

is estimated by parsimony analysis. The supertree approach deconstructs the task of 

estimating phylogenies for large data sets into smaller, more manageable chunks. 

However, the fact that the supertree is not obtained from direct analysis of the entire 

data set as a whole, means that not all phylogenetic relationships among the taxa are 

analysed and consequently, the estimated phylogeny may be an inaccurate 

representation of the true relationships.  

The methods of Bininda-Emonds and colleagues have been further criticised by 

more recent attempts to date the mammalian tree (Meredith et al. 2011; Dos Reis et al. 

2012). These criticisms highlight potential errors in the source trees chosen for 

construction of the supertree. In estimating node ages along the tree, they point out 

that the authors do not appropriately account for lineage rate variation, for uncertainty 

in fossil calibrations and for uncertainty in branch lengths. Newer estimates of 

mammalian divergences, obtained from simultaneous analysis of the entire data set in 

phylogenetic estimation and use of Bayesian MCMC methods to estimate divergence 

times along the tree, propose younger ages (closer to fossil estimations) for intra-

ordinal divergences within the placental mammalian clades (e.g. within the 

Lagomorpha, Primates, Carnivora, Artiodactyla, etc.) compared to those estimated by 

Bininda-Emonds and colleagues. Future studies requiring molecular divergence dates 

for the mammalian hosts should look to the recent estimates (e.g., Dos Reis et al. 

2012) for a more accurate temporal comparison of virus-host divergence. 
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The high posterior probabilities observed at the majority of the E1 and L1 gene 

tree nodes (Appendix A6 and A10) meant that the nature of the MRCA of the 

corresponding host species could be guessed with a high degree of certainty and 

therefore simplified the assignment of biased distributions at these nodes. For 

example, the E1 and L1 MAP phylogenies both contain a clade of δ PVs, which 

consists of PV types infecting species from the Cervidae (deer, elk and roe deer) and 

Bovidae families. In both gene trees, the δ cervid PVs cluster together (p=1.0) and the 

δ Bovidae PVs cluster together (p=1.0). Thus, I used the estimated times for the 

Cervidae-Bovidae host divergence to bias the divergence times sampled at the node 

joining the δ Cervidae PV clade and the δ Bovidae PV clade together.  

Where topological arrangements presented a more complicated scenario, I applied 

multiple biases covering the different combinations possible. In the E1 gene tree for 

example, the human γ PVs, the murid π PVs, the canine PV type 2 (CPV2), and the 

bovine PV type 7 (BPV7) all cluster together with high posterior probabilities 

(p=1.00); however, the relationships within this clade are incongruent with those of 

the corresponding hosts: we would expect PVs infecting the Euarchontoglires (murid 

and human) and the Laurasiatheria (canine and bovine) to each cluster together and 

the corresponding host speciation times could be used to bias the murid-human, 

canine-bovine and Euarchontoglire-Laurasiatheria PV divergence times. This presents 

a tricky situation for the application of host speciation times. However, the fact that 

the analysis is not based on a fixed topology provides some flexibility in the 

specification of biased distributions. I therefore considered the 6 possible pairings of 

the 4 host lineages within this polyphyletic clade (e.g., dog-bovine, dog-murid, dog-

human) and assigned individual biased distributions to the divergence times of each 

pairing. I also considered the 3 different pairings of the cat, dog, and raccoon λ PVs 

due to the differences between the two trees in the topology of this clade. The host 

speciation times applied to bias the divergence times of PV nodes highlighted in 

Figure 4.7 are shown in Table 4.1. 

 

This modified BEAST analysis was performed on both the E1 and L1 genes from 

the PV dataset, with the same model specifications as before and the biased prior 

distributions on the ancestral node ages of the specified subsets of PV taxa. The parrot 
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PV (PePV), which shows the greatest evolutionary distance to all mammalian PVs, 

was specified as the outgroup, and an additional bias corresponding to the mammal-

avian divergence was specified at the root. For each of these nodes, the MCMC chains 

were examined to determine the proportion of the sampled states in which the node 

age agreed with the associated host speciation time, the proportion in which the node 

age pre-dates host speciation (in agreement with prior-divergence) and the proportion 

in which the node ages post-date host speciation (in agreement with host transfer). 

Each BEAST analysis was run for 30,000,000 generations with states sampled every 

1,000 generations. For each gene, I ran three chains, to ensure convergence of the 

chains. Convergence was determined by calculation of the PSRF statistic. Sampled 

components of all chains had PSRF values close to 1.00; the average PSRF was 0.99 

(s.d. = 0.015).  In addition, the ESS values of sampled parameters in all chains were 

greater than 500, indicating sufficient number of independent states for inferences to 

be made from the sampled chains. 
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Figure 4.7a: Nodes selected for biased sampling of divergence times in the E1 gene 

tree. Divergence time distributions, biased in favour of codivergence, were applied to the 

highlighted nodes to investigate the support for a non-codiverging mechanism. 
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Figure 4.7b: Nodes selected for biased sampling of divergence times in the L1 gene 

tree. Divergence time distributions, biased in favour of codivergence, were applied to the 

highlighted nodes to investigate the support for a non-codiverging mechanism. 
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Super-order Order Host divergence Host speciation 

time (mya) 

Euarchontoglires Primates Chimp-Bonobo 3.4-5.5 

  Human-(Chimp/Bonobo) 7.8-9.5 

  Human-Monkey 19.0-31.8 

 Glires Muridae: M. coucha-M. 

minutus 

25.9-31.9 

  Cotton tail rabbit-European 

(Domestic) rabbit 

19.0-31.8 

 Primates-Gliresa  90.0-93.8 

Laurasiatheria Carnivora Cat-(Dog/Raccoon) 59.8-67.1 

  Dog-Raccoon 53.2-59.8 

 Cetacea Dolphin-Porpoise 27.8-32.1 

 Cervidae Deer-(Elk/Roe deer) 14.7-18.5 

  Elk-Roe deer 14.0-16.8 

 Ruminantia Cervidae-Bovine 24.3-31.9 

 Cetartiodactylab Cetacea-Ruminantia 59.2-63.9 

 Carnivora-

Cetartiodactyla 

 83-85.8 

Euarchontoglires-

Laurasiatheriab 

  92.9-98.4 

 

Table 4.1: Host speciation times (estimated by Bininda-Emonds et al. (2007)) used to 

sample PV divergence times . 
a The Primates-Glires speciation time was applied to PV splits of human-rabbit, human-

porcupine, human (γ)-Muridae. 

b  The Cetartiodactyla speciation time was applied to the divergence of the Cetacean PVs 

and the ξ BPVs in the L1 tree only. 
c The Euarchontoglires-Laurasiatheria speciation time was applied to PV splits of  human-

rabbit-Carnivora, human (γ)-bovine, human (γ)-dog, Muridae-bovine, Muridae-dog, human 

(γ)-Muridae-bovine-dog, Primate-Cetacea (E1 only), human (β)-bovine (E1 only). 
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4.2.2 Monte Carlo simulation under the null hypothesis 

 

In order to calculate p-values for the violations of cospeciation observed at each 

node of this biased BEAST analysis, PV E1 and L1 gene data sets were simulated 

under a model of cospeciation (at the nodes of interest). Cospeciation was conferred 

on the MAP trees from the above BEAST analysis by specifying times randomly 

sampled from the corresponding host speciation times, assuming a uniform 

distribution, and re-estimating the times of the remaining internal nodes using r8s 

(Sanderson 2003) and the non-parametric rate smoothing (NPRS) algorithm, which 

allows for rate heterogeneity between branches. I repeated the process using different 

sets of sampled times to produce ten trees with different divergence times of the 

internal nodes. To convert the branch lengths from units of time to units of distance 

we sampled rates for each branch from the distribution of branch rates obtained in the 

above BEAST analysis. Sequences were simulated along the resulting trees using 

Evolver from the PAML package (Yang 1997; Yang 2007). Each codon position was 

simulated separately using the mean values of substitution parameters κ and α 

obtained from the partitioned BEAST analysis. Ten data sets were simulated for each 

tree, resulting in 100 simulated dataset in total. The biased BEAST analysis was then 

performed on each simulated dataset using the same settings and evolutionary model 

as was applied in the analysis of the real data. 

 

 

4.3   Results 
 

4.3.1  PV-Host Tree Incongruence 

 

The PV data set analysed consisted of 107 mammalian PVs from 18 different 

species and 1 avian PV; Figure 4.8 shows tanglegrams (constructed by hand) of the 

host tree and the PV MAP trees derived from independent Bayesian analysis of the E1 

and L1 genes. The MAP trees for each PV gene possessed high (p>0.9) posterior 

probabilities at the majority (97/106 and 93/106, respectively) of internal branches 

and therefore we are confident about most of the topological associations of PV taxa 
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in the gene trees. The tanglegrams show that when each PV gene tree is compared 

against the host tree, the host and virus topologies are far from congruent. Several 

clades in the virus tree show associations across the host tree. The human, bovine and 

canine host species are each infected by multiple PV types which fail to cluster 

together in one clade. Instead, the PV types of each host species are observed to be 

distantly related to other types infecting the same host. Of the three non-human 

primate PVs included in the analysis, the chimpanzee and bonobo PV types (CCPV 

and PcPV1 – now labelled, PtPV1 and PpPV1, respectively) are nested within the 

clade of the low-risk α HPVs while rhesus monkey PV (RhPV1 - now labelled 

MmPV1) is nested within the clade of the high-risk α HPVs.  

