23 research outputs found

    A Predictive 7-Gene Assay and Prognostic Protein Biomarkers for Non-small Cell Lung Cancer

    Get PDF
    This study aims to develop a multi-gene assay predictive of the clinical benefits of chemotherapy in non- small cell lung cancer (NSCLC) patients, and substantiate their protein expression as potential therapeutic tar- gets. Patients and methods: The mRNA expression of 160 genes identified from microarray was analyzed in qRT-PCR assays of independent 337 snap-frozen NSCLC tumors to develop a predictive signature. A clinical trial JBR.10 was included in the validation. Hazard ratio was used to select genes, and decision-trees were used to construct the predictive model. Protein expression was quantified with AQUA in 500 FFPE NSCLC samples. Results: A 7-gene signature was identified from training cohort (n = 83) with accurate patient stratification (P = 0.0043) and was validated in independent patient cohorts (n = 248, P b 0.0001) in Kaplan-Meier analyses. In the predicted benefit group, there was a significantly better disease-specific survival in patients receiving adjuvant chemotherapy in both training (P = 0.035) and validation (P = 0.0049) sets. In the predicted non-benefit group, there was no survival benefit in patients receiving chemotherapy in either set. The protein expression of ZNF71 quantified with AQUA scores produced robust patient stratification in separate training (P = 0.021) and validation (P = 0.047) NSCLC cohorts. The protein expression of CD27 quantified with ELISA had a strong correlation with its mRNA expression in NSCLC tumors (Spearman coefficient = 0.494, P b 0.0088). Multiple sig- nature genes had concordant DNA copy number variation, mRNA and protein expression in NSCLC progression. Conclusions: This study presents a predictive multi-gene assay and prognostic protein biomarkers clinically appli- cable for improving NSCLC treatment, with important implications in lung cancer chemotherapy and immunotherapy

    Speech delays and behavioral problems are the predominant features in individuals with developmental delays and 16p11.2 microdeletions and microduplications

    Get PDF
    Microdeletions and microduplications encompassing a ~593-kb region of 16p11.2 have been implicated as one of the most common genetic causes of susceptibility to autism/autism spectrum disorder (ASD). We report 45 microdeletions and 32 microduplications of 16p11.2, representing 0.78% of 9,773 individuals referred to our laboratory for microarray-based comparative genomic hybridization (aCGH) testing for neurodevelopmental and congenital anomalies. The microdeletion was de novo in 17 individuals and maternally inherited in five individuals for whom parental testing was available. Detailed histories of 18 individuals with 16p11.2 microdeletions were reviewed; all had developmental delays with below-average intelligence, and a majority had speech or language problems or delays and various behavioral problems. Of the 16 individuals old enough to be evaluated for autism, the speech/behavior profiles of seven did not suggest the need for ASD evaluation. Of the remaining nine individuals who had speech/behavior profiles that aroused clinical suspicion of ASD, five had formal evaluations, and three had PDD-NOS. Of the 19 microduplications with parental testing, five were de novo, nine were maternally inherited, and five were paternally inherited. A majority with the microduplication had delayed development and/or specific deficits in speech or language, though these features were not as consistent as seen with the microdeletions. This study, which is the largest cohort of individuals with 16p11.2 alterations reported to date, suggests that 16p11.2 microdeletions and microduplications are associated with a high frequency of cognitive, developmental, and speech delay and behavior abnormalities. Furthermore, although features associated with these alterations can be found in individuals with ASD, additional factors are likely required to lead to the development of ASD

    Expanding the clinical phenotype of the 3q29 microdeletion syndrome and characterization of the reciprocal microduplication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interstitial deletions of 3q29 have been recently described as a microdeletion syndrome mediated by nonallelic homologous recombination between low-copy repeats resulting in an ~1.6 Mb common-sized deletion. Given the molecular mechanism causing the deletion, the reciprocal duplication is anticipated to occur with equal frequency, although only one family with this duplication has been reported.</p> <p>Results</p> <p>In this study we describe 14 individuals with microdeletions of 3q29, including one family with a mildly affected mother and two affected children, identified among 14,698 individuals with idiopathic mental retardation who were analyzed by array CGH. Eleven individuals had typical 1.6-Mb deletions. Three individuals had deletions that flank, span, or partially overlap the commonly deleted region. Although the clinical presentations of individuals with typical-sized deletions varied, several features were present in multiple individuals, including mental retardation and microcephaly. We also identified 19 individuals with duplications of 3q29, five of which appear to be the reciprocal duplication product of the 3q29 microdeletion and 14 of which flank, span, or partially overlap the common deletion region. The clinical features of individuals with microduplications of 3q29 also varied with few common features. <it>De novo </it>and inherited abnormalities were found in both the microdeletion and microduplication cohorts illustrating the need for parental samples to fully characterize these abnormalities.</p> <p>Conclusion</p> <p>Our report demonstrates that array CGH is especially suited to identify chromosome abnormalities with unclear or variable presentations.</p

    Differential Pulmonary Effects of CoO and La2O3 Metal Oxide Nanoparticle Responses During Aerosolized Inhalation in Mice