 

The lack of monophyly among some PVs at the hosts’ species level continues at 

the order and superorder levels. The dataset contains PV types isolated from the 

mammalian orders of Rodentia (murid and porcupine), Primates (human, chimpanzee, 

bonobo, monkey), Lagomorpha (rabbit), Carnivora (cat, dog, raccoon), Cetacea 

(porpoise and dolphin) and Artiodactyla (bovine, elk, deer, roe deer). Rodentia, 

Primates and Lagomorpha fall under the superorder Euarchontoglires, whilst the 

remaining orders fall under the superorder Laurasiatheria. Among the Rodentia, the 

murid PVs and the porcupine PV are in different parts of the tree: the σ porcupine 

EdPV1 clusters with ν HPV41 whilst the π murid McPV2 and MmPV (now MnPV1) 

cluster with the γ HPVs. The PV trees do not show an early divergence of sequences 

from Euarchontoglires and Laurasiatheria but instead we see Euarchontoglire-derived 

PVs clustering with Laurasiatheria-derived PVs in several well-supported clades in 

both the E1 and L1 gene trees.  

  

The phylogenetic incongruities between the E1 and L1 gene trees not only reveal 

differences in the associations between PV types but also differences in the grouping 

of PVs from different host species. The cetacean PVs cluster with Primate α PVs in 

the E1 tree but with the ξ BPVs in the L1 tree. The ν HPV41-σ EdPV1 clade occupies 

different position in the two trees, and although this clade associates with human and 

rabbit PVs in the L1 tree, the Glire PVs (rabbits, porcupine) do not cluster together.  

 

 

 161



 

 

 

 

 

 

BPV2BPV2

PePV
BPV1
BPV2

BPV5
BPV8

RPV

DPV
EEPV

BPV9
BPV3
BPV10

BPV7
CPV2

McPV2
MmPV

β-HPVs

γ-HPVs

HPV41
EdPV1
FdPV
PlPV1
COPV
HPV63
CRPVb
ROPV

PsPV
TtPV2

HPV54
RhPV1

HPV44
HPV13
PcPV
CCPV1
HPV6
HPV6b
HPV11

HPV7
HPV40
candHPV91
HPV43

HPV32

α-2,3,4 HPVs

α-9 HPVs
α-5,6,11 HPVs
α-7 HPVs

Parrot

Bovine

Deer

Roe deer

Elk

Dolphin

Porpoise

Cat

Dog

Raccoon

Monkey

Chimp

Bonobo

Human

Rabbit

Mouse

Porcupine

 
Figure 4.8a:  PV-host tanglegrams based on the E1 gene MAP tree of PVs. Terminal 

associations between associated host and virus taxa are indicated by the red lines. Despite 

topological differences between the E1 and L1 gene trees, neither gene tree shows complete 

concordance with the phylogeny of the associated hosts. PV types infecting humans, in 

particular, span most of the tree and are interspersed by PV associations with other hosts. 
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Figure 4.8b:  PV-host tanglegrams based on the L1 gene MAP tree of PVs. Terminal 

associations between associated host and virus taxa are indicated by the red lines. Despite 

topological differences between the E1 and L1 gene trees, neither gene tree shows complete 

concordance with the phylogeny of the associated hosts. PV types infecting humans, in 

particular, span most of the tree and are interspersed by PV associations with other hosts. 
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4.3.2 Biased sampling of divergence times  

At each node biased for the sampling of divergence times, I observed consistency 

in t

The sampled times are categorised as representing codivergence if they fall within 

the 

side the 

hos

 

he distribution of sampled times (Appendix B.1 and B.2) obtained in multiple 

independent chains run under the different likelihood penalties. I further compared the 

distribution times sampled at each node against the prior distribution of times 

(Appendix B.3 and B.4) to ensure that the results were not dominated by the prior. 

The density plots shown in Appendix B.3 and B.4 reveal some degree of prior density 

associated with viral divergence times outside the host speciation times; however, at 

each node, the prior distribution of times is different to the sampled distribution thus 

demonstrating the influence of the data on the sampling of divergence times. 

 

biased range of the host speciation times, prior divergence if they pre-date the host 

speciation range, and later divergence if they post-date the host speciation range. The 

amount of sampling observed from each category differs among the nodes analysed 

(Figure 4.9 and 4.10). Almost all the nodes show some degree of sampling outside the 

host speciation range. The only exceptions to this were observed using the stricter 

ln(0.005) likelihood penalty for violations of cospeciation at the γ HPV-CPV2, γ 

HPV-BPV7, π murid PV-CPV2, and π murid PV-BPV7 divergences of the L1 gene. 

These four lineages cluster together to form a polyphyletic clade with uncertain 

topology (p=0.82 for the branch joining CPV2 and BPV7, and p=0.76 for the branch 

joining the γ HPVs and the π murid PVs); however, all of the times sampled for these 

four divergences fell within the host speciation range and produced high posterior 

probabilities (p>0.9) for the CPV2-BPV7 and γ HPV-π murid PV groupings.  

Several nodes showed only a small amount (<10 %) of sampling from out

t speciation range, e.g. at divergences of the chimp-bonobo, human-(chimp-

bonobo), cat-dog, dog-raccoon, cat-raccoon, γ human-BPV7 and γ human-CPV2 

divergences, among others. For some of these nodes, the minor violations were found 

to be statistically significant but only under the stricter likelihood penalty – this may 

be due to inefficient mixing (see below).  
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Figure 4.9: Proportion of sampling of viral divergence times reflecting codivergence (red), 

prior divergence (blue) and later divergence (orange) for nodes in the E1 gene tree: a. results 

obtained under the ln(0.05) likelihood penalty and b. results obtained under ln(0.005) 

likelihood penalty. 
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Figure 4.10: Proportion of sampling of viral divergence times reflecting codivergence (red), 

prior divergence (blue) and later divergence (orange) for nodes in the L1 gene tree: a. results 

obtained under the ln(0.05) likelihood penalty and b. results obtained under ln(0.005) 

likelihood penalty. 
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For both the E1 and L1 genes, divergences of the α human-monkey, cetacean, 

Cer

 comparison of the sampled times under the different biases applied reveals how 

the 

In order to make inferences about the nature of the diversification mechanism 

occ

vidae, Cervidae-Bovidae, and δ-ε artiodactyla PV lineages all show 100% (or 

close to) violation of codivergence in favour of prior divergence and the mammalian-

avian PV divergence for both genes showed 100% sampling of times indicative of a 

host transfer event. In addition, the L1 gene shows near 100% violation of 

codivergence in favour of host transfer times at the ν human-σ porcupine and the λ 

cat-dog PV divergences, whilst a 97% violation of codivergence times in favour of 

host transfer is observed at the π muridae PV-BPV7 and π muridae PV-CPV2 

divergences of the E1 gene (under the weaker penalty only). For the remaining nodes 

there is a mix of sampling from within and outside of the host speciation range but 

violations are largely restricted to either prior divergence or later divergence – there 

are no nodes for which a substantial proportion of the chain sampled times from both 

sides of the host speciation range.   

 

A

extent of sampling outside the host speciation range is affected by the size of the 

bias. For both the E1 and L1 genes, with the stronger bias (greater likelihood penalty) 

there is less sampling outside of the biased times at divergences of the κ rabbit, μ 

human-κ rabbit, π muridae and δ elk-roe deer PVs than is observed with the weaker 

bias (lower penalty). This effect is also evident at the ν human-σ porcupine 

divergence of the E1 gene and the α human-monkey divergence of the L1 gene. For 

other nodes, the posterior distribution of sampled times remains the same under both 

penalties. 

 

urring at each node the statistical support for the observed violations of 

cospeciation was determined using parametric bootstrapping under a model of 

cospeciation. The posterior probabilities of codivergence, prior divergence and host 

transfer for the 100 E1 and L1 simulated datasets are summarised in Figure 4.11. 

Posterior probabilities of cospeciation at PV divergences of the simulated data sets are 

generally higher than the posterior probabilities of host transfer or prior divergence. 

For the E1 simulations, exceptions occur at the ν human-σ porcupine, π muridae-

CPV2 and π muridae–BPV7 divergences, for which the posterior probability of host 
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transfer events is sometimes greater than that of codivergence. The BPV7-CPV2 

divergence appears to favour host transfer over codivergence in some of the L1 

simulations.  

 

The distribution of posterior probabilities of prior divergence and host transfer for 

the 

tatistically significant support for prior divergence at the ancestral PV nodes of α 

hum

data sets simulated under a model of codivergence allow us to evaluate the 

statistical significance of violations observed for the real data set. Tables 4.2-4.5 show 

the statistical support for prior divergence or host transfer at selected nodes in the E1 

and L1 gene trees. Most nodes do not reject the codivergence, suggesting that the data 

are consistent with our assumption of the generality of this process of viral 

divergence.  

 

S

an-monkey, dolphin-porpoise, κ domestic-cottontail rabbits, δ elk-roe deer, δ 

Cervinae (deer)-Capreolinae (elk, roe deer), and δ Cervidae-Bovidae types was 

observed for both genes. As the branching patterns at these nodes are congruent with 

those of the corresponding host species, the temporal analysis has allowed 

identification of non-cospeciating mechanisms at nodes where topological methods 

would most likely have assumed cospeciation. As seen in Figure 4.12, there is 

generally good agreement between the timing of these prior divergence events in both 

gene trees, arguing against recombination at these points. In addition to significant 

violations at these nodes, there is strong support for prior divergence of the E1 genes 

of the Muridae (harvest and multimammate mouse) PVs, whereas for the L1 genes, 

the divergence times sampled for this node largely agree with the host speciation 

times. For the L1 genes, prior divergence at the ancestral node of the cetacean PV-ξ 

BPV was also found to be statistically significant; these two groups of PVs do not 

share an immediate common ancestor in the E1 gene tree. 
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Figure 4.11: The “posterior probabilities” of codivergence, prior divergence and host 

transfer for 100 simulated data sets of the E1 and L1 genes. Red points indicate corresponding 

posterior probability for real data set. 
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Results obtained with the stronger codivergence bias of ln(0.005) were in general 

similar, as shown in Tables 4.3 and 4.5. All nodes for which codivergence was 

rejected with the weaker bias produced similar results with the stronger bias, with the 

exception of the prior divergence of the Cottontail and European rabbit divergence of 

the E1 gene, which was strongly supported with the weaker bias (P < 0.01) but not as 

strongly supported with the stronger bias (P < 0.06). A number of nodes seemed to 

reject codivergence with the stronger bias based on minimal posterior probabilities, 

for example the cat-raccoon, γ human-BPV7 and γ human-CPV2 divergences of the 

E1 gene and the μ human-κ rabbit-λ Carnivora divergence of both the E1 and L1 

genes. The violations of codivergence at these divergences corresponded to 

phylogenetic trees that were far from the MAP tree. When analyzing the simulated 

datasets using the higher bias, the MCMC chain does not appear to sample these 

topologies. It is therefore possible that there is inadequate mixing of the MCMC 

sampling procedure at this higher bias. 

 

Based on the events inferred and the corresponding sampled divergence times, the 

PV gene phylogenies may be redrawn, to scale, on top of the host phylogeny (from 

which the host speciation times used in this analysis were obtained) to illustrate the 

evolutionary trajectory of PV lineages (Figure 4.13). There are uncertainties in the 

inference, but we can characterize the overall picture.  

 

There was a wide diversification of PVs among mammals starting from around 

150 mya. Starting with an early divergence of the δ-ε Artiodactyla PV lineage from 

that of the other mammalian PVs, by the time of the Euarchontoglires-Laurasiatheria 

divergence approximately 96 mya both genes had well-defined α, β, δ-ε Artiodactyla, 

ξ Bovine, Cetacean, and λ (Carnivora excluding CPV2) lineages. In addition, the L1 

gene had diverged into two lineages ancestral to the γ human-π muridae PV and 

BPV7-CPV2 types, while the E1 appears to demonstrate a divergence into lineages 

ancestral to the γ HPV and mouse-BPV7-CPV2 lineages. The μ human-ν human-σ 

porcupine-κ rabbit clade present at this time in L1 was divided into μ human-κ rabbit 

PVs and ν human-σ porcupine clades in E1. 
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The L1 gene exhibits codivergence of the μ HPV-ν HPV-EdPV1 and κ rabbit PV 

lineages in the ancestral Euarchontoglires species, followed by a divergence of μ 

human and ν human-σ porcupine PV lineages and a host transfer event between 

humans (ν HPV41) and porcupine (σ EdPV1). The E1 gene follows a different 

trajectory, with the ν human-σ porcupine lineage diverging from other of the PV 

lineages quite early; the μ human-κ rabbit PV lineage diverges from the λ clade 

sometime later, but still prior to the split between Euarchontoglires and 

Laurasiatheria. 
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E1 gene PV divergence (ln(0.05)) Prior divergence Codivergence Later 

divergence 

Chimp-Bonobo           0.60        99.22          0.18  

Human-Chimp-Bonobo           5.66         93.77           0.57  

Human-Monkey         100**           0            0  

Cetacea: Dolphin-Porpoise         100**           0            0  

Primate-Cetacea         24.30        74.98          0.72  

Rabbit: Cotton tail-European        88.86**        11.14            0  

Human-Rabbit          1.27        70.72         28.00 

Cat-Dog           0.25        95.48          4.27 

Cat-Raccoon          0.03        93.03          6.94 

Dog-Raccoon          6.60        90.91          2.48 

Human-Rabbit-Carnivora        10.38*        88.73          0.89  

Human (beta)-Bovine          2.92        93.69          3.39 

Muridae: M.coucha-M.minutus        91.31**         8.69            0  

Human-Muridae        11.65        88.15          0.20  

Human-Bovine           0.05        99.18         0.77 

Human-Dog          0.05        99.18         0.77 

Bovine-Dog          3.42        88.23          8.35 

Bovine-Muridae            0         2.63        97.37 

Dog-Muridae            0         2.79        97.21 

Human-Porcupine          2.81        40.21         56.98 

Elk-Roe deer        88.69**        11.30          0.01  

Cervidae : Deer-Elk-Roe deer         100**           0            0  

Cervidae-Bovidae         100**            0            0  

 

Table 4.2: Observed distribution of diversification mechanisms at PV divergences of the 

E1 gene from the biased sampling analyses run with likelihood penalties of ln(0.05) for 

sampled times that violate the corresponding host-speciation times. 

* indicates P-values < 0.05 obtained from the biased sampling analysis of simulated data 

generated under a model of codivergence at each node. ** indicates P-values < 0.01 from 

this analysis. 
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E1 gene PV divergence (ln(0.005)) Prior divergence  Codivergence Later 

divergence 

Chimp-Bonobo 0.35 99.56 0.09 

Human-Chimp-Bonobo 3.21 96.49 0.30 

Human-Monkey 100** 0 0 

Cetacea: Dolphin-Porpoise 100* 0 0 

Primate-Cetacea 13.41 86.24 0.35 

Rabbit: Cotton tail-European 64.52 35.48 0 

Human-Rabbit 0.70 82.73 16.57 

Cat-Dog  0.17 98.05 1.78 

Cat-Raccoon 0.02* 96.80 3.18 

Dog-Raccoon 3.76 94.82 1.42 

Human-Rabbit-Carnivora 5.84* 93.68 0.48 

Human (beta)-Bovine 1.45 96.62 1.92 

Muridae: M.coucha-M.minutus 71.27** 28.73 0 

Human-Muridae 8.05 91.27 0.69 

Human-Bovine  0 99.60 0.40* 

Human-Dog 0 99.60 0.40* 

Bovine-Dog 2.00 93.46 4.55 

Bovine-Muridae 0 22.48 77.52 

Dog-Muridae 0 22.56 77.44 

Human-Porcupine 2.02 62.58 35.40 

Elk-Roe deer 60.33** 39.66 0.01 

Cervidae: Deer-Elk-Roe deer 100** 0 0 

Cervidae-Bovidae 100** 0 0 

 

Table 4.3: Observed distribution of diversification mechanisms at PV divergences of the 

E1 gene from the biased sampling analyses run with likelihood penalties of ln(0.005) for 

sampled times that violate the corresponding host-speciation times. 

* indicates P-values < 0.05 obtained from the biased sampling analysis of simulated data 

generated under a model of codivergence at each node. ** indicates P-values < 0.01 from 

this analysis. 
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L1 gene PV divergence (ln(0.05)) Prior divergence Codivergence Later 

divergence 

Chimp-Bonobo 0.27 99.06 0.66 

Human-Chimp-Bonobo 10.83 88.83 0.35 

Human-Monkey 99.50** 0.50 0 

Cetacea: Dolphin-Porpoise 100* 0 0 

Rabbit: Cotton tail-European  95.75** 4.25 0 

Human-Rabbit 2.61 75.84 21.56 

Cat-Dog 0 0.44 99.56 

Dog-Raccoon 33.12 64.09 2.79 

Human,Rabbit-Carnivora 21.80* 77.42 0.78 

Cetacea-Bovine 100** 0 0 

Muridae: M.coucha-M.minutus 20.30 79.29 0.42 

Human-Muridae 1.03 88.90 10.07 

Human-Bovine 0 99.99 0.01 

Human-Dog 0 99.96 0.04 

Bovine-Dog 4.65 80.82 14.53 

Bovine-Muridae 0 99.94 0.06 

Dog-Muridae 0 99.99 0.01 

Human-Porcupine 0 0 100* 

Elk-Roe deer 97.42** 2.58 0 

Cervidae: Deer-Elk-Roe deer 100** 0 0 

Cervidae-Bovidae 100** 0 0 

 

Table 4.4: Observed distribution of diversification mechanisms at PV divergences of the 

L1 gene from the biased sampling analyses run with likelihood penalties of ln(0.05) for 

sampled times that violate the corresponding host-speciation times. 

* indicates P-values < 0.05 obtained from the biased sampling analysis of simulated data 

generated under a model of codivergence at each node. ** indicates P-values < 0.01 from 

this analysis. 
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L1 gene PV divergence ln((0.005)) Prior divergence Codivergence Later 

divergence

Chimp-Bonobo 0.02 99.89** 0.09 

Human-Chimp-Bonobo 0.10 98.97 0.04 

Human-Monkey 85.43* 14.57 0 

Cetacea: Dolphin-Porpoise 100** 0 0 

Rabbit: Cotton tail-European 61.71** 38.29 0 

Human-Rabbit 0.16 94.68 5.16 

Cat-Dog  0 4.43 95.57 

Dog-Raccoon 31.11 68.46 0.44 

Human-Rabbit-Carnivora 2.68* 97.27 0.05 

Cetacea-Bovine 100** 0 0 

Muridae: M.coucha-M.minutus 2.14 97.79 0.07 

Human-Muridae 0.09 98.50 1.42 

Human-Bovine  0 100 0 

Human-Dog 0 100 0 

Bovine-Dog 0.50 97.81** 1.69 

Bovine-Muridae 0 100 0 

Dog-Muridae 0 100 0 

Human-Porcupine 0 0 100* 

Elk-Roe deer 70.38** 29.61 0.01 

Cervidae: Deer-Elk-Roe deer 98.50** 1.50 0 

Cervidae-Bovidae 98.31** 1.69 0 

 

Table 4.5: Observed distribution of diversification mechanisms at PV divergences of the 

L1 gene from the biased sampling analyses run with likelihood penalties of ln(0.005) for 

sampled times that violate the corresponding host-speciation times. 

* indicates P-values < 0.05 obtained from the biased sampling analysis of simulated data 

generated under a model of codivergence at each node. ** indicates P-values < 0.01 from 

this analysis. 
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Figure 4.12: Divergence times for the host (black), E1 (red), and L1 (blue) genes. CIs for the 

host and viral divergence times are indicated with error bars; unseen error bars represent CIs 

smaller than the size of the symbols. Viral divergence times further back than host divergence 

times (e.g., human–monkey) represent prior divergence, whereas viral divergence times more 

recent than host divergence times (e.g., human–porcupine) represent likely host transfer 

events. †Statistically significant violation of host divergence time observed for E1 only. 
‡Statistically significant violation of host divergence time observed for L1 only. *Node 

present in L1 gene tree only. The only host transfer event found to be statistically significant 

with the weaker penalty was the post-host speciation divergence of the ν HPV-porcupine 

(EdPV1) L1 genes. The proposed host transfer of the E1 genes of these PV lineages was not 

found to be significant (P ~ 0.30); however, the position of this node differs in both gene 

trees. For the E1 gene the posterior distribution of divergence times ranged from 55.38-88.14 

mya compared with 40.70-62.82 mya for the L1 gene. 
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Figure 4.13 (see next page for description) 
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Figure 4.13 (constructed by hand): The a) E1 and b) L1 gene trees, each shown on top of 

the associated host tree topology (grey) derived from the mammalian phylogeny estimated by 

Bininda-Emonds and colleagues, and scaled according to the times of the host divergences 

(Ma). The timings of the PV splits correspond with the mean times sampled from the biased 

sampling analysis of each gene; the 95% CIs of viral divergence times at each node are 

represented by the colored bars. The host speciation times of related host taxa are highlighted 

in dark grey. Posterior probabilities of internal PV branches are indicated beside the branches. 

PV nodes labeled with a * indicate divergences for which cospeciation violations were found 

to be statistically significant. Labels below the tree indicate 1) the names of the PV taxa—‘‘α-

2 HPVs’’ groups together all HPVs included in our analysis from species 2 of the α genus, 2) 

the genus classifications of the PV taxa, 3) the host species from which the virus was isolated. 

PV clades are colored according to genus classifications; for simplicity, some genera that 

consistently group together in both gene trees have been assigned the same color. 
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4.3.3   Estimated evolutionary rates 

 

When sampling PV divergence times I allowed for rate heterogeneity across 

branches following rejection of a molecular clock. Branch rates were sampled from a 

log normal distribution; the mean evolutionary rate estimated for the E1 genes was 

7.1×10-9 (sd = 3.1×10-10) nucleotide substitutions per site per year and 9.7×10-9 (sd = 

5.2×10-10) nucleotide substitutions per site per year for the L1 genes. In order to 

provide a more accurate estimate of the rate I performed the BEAST analysis again 

for each gene, specifying constraints only for those nodes that did not show 

significant violations of cospeciation, for which I applied the standard uniform prior 

distribution of divergence times. The resulting mean rates obtained were 7.1×10-9 (sd 

= 1.5×10-10) nucleotide substitutions/site/year for the E1 genes and 9.6×10-9 (sd = 

2.1×10-10) nucleotide substitutions/site/year for the L1 genes, which are in good 

agreement with our previous estimates. Branch-specific evolutionary rates are similar 

at the top and bottom of our trees suggesting against saturation having an affect on our 

analysis.  

 

 

4.4   Discussion 
 

By employing a novel biased sampling approach for the estimation of PV 

divergence times using Bayesian MCMC algorithms, I have attempted to characterise 

ancestral diversification mechanisms of the PVs. The need for such a characterisation 

arises from observations that inferred PV phylogenies do not demonstrate evidence of 

strictly codivergence with their vertebrate hosts. The identification of close 

phylogenetic relationships among PV lineages from hosts that are distantly related 

suggests the possibility of host transfer events, i.e., viral transmission between distinct 

co-existing host species, despite the lack of physical or experimental support for such 

events.  

A common approach to studying phylogenetic incongruities between associates 

(parasites/viruses) and their hosts is to first determine whether there is substantial 
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evidence for codivergence of the associated entities. This is achieved by using 

reconciliation methods (e.g. TreeMap/Jungles) to determine if the optimal number of 

codivergence events postulated between reconciled host and associate trees are more 

than would be expected if the observed associations arose by chance. Alternatively, a 

method such as ParaFit can be used to test a global hypothesis of cospeciation based 

on the evolutionary distances observed in host and associate trees. The aim of this 

study was not specifically to determine the extent of codivergence of PVs and their 

hosts, as the highly host specific nature of PVs and slow rates of evolution suggest 

that PVs have been evolving with vertebrates. However, during this coevolutionary 

period, the phylogenetic inconsistencies indicate that PV divergence has occurred 

independently of its host on several occasions. The aim of this thesis was to 

characterise the diversification events of the virus lineages so as to explain the 

differences observed between the phylogenies of the PVs and their mammalian hosts 

and to understand how the observed associations were formed.  

Using this biased sampling approach I was able to identify viral divergences 

where the evidence indicates a process other than codivergence – either prior viral 

divergence preceding the host divergence or host transfers following the host 

divergence. Based on the events inferred and the corresponding sampled divergence 

times, the PV gene phylogenies may be redrawn, to scale, on top of the associated 

host phylogeny to illustrate the evolutionary trajectory of PV lineages (Figure 4.13). 

There are topological uncertainties in the analysis, but we can characterize the overall 

picture.  

 

There was a wide diversification of PVs among mammals starting from around 

150 mya. Starting with an early divergence of the δ-ε artiodactyl PV lineage from that 

of the other mammalian PVs, by the time of the Euarchontoglires-Laurasiatheria 

divergence approximately 96 mya both genes had well-defined α primate, β primate, 

δ-ε artiodactyl, ξ bovine, cetacean, and λ (Carnivora excluding CPV2) lineages. In 

addition, the L1 gene had diverged into two lineages ancestral to the γ human-π murid 

PVs and BPV7-CPV2 types, while the E1 appears to demonstrate a divergence into 

lineages ancestral to the γ HPV and murid-BPV7-CPV2 lineages. The μ human-ν 

human-σ porcupine-κ rabbit clade present at this time in L1 was divided into μ 

human-κ rabbit PVs and ν human-σ porcupine clades in E1. 
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The L1 gene exhibits a codivergence of the μ HPV-ν HPV-EdPV1 and κ rabbit 

PV lineages in the ancestral Euarchontoglires species, followed by a divergence of μ 

human and ν human-σ porcupine PV lineages and a host transfer event between 

humans (ν HPV41) and porcupine (σ EdPV1). The E1 gene follows a different 

trajectory, with the ν human-σ porcupine lineage diverging from other of the PV 

lineages quite early; the μ human-κ rabbit PV lineage diverges from the λ clade 

sometime later, but still prior to the split between Euarchontoglires and 

Laurasiatheria. 

 

Varsani et al (2006) analyzed various PV sequences using a suite of 

recombination detection methods and identified ν HPV41 as a putative recombinant 

sequence with the canine PV (COPV) from the λ genus being an extant relative of one 

of the donor sequences. Their analysis highlighted the E1 gene of ν HPV as the 

location of recombination. The E1 gene trees estimated in this analysis show ν 

HPV41 to be quite distantly related to the λ Carnivora PVs and therefore do not 

concur with their findings. The consistent grouping of ν HPV41 and σ EdPV1 in the 

estimated gene trees suggests that ν HPV41 is unlikely to be a recombinant genome 

but the variable position of this clade in the different gene trees may indicate a 

recombination event in the ancestral viral lineage.  

One possible explanation involves a recombination event occurring between an 

unknown ancestral PV lineage and the ancestral lineage of ν HPV41 resulting in the 

ancestral lineage of human and porcupine PV types. Subsequent to the recombination 

event the PV lineage diverged with the Primate and Rodent hosts but co-infection 

(both virus lineages infecting the same host) in either host approximately 50 mya 

resulted in transfer of the late region of the genome from one species to the other, 

though it is not possible to deduce the direction of this transfer. A simpler scenario 

would be that the two human PV subtypes diverged from an ancestral Primate PV 

lineage and subsequently there was a host transfer of the ancestral ν HPV41 lineage to 

an ancestral Hystricognathi species resulting in the σ EdPV1 lineage infecting 

porcupines; although the E1 gene analysis does not support a common ancestor for ν 

HPV41 and μ HPV63 and did not demonstrate significant support a host transfer 
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event between the ν human and σ porcupine lineages, a proportion of the divergence 

times sampled outside of the host speciation range do overlap with those of L1 gene. 

Codivergence of the ν HPV41 and σ EdPV1 L1 gene sequences would require a 

substitution rate of approximately 6.7 ×10-9 nucleotide substitutions per site per year, 

which falls outside of the distribution of rates applied across the different branches of 

the L1 tree and supports a non-codivergence mechanism at this node. 

 

For the L1 gene, codivergence is observed for the γ human and π murid PV 

lineages, and at the canine (CPV2) –bovine (BPV7) divergence. The scenario depicted 

for the E1 genes of these PV types is an early divergence of γ HPVs from the π 

Muridae-CPV2–BPV7 lineage, followed by codivergences in the latter. Despite the 

lack of statistical support for rejecting codivergence at these various nodes, the 

observed E1 topology is inconsistent with the host topology, as we would expect PV 

lineages from the Euarchontoglires (humans and Muridae) and Laurasiatheria (canine 

and bovine) to cluster separately.  

A similar situation was observed in the λ clade of the carnivoran PVs: the E1 gene 

tree topology of this clade is congruent with the host topology and there is no 

evidence of host transfer or prior divergence of the cat, dog (COPV) and raccoon PVs. 

In the L1 gene tree, however, the cat PV is more closely related to the dog PV than 

the raccoon PV with insufficient statistical support in favor of host transfer at the cat-

dog PV node. It is important to note that host transfers and prior divergences can only 

be detected when these events occur sufficiently far from the divergence between the 

hosts. It may be that the prior divergence or host transfer events occurred within the 

estimated time for the host divergence event, or that there is insufficient data to make 

a reliable identification of the process of the virus divergence. It is also possible that 

the topology of the viral trees is erroneous, despite the high posterior probabilities 

observed. More sampling from within this polyphyletic clade should help resolve 

these uncertainties. 

 

 The relative rarity of PV host transfer events detected in this analysis is in 

agreement with the practical difficulties associated with such events. There is a 

distinct lack of physical evidence supporting the host transfer of double-stranded 

DNA viruses in general. This is likely due to their high species specificity and slow 
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evolutionary rates, which may make it difficult to adapt to new environments quickly. 

When evaluating the likelihood of PVs switching host species, we must also consider 

that PVs may only gain entry to the basal cells of epithelial tissue via epithelial 

wounds and therefore zoonotic transmissions would require direct contact between the 

different host species at the very least. However, indications of potential host transfer 

events exist. For instance, the recent identification of PV types shared by two monkey 

species, the Macaca mulata and the Macaca fascicularis (Chen et al. 2009), provides 

the first indications that host transfer of PVs may be possible between different host 

species. The PV type isolated from the Atlantic white-sided dolphin (sp. 

Lagenorhynchus acutus) has been classified as TtPV3var - a variant of TtPV3, which 

was isolated from the closely related bottlenose dolphin (sp. Tursiops truncatus) 

(Gottschling et al. 2011a).   

 

Given the ancestral association of PV types with their hosts, predicted in this 

analysis, the absence of PV lineages from various extant hosts can be explained by 

incomplete lineage sorting of the virus among the descendant host species (the virus 

was not vertically transmitted to all descendant hosts), extinction of virus lineages 

along particular hosts or a failure to detect these viruses in non-human species. The 

findings of the present analysis indicate the HPV radiations began tens of millions of 

years prior to the existence of humans – the divergence of the common ancestor of the 

α PVs is estimated to have occurred 70-80 mya, that of the β PVs is estimated at 

around 55-65 mya and that of the γ PVs is estimated at around 75 mya in our analysis. 

According to these timings, all three genera existed prior to the divergence of the 

ancestral Primate species, the α and γ PVs may even have existed prior to the 

divergence of the Euarchonta, which include the Dermoptera (e.g. flying lemurs) and 

Scandentia (e.g. tree shrews) orders as well as the Primates. However, no PVs have 

been isolated from the Dermoptera or the Scandentia.  

The number of known hosts is gradually increasing; since this analysis was 

performed, new PV types have been identified in diverse species such as the house 

mouse (Joh et al. 2011), California sea lion (Rivera et al. 2012), Hamadryas baboon

 (Bergin et al. 2012), Arabian camel (Ure et al. 2011), the marsupial brush-tailed 

Bettong (Bennett et al. 2010), and reptiles like the Carpet python (Lange et al. 2012). 

However, no host species has been uncovered that boasts as extensive diversification 
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of PV types as is observed in humans. If similar radiations are present in other 

mammalian (and non-mammalian) orders then the Papillomaviridae family has the 

potential to be many orders larger than estimated under a strictly codiverging 

mechanism of PV diversification. 

 

Topological differences between the E1 and L1 genes did not result in conflicting 

divergence times for the majority of viral nodes; this may serve to strengthen the 

argument for recombination among ancestral PV lineages, since recombination occurs 

between co-existing lineages.  

The cetacean PVs provide an interesting example of this. Both cetacean PVs were 

extracted from genital warts; in the E1 gene tree they form a clade sister to the α PVs, 

which are the only other clade comprising of genital PVs. In the L1 gene tree, the 

cetacean PVs form a clade sister to the ξ bovine PVs, thus for these PVs the L1 gene 

tree appears to reflect the host phylogeny whereas the E1 gene tree reflects the 

biological properties of the virus. In Chapter 3, I considered a hypothesis of 

convergent evolution to explain these differences. However, temporal data may 

favour a hypothesis of recombination. The results of the biased sampling analysis 

indicate codivergence of the E1 α primate PV-cetacean PV lineages and prior 

divergence of the ξ bovine PV-cetacean PV L1 genes. In addition, the sampled 

divergence times for the E1 α primate-cetacean node are similar with those of the L1 

ξ bovine-cetacean node. The results appear to suggest that the ancestral PV lineage 

that was passed on to the two cetacean animals may be a recombinant PV formed 

from the early region of the ancestral α primate PV genome and the late region of the 

ancestral ξ bovine PV genome. New data presents a more plausible scenario that fits 

in well with these results. Gottschling et al. (Gottschling et al. 2011a) proposed that 

the ancestor of a newly discovered cetacean PphPV3, which clusters with the α PV 

clade in phylogenies derived independently from the early genes and the late genes, 

recombined with the ancestor of the other cetacean PVs and passed on its early genes 

to this ancestor. Thus, the codivergence inferred at E1 α primate-cetacean node may 

reflect the codivergence of the E1 α -PphV3 ancestor. 
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Previous estimates of the rate of evolution of PVs have been obtained from PV 

sequences between closely related hosts under the assumption of cospeciation of host 

and virus. For feline PVs an initial estimate of 7.3-9.6×10-9 nucleotide 

substitutions/site/year (Tachezy et al. 2002) was later revised to an overall rate of 

1.95×10-8 (95% CI: 1.32×10-8, 2.47×10-8) nucleotide substitutions/site/year for the 

viral coding genome and with evolutionary rates for individual genes ranging from 

1.44×10-8 (for E7) to 2.39×10-8 (for E6) (Rector et al. 2007). A rate of 3.3-3.6×10-8 

nucleotide substitutions/site/year was estimated from primate PV sequences (Van 

Ranst et al. 1995).  

The Bayesian approach used to investigate cospeciation involves estimation of the 

evolutionary rates along each branch. The mean rate from the resulting distribution of 

branch rates therefore allows us to supply estimates of the overall average rate of PV 

evolution, as well as an estimation of how much this rate varies along various 

branches of the phylogenetic tree. I found different rates for the E1 genes and the L1 

genes. The former are found to evolve slower than the latter with mean evolutionary 

rates of 7.10×10-9 (s.d. = 1.49×10-9) nucleotide substitutions/site/year and 9.57×10-9 

(s.d. = 2.08×10-9) nucleotide substitutions/site/year, respectively.  

Previous estimates for these two genes found evolutionary rates of 1.76×10-8 

(95% CI: 1.2×10-8, 2.31×10-8) and 1.84×10-8 (95% CI: 1.27×10-8, 2.35×10-8), 

respectively, however, this analysis was restricted to feline PVs (Rector et al. 2007). 

Our lower evolutionary rates correlate with our observations of prior divergence of 

PV lineages whereas previous estimates have assumed strict correspondence with host 

divergence times among a small set of closely related PVs. The E1 gene codes for a 

protein that initiates replication whilst the L1 gene codes for the viral capsid protein. 

It may be expected that the L1 gene has a higher evolutionary rate than the E1 gene, 

as the capsid proteins must maintain diversity in order to evade recognition by the 

host immune system.  

 

The derived timings of the distant viral divergences can be compromised by 

saturation. Examination of the sampled phylogenies found no correlation between the 

branch specific substitution rates and the depth of the branch on the phylogenetic tree, 

providing no evidence for such saturation effects. More conclusive evidence of the 

lack of such saturation would require a better characterization of the timing of these 
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deeper nodes, something that is not available given the current sequence data and 

available host speciation information. 

 

 

In performing this analysis I am introducing a new method to investigate 

diversification mechanisms of viruses and other parasites. Previous methods have 

generally relied on a tree reconciliation approach (e.g., TreeMap), which involve 

counting events necessary to explain discrepancies between the calculated host and 

associate trees. These methods are susceptible to the problems of unknown host and 

parasite phylogenies, the need to assign relative weights to the different 

diversification events and the existence of equally parsimonious but different 

solutions. 

The difficulties encountered with TreeMap are clearly demonstrated in a recent 

application of the method to resolve PV-host phylogenetic incongruities (Gottschling 

et al. 2011b). Since TreeMap compares only the topological structure of the host and 

virus trees, a number of potentially optimal reconciliations may be obtained when 

considering codivergence, host transfer, prior divergence and sorting events, 

particularly when there is no distinction in the relative weighting given to non-

codiverging events. In such cases, the number of potential solutions is found to 

increase with the number of host transfer events that are allowed to occur and 

therefore Gottschling and colleagues had to limit the number of host transfer events 

allowed in the reconciliation. Thus, purely due to the limitations of the method, they 

have had to exclude a large number of potential solutions, one of which may be the 

correct one.  

The extensively tangled nature of the topological incongruities observed between 

phylogenies of the PVs and their hosts makes it almost unmanageable for methods 

based purely on topological comparisons. Gottschling and colleagues had to 

deconstruct the complete PV tree, estimated for PV types comprising 30 different PV 

genera infecting a total of 43 different vertebrate species, into four large well-

supported clades. Three of these four clades consist of PVs infecting host species 

from the euarchontoglires and laurasiatheria superorders of placental mammals (1 

clade also contains the marsupial infecting BpPV1), whilst the other clade contains 

only species from the laurasiatheria superorder. Multiple optimal reconciliations were 
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obtained for all 4 clades, with the clade comprised of α primate PVs, ο cetacean PVs, 

υ cetacean PVs, a ω carnivoran PV and a dyo-δ artiodactyl PV producing 169 optimal 

solutions. Thus, the evolutionary history of PVs is too complex to be analysed using 

only the branching patterns. 

 

I have instead implemented an approach that considers codivergence to represent 

the “null hypothesis” and tests for violations of codivergence by sampling viral 

divergence times that are biased for the host speciation times. This provides a means 

of inferring the different evolutionary scenarios without requiring explicit knowledge 

of the viral divergence times. The bias towards codivergence means that only those 

divergences that strongly conflict with the host speciation times will be identified. By 

utilizing Bayesian phylogenetic methods the analysis can accommodate topological 

uncertainties in the virus phylogeny, unlike other methods, and also incorporates 

evolutionary information present in the data set to evaluate temporal congruence.  

The only assumption made in this method is that host tree and the associated 

divergence times are correct, which is necessary in order for the method to produce 

results. The robustness of the analysis to errors in the host phylogeny and speciation 

times requires investigation. Explicit consideration of evolutionary events along each 

lineage is circumvented making the biased sampling method more suitable for 

complex data sets with high parasite-to-host ratios than alternative methods of 

characterising host-parasite phylogenetic incongruities. This also presents a 

significant advantage over other methods since the omission of lineages can be 

misleading and cause an analysis to arrive at an incorrect solution. In the biased 

sampling approach, the more lineages that are included in the analysis, the more 

accurate the phylogenetic estimation and, in particular, the estimation of rates and 

divergence times will be. 

 

By emphasising temporal comparisions rather than topological comparisons, this 

approach is better equipped to deal with instances of false congruence and hence non-

cospeciating events may be inferred in virus clades that appear to track the host tree. 

An example of this can be found in the present analysis. PV types from the δ genus 

cluster together in PV phylogenies. This genus consists of ungulate-infecting PVs, 

with known host species being bovidae (cows), ovidae (sheep), and cervidae (deer, 
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roe deer, reindeer and elk). The data set analysed in this thesis did not contain the 

ovidae and reindeer PV types; however, previous phylogenetic estimates that have 

included these types have found that the topology estimated within the δ PV clade 

does not follow the speciation patterns of the associated hosts. The principal 

incongruity is the closer association of the ovine PV types with the cervidae PV types 

than with the bovine PV types, whereas the ovine hosts are more closely related to 

bovine species than to the cervidae species.  

The omission of the ovine PV sequences from this analysis resulted in the 

topology of the δ PV clade appearing congruent with that of the associated hosts: the 

bovine PV types clustered together (p=1.0), the cervidae PV types clustered together 

(p=1.0), and the topology of PV types within the δ cerivdae clade mirrored that of the 

hosts (p=1.0) in the E1 and L1 gene trees. Thus, assuming cophylogeny equates to 

codivergence, the apparent cophylogenetic structure of the analysed δ PVs would be 

inferred as evidence of codivergnce of the δ PVs. However, the biased sampling 

approach taken, which compares viral divergence times against the corresponding 

host speciation times, rejected the null hypothesis of codivergence in favour of prior 

divergence at the split of the δ bovidae-δ cervidae PV lineages and within the cervidae 

PV clade. 

 

The size of the bias applied is important. If the bias towards codivergence is not 

sufficiently strong, the MCMC sampling will be dominated by irrelevant timescales, 

and the posterior probabilities of both real and synthetic data will include negligible 

cospeciation posteriors, resulting in lack of statistical power. Conversely, when the 

bias is too strong the MCMC mixing times become inconveniently long; this is 

especially a problem when there is evidence rejecting cospeciation based on minimal 

posteriors, as occurred with the higher bias used in this paper. It is best to be 

suspicious of results rejecting codivergence unless the results concur across multiple 

MCMC threads, as in the results reported here.  

 

The statistical power of the biased sampling analysis employed in this thesis is 

also reduced by the conservative nature of the assumption of the general 

predominance of cospeciation. An examination of the power of the method using 

simulated data sets is required to determine its statistical capabilities and the extent of 
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the effect of taxon sampling and the applied bias on the results. Comparison of viral 

speciation times with that of their hosts will always be conservative, however, as prior 

radiation and host transfer events that occur within the uncertainty of the host 

speciation time cannot be detected with this method. 

 

The calculations described here are computationally intensive, as the MCMC 

analysis must be repeated for each of the parametric bootstrap simulations. Parametric 

bootstrapping to determine the statistical significance of violations of codivergence 

was necessary as the use of likelihood penalties and an improper prior distribution on 

divergence times meant that the resulting MCMC chain may not to reflect the 

posterior distribution. The benefits of temporal comparison and Bayesian 

phylogenetic analysis have already been detailed. A less computationally demanding 

approach that combines these aspects in host-associate cophylogenetic analysis would 

be to develop the method of Huelsenbeck, Rannala and Larget (2000).  The statistical 

method employed here is to incorporate a host transfer prior into Bayesian 

phylogenetic analysis, to model codivergence and host transfer of a parasite/virus 

along a host tree. A Bayesian approach that includes all four events by including 

priors for prior divergence and sorting events would allow posterior probabilities for 

these events to be determined at each node and would circumvent the dependency on 

estimates of host speciation times.  

 

 

Acknowledgement 
 

I would like to thank Andrew Rambaut for advice on the use of BEAST. 

 

 

 

 

 

 

 

 

 189



 
 
 

Conclusion 
 
 
 
 
 
 
The PVs present an interesting family of viruses for evolutionary studies: they 

constitute a large, continually expanding, family that has diversified to form strong 

associations with many different host species, to target specific anatomical sites, and 

though they are largely innocuous parasites, they have also evolved certain high-risk 

types that demonstrate the potential to cause cancer. This last discovery generated 

substantial medical interest towards the PVs and the efforts of much biological 

research have succeeded in producing two vaccines to prevent against cervical cancer-

causing HPV infections.  

Efforts to understand the evolutionary dynamics of the PVs have not made as 

much progress. A key question concerns the means by which PVs have been 

transmitted between species to produce the observed host range, currently comprising 

species from the reptilian, avian and mammalian orders. Phylogenetic estimations of 

the PVs present a picture that is difficult to interpret: distinct PV types isolated from 

different host species’ do not display a branching pattern that is concordant with that 

of the associated hosts. The most notable incongruity observed is the failure of intra-

host PV types to cluster together. Large distances are also observed between PV types 

from closely related hosts. This contradicts our expectations of an evolutionary 

scenario in which these host-specific, slow-evolving viruses simply tracked their 

hosts, speciating only when their hosts did.  

Incongruent phylogenetic patterns between parasites and their hosts are often 

interpreted as symptomatic of inter-species transmissions, an event in which a parasite 

species has successfully crossed species boundaries and established productive 

infection in a new host species. The multiple incongruities observed between 

topologies of the PV tree and the host tree would therefore suggest the possibility of 

multiple host transfer events in recent history. The prevalence of PV infection in 

humans coupled with detected infection in various domestic species and livestock 
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provides ample means for the virus to jump between hosts, however the PVs have so 

far demonstrated an inability to establish productive infection in new hosts. The 

paucity of data supporting host transfer events generates further curiosity in the 

observed PV-host phylogenetic incongruities and there is great interest in resolving 

these differences by determining the true nature of the events that produced the 

observed PV-host associations. Phylogenetic observations have generated much 

speculation on this topic however analytical methods are yet to be applied on a 

comprehensive data set of the PVs. In this thesis, I have performed the first 

characterisation of ancestral diversification mechanisms of the PVs. 

 

To characterise the evolutionary history of the PVs I devised a method in which 

temporal comparisons of host and virus speciation events could be made in the 

absence of known viral speciation times or a constant rate of evolution. Bayesian 

methods of phylogenetic analysis, which allow sampling of phylogenetic parameters, 

were utilised to sample divergence times between PV lineages. PV divergence times 

were biased towards those of the corresponding host, in accordance with the null 

hypothesis of cospeciation, by imposing a likelihood penalty on all viral divergence 

times sampled outside of the temporal range of the corresponding host speciation. The 

imposition of a penalty provides a means of identifying those PV speciation events for 

which the genetic data presents substantial support against cospeciation. A Bayesian 

MCMC chain generated under such conditions will therefore sample divergence times 

corresponding to cospeciation and/or non-cospeciation for each node. In performing a 

Bayesian analysis, one would expect to be able to make inferences based on the 

posterior distribution: the proportion of times sampled from within the host speciation 

range would be interpreted as the posterior probability of cospeciation of the virus 

lineage and for violations of cospeciation, the posterior probability of prior divergence 

(host transfer) would be derived from the proportion of times sampled before (after) 

host speciation. In this analysis however, the penalised distribution, which acts as a 

prior distribution on viral divergence times, is specified over an infinite range and 

therefore non-integrable. A likely consequence of using an improper prior distribution 

is the estimation of an improper posterior distribution thus we cannot be certain that 

inferences made from the sampled chain will be reflective of the posterior 

probabilities. To perform a statistical evaluation I employed the parametric 
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bootstrapping approach to determine p-values for the observed violations of 

cospeciation, i.e., the sampled proportions of host transfer and prior divergence.  

 

I applied this biased sampling approach to analyse the highly conserved E1 and 

L1 genes of 108 PVs covering 18 different host species. For both the E1 and the L1 

data set the results demonstrate substantial support in favour of an ancient association 

of the PVs with their hosts. There is also strong support for the theory that, despite 

multiple incongruities between the host and virus phylogenies, new PV-host 

associations have largely been acquired by descent and not by host transfer events. 

This is not equivalent to saying that PV lineages have cospeciated with their hosts. 

The sampled times indicate a number of statistically significant prior divergence 

events, where adaptive radiation of virus lineages resulted in multiple lineages 

associated with ancestral hosts. Further identification of PV types will provide the 

only means of determining whether these multiple lineages then cospeciated with their 

hosts and survived to the present day or whether they have been lost - either through 

extinction at some point or due to incomplete lineage sorting in the speciated hosts 

such that not all lineages are inherited by the new hosts. The absence of fossil data for 

viruses renders it impossible to discern between the last two situations however the 

estimated divergence times indicate the existence of at least 7 PV lineages prior to the 

separation of the Euarchontoglires (primates/rodents/lagomorphs) and the 

Laurasiatheria (artiodactyla/carnivore/cetacea), which suggests the potential for 

substantial PV diversity among the mammalian kingdom. It will be very interesting to 

see how much PV diversity is discovered in the animal kingdom given that many 

animal orders and thousands of species currently remain unrepresented in the PV 

database. An interesting avenue of future research will involve identification of the 

molecular changes and environments that facilitated the various within-host adaptive 

radiation events. Among the HPVs there have been diversifications to cutaneous 

tissue, mucosal tissue, specific anatomic sites and oncogenecity; however, each of 

these diversifications represents a large clade of PV types within which the effect of 

further PV radiations is not known. Identification of the molecular changes 

responsible for these divergences will provide the first step in elucidating the reasons 

behind substantial prior divergence events within the PV family. 
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Whilst the analysis predicts that many PV lineages existed prior to the hosts they 

currently associate with, there is also some sampling of viral speciation events that 

occurred after that of the corresponding host. Significant support for these host 

transfer events was only found for the human-porcupine PV divergence in the L1 

gene, however, and the different positions occupied by this clade in the E1 and L1 

gene trees may point to an ancestral recombination event at least 40 ma. Although 

continued sampling has revealed greater diversity in many PV clades, new relatives of 

the ν-human and σ-porcupine PV lineages are yet to be identified to offer further 

clarity on the likely events occurring within this clade. 

 

The results obtained may be affected by the imbalance in the data set. Some 

clades, namely those corresponding to genera populated by the HPVs, have been 

densely sampled whilst clades formed by other genera are more sparsely sampled. 

This can affect the accuracy of phylogenetic estimation and the estimation of 

divergence times. For instance, the relatively recent divergence of the avian PV and 

the ancestral mammalian PV lineage estimated in this analysis is more likely a 

consequence of the greater evolutionary distance between the mammalian and avian 

PVs and an underestimation of this distance due to the lack of sequence data in this 

region of the tree. For the analysis of the PVs, however, I feel that the omission of 

sequences to provide a more balanced tree is not the best approach since the removal 

of data will also affect the estimation process. Increased sampling of PV types from 

non-human hosts will provide a more balanced tree and allow for more accurate 

estimation of PV phylogenies, evolutionary rates and diversification times. The PV 

database is continually expanding and currently covers 39 non-human host species. 

As the gaps in the host range of PVs begin to be filled in, re-evaluations of temporal 

congruence between PV and host divergences will serve to refine the evolutionary 

picture of PV diversification mechanisms presented here.   

 

The tangled evolutionary history of the PVs is further complicated by the finding 

of different evolutionary histories for each gene. Phylogenetic incongruities with the 

L2 gene are supported by the identification by recombination detection methods of 

multiple potential recombination signals in this gene of various PVs. The findings of 

phylogenetic incongruities between all PV genes would therefore suggest a highly 
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convoluted evolutionary history of PVs involving multiple ancestral recombination 

events. The identification of recombinant PV types and recombination breakpoints in 

PV genomes would therefore form the next area of study. If recombination has been a 

dominant evolutionary force in the PV family, affecting multiple genes, attempts to 

understand the evolutionary history of the PVs will face far greater challenges than 

are currently realised.  
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Appendix A 
 
 

Host 
species 

PV Type PV Genus-Species GenBank Accession 
Numbers 

Human  HPV32 α-1 X74475 
 HPV10 α-2 X74465 
 HPV28 α-2 U31783 
 HPV29 α-2 U31784 
 HPV77 α-2 Y15175 
 HPV94a α-2 AJ620211 
 HPV61 α-3 U31793 
 candHPV62 α-3 AY395706 
 HPV72 α-3 X94164 
 HPV83 α-3 AF151983 
 HPV84 α-3 AF293960 
 candHPV86 α-3 AF349909 
 candHPV87 α-3 AJ400628 
 candHPV89 α-3 AF436128 
 HPV102 α-3 DQ080083 
 HPV27 α-4 X74473 
 HPV57 α-4 X55965 
 HPV106 α-4 DQ080082 
 HPV26 α-5 X74472 
 HPV69 α-5 AB027020 
 HPV82 α-5 AB027021 
 HPV30 α-6 X74474 
 HPV66 α-6 U31794 
 HPV18 α-7 X05015 
 HPV39 α-7 M62849 
 HPV45 α-7 X74479 
 HPV59 α-7 X77858 
 HPV68a α-7 DQ080079 
 HPV70 α-7 U21941 
 candHPV85 α-7 AF131950 

HPV97 α-7 DQ080080 
 HPV7 α-8 X74463 
 HPV40 α-8 X74478 
 HPV43 α-8 AJ620205 
 candHPV91 α-8 AF419318 
 HPV16 α-9 K02718 
 HPV31 α-9 J04353 
 HPV33 α-9 M12732 
 HPV35 α-9 M74117 
 HPV52 α-9 X74481 
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Host 

species 
PV Typea PV Genus-Species GenBank Accession 

Numbers 
Homo 
sapien 

(human) 

HPV58 α-9 D90400 

 HPV67 α-9 D21208 
 HPV6 α-10 AF092932 

 HPV6b α-10 X00203 
 HPV11 α-10 M14119 
 HPV13 α-10 DQ344807 
 HPV44 α-10 U31788 
 HPV34 α-11 X74476 
 HPV73 α-11 X94165 
 HPV54 α-13 U37488 
 HPV5 β-1 M17463 
 HPV5b β-1 D90252 
 HPV12 β-1 X74466 
 HPV19 β-1 X74470 
 HPV20 β-1 U31778 
 HPV21 β-1 U31779 
 HPV24 β-1 U31782 
 HPV25 β-1 X74471 
 HPV36 β-1 U31785 
 HPV93 β-1 AY382778 
 RTRX7 β-1 U85660 
 HPV9 β-2 X74464 
 HPV15 β-2 X74468 
 HPV17 β-2 X74469 
 HPV22 β-2 U31780 
 HPV23 β-2 U31781 
 HPV37 β-2 U31786 
 HPV38 β-2 U31787 
 HPV80 β-2 Y15176 
 HPV49 β-3 X74480 
 HPV75 β-3 Y15173 
 HPV76 β-3 Y15174 
 candHPV92 β-4 AF531420 
 candHPV96 β-5 AY382779 
 HPV4 γ-1 X70827 
 HPV65 γ-1 X70829 
 HPV95 γ-1 AJ620210 
 HPV48 γ-2 U31789 
 HPV50 γ-3 U31790 
 HPV60 γ-4 U31792 
 HPV63 μ X70828 
 HPV41 ν X56147 
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Host species PV Typea PV Genus-Species GenBank Accession 
Numbers 

Pan paniscus 
(bonobo) 

PcPV 
(PpPV1) 

α-10 X62844 

Pan troglodytes 
(common 

chimpanzee) 

CCPV1 
(PtPV1) 

α-10 AF020905 

Macaca mulata 
(Rhesus monkey) 

RhPV1 
(MmPV1) 

α-12 M60184 

Micromys minutus 
(Muridae) 

MmPV 
(MmiPV1) 

π DQ269468 

Mastomys coucha 
(Muridae) 

McPV2 π DQ664501 

Sylvilagus 
floridanus 

(Cottontail rabbit) 

CRPVb 
(SfPV1) 

κ AJ243287 

Oryctolagus 
cuniculus 

(European /domestic 
rabbit) 

ROPV 
(OcPV1) 

κ AF227240 

Erethizon 
dorsatum 

(porcupine) 

EdPV1 σ AY684126 

Bos Taurus 
(bovine) 

BPV1 δ X02346 

 BPV2 δ M20219 
 BPV3 ξ AF486184 
 BPV5 ε AJ620206 
 BPV7 unclassified DQ217793 
 BPV8 ε DQ098913 
 BPV9 ξ AB331650 
 BPV10 ξ AB331651 

Odocoileus 
virginianus 

(deer) 

DPV 
(OvPV1) 

δ M11910 

Capreolus 
capreolus 

        (Roe deer) 
 

RPV 
(CcaPV1) 

δ AF443292 

Alces alces 
(European Elk) 

EePV 
(AaPV1) 

δ M15953 

Phocoena 
spinipinnis 
(porpoise) 

PsPV 
(PsPV1) 

ο AJ238373 

Tursiops truncatus 
(Bottlenosed 

dolphin) 

TtPV2 υ AY956402 
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Host species PV Typea PV Genus-Species GenBank Accession Numbers

Canis familiaris 
(dog) CPV2 τ AY722648 

 COPV 
(CPV1) λ D55633 

Procyon lotor 
(raccoon) PlPV1 λ AY763115 

Felis domesticus 
(cat) 

FdPV 
(FdPV1) λ AF480454 

 

Table A.1: Data set of PV types analysed. a abbreviations in brackets indicate new 

names following reclassification by Bernard et al. (2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 198



                   
 

          
 

           
 

 

          

 

Figure A.2 
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Figure A.2 
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Figure A.2: Sampled likelihoods of paired-gene MCMC chains run with evolutionary 

parameters constrained to be the same for each gene. Red chain represents topological 

constraint on paired genes. Blue chain represents independent topologies for each 

gene. 
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Figure A.3 

 202



           
 

           
 

          
 

 

Figure A.3 
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Figure A.3: Sampled likelihoods of paired-gene MCMC chains run with independent 

evolutionary parameters for each gene. Red chain represents topological constraint on 

paired genes. Blue chain represents independent topologies for each gene. 
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Figure A.4: Sampled likelihoods of paired-gene MCMC chains run using data from 

the third codon sites only (evolutionary parameters constrained across genes). Chains 

in which the paired genes are constrained to sample identical topologies are shown in 

red and chains in which independent topologies are sampled for each gene are shown 

in blue.  
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Figure A.5: Sampled likelihoods of paired-gene MCMC chains run using data from 

the third codon sites only (independent evolutionary parameters across genes). Chains 

in which the paired genes are constrained to sample identical topologies are shown in 

red and chains in which independent topologies are sampled for each gene are shown 

in blue. 
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Figure A.6: MAP phylogeny for the E1 gene.  
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Figure A.7: MAP phylogeny for the E2 gene.  
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Figure A.8: MAP phylogeny for the E6 gene.  
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Figure A.9: MAP phylogeny for the E7 gene.  
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Figure A.10: MAP phylogeny for the L1 gene.  
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Figure A.11: MAP phylogeny for the L2 gene.  
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Figure B.1 
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Figure B.1 
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Figure B.1: The sampled times for PV divergences of the E1 gene. Pink, orange and 
yellow densities indicate sampled times for chains simulated under the ln(0.005) penalty; 
black, blue and green densities indicate sampled times for chains simulated under the 
ln(0.05) penalty. The vertical grey bars indicate the speciation range of the corresponding 
host (as estimated by Bininda-Emonds et al. 2007). 
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Figure B.2: The sampled times for PV divergences of the L1 gene. Pink, orange and 
yellow densities indicate sampled times for chains simulated under the ln(0.005) penalty; 
black, blue and green densities indicate sampled times for chains simulated under the 
ln(0.05) penalty. The vertical grey bars indicate the speciation range of the corresponding 
host (as estimated by Bininda-Emonds et al. 2007). 
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Figure B.3 
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Figure B.3: The prior distributions of  PV divergences of the E1 gene obtained 
by performing an MCMC simulation sam om the prior. The orange distribution 
indicates the prior distribution of times for chains simulated under the ln(0.005) penalty; 
the blue distribution indicates the prior distribution of times for chains simulated under 
the ln(0.05) penalty. The vertical grey bars indicate the speciation range of the 
corresponding host (as estimated by Bininda-Emonds et al. 2007). 
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Figure B.4: The prior distributions of times for PV divergences of the L1 gene obtained 
by performing an MCMC simulation sampling from the prior. The orange distribution 
indicates the prior distribution of times for chains simulated under the ln(0.005) penalty; 
the blue distribution indicates the prior distribution of times for chains simulated under 
the ln(0.05) penalty. The vertical grey bars indicate the speciation range of the 
corresponding host (as estimated by Bininda-Emonds et al. 2007). 
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