    Get PDF
    Background: Although classified as metal oxides, cobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles, as representative transition and rare earth oxides, exhibit distinct material properties that may result in different hazardous potential in the lung. The current study was undertaken to compare the pulmonary effects of aerosolized whole body inhalation of these nanoparticles in mice. Results: Mice were exposed to filtered air (control) and 10 or 30 mg/m3 of each particle type for 4 days and then examined at 1 h, 1, 7 and 56 days post-exposure. The whole lung burden 1 h after the 4 day inhalation of CoO nanoparticles was 25 % of that for La2O3 nanoparticles. At 56 days post exposure, \u3c 1 % of CoO nanoparticles remained in the lungs; however, 22–50 % of the La2O3 nanoparticles lung burden 1 h post exposure was retained at 56 days post exposure for low and high exposures. Significant accumulation of La2O3 nanoparticles in the tracheobronchial lymph nodes was noted at 56 days post exposure. When exposed to phagolysosomal simulated fluid, La nanoparticles formed urchin-shaped LaPO4 structures, suggesting that retention of this rare earth oxide nanoparticle may be due to complexation of cellular phosphates within lysosomes. CoO nanoparticles caused greater lactate dehydrogenase release in the bronchoalveolar fluid (BALF) compared to La2O3 nanoparticles at 1 day post exposure, while BAL cell differentials indicate that La2O3 nanoparticles generated more inflammatory cell infiltration at all doses and exposure points. Histopathological analysis showed acute inflammatory changes at 1 day after inhalation of either CoO or La2O3 nanoparticles. Only the 30 mg/m3 La2O3 nanoparticles exposure caused chronic inflammatory changes and minimal fibrosis at day 56 post exposure. This is in agreement with activation of the NRLP3 inflammasome after in vitro exposure of differentiated THP-1 macrophages to La2O3 but not after CoO nanoparticles exposure. Conclusion: Taken together, the inhalation studies confirmed the trend of our previous sub-acute aspiration study, which reported that CoO nanoparticles induced more acute pulmonary toxicity, while La2O3 nanoparticles caused chronic inflammatory changes and minimal fibrosis

    In vitro toxicological evaluation of surgical smoke from human tissue

    No full text
    Abstract Background Operating room personnel have the potential to be exposed to surgical smoke, the by-product of using electrocautery or laser surgical device, on a daily basis. Surgical smoke is made up of both biological by-products and chemical pollutants that have been shown to cause eye, skin and pulmonary irritation. Methods In this study, surgical smoke was collected in real time in cell culture media by using an electrocautery surgical device to cut and coagulate human breast tissues. Airborne particle number concentration and particle distribution were determined by direct reading instruments. Airborne concentration of selected volatile organic compounds (VOCs) were determined by evacuated canisters. Head space analysis was conducted to quantify dissolved VOCs in cell culture medium. Human small airway epithelial cells (SAEC) and RAW 264.7 mouse macrophages (RAW) were exposed to surgical smoke in culture media for 24 h and then assayed for cell viability, lactate dehydrogenase (LDH) and superoxide production. Results Our results demonstrated that surgical smoke-generated from human breast tissues induced cytotoxicity and LDH increases in both the SAEC and RAW. However, surgical smoke did not induce superoxide production in the SAEC or RAW. Conclusion These data suggest that the surgical smoke is cytotoxic in vitro and support the previously published data that the surgical smoke may be an occupational hazard to healthcare workers

    Impact of genotype-first diagnosis: the detection of microdeletion and microduplication syndromes with cancer predisposition by aCGH

    No full text
    The use of microarray-based comparative genomic hybridization has allowed the genetic diagnosis of some conditions before their full clinical presentation. This "genotype-first" diagnosis has the most clinical implications for genomic alterations that confer an elevated risk of cancer. In these cases, diagnosis before the manifestation of the patient's full phenotype dramatically impacts genetic counseling, clinical management, and eventual prognosis and survivability. Using microarray-based comparative genomic hybridization, we tested 18,437 individuals with indications such as developmental disabilities and congenital anomalies. We identified 34 (0.18%) individuals with DNA copy number gains or losses that encompassed gene regions associated with recognized genetic conditions with an increased risk for cancer. Three of the 34 individuals (8.8%) had a previously abnormal cytogenetic study which microarray-based comparative genomic hybridization confirmed and/or further characterized. Seven of the 34 individuals (20.6%) either had the correct disease specified in the clinical indication for study or had clinical features highly indicative of that syndrome. The remaining 24 patients (70.6%) had indications for study that were not specific to the diagnosed syndrome, such as "developmental delay" or "dysmorphic features." The ability of microarray-based comparative genomic hybridization to rapidly and objectively interrogate the genome for chromosomal imbalances has led to the opportunity to optimize medical management and outcome. This has an even more profound impact and clinical utility in conditions associated with cancer predisposition syndromes

    Use of health and school-based services in Australia by young people with attention-deficit/hyperactivity disorder

    No full text
    Copyright 2004 (C) American Academy of Child and Adolescent PsychiatryOBJECTIVE: To examine use of health (including psychiatric) and school-based services by children and adolescents who met symptom criteria for attention-deficit/hyperactivity disorder (ADHD), the factors associated with service use, and barriers to service access. METHOD: The relationship between parents’ perceptions of children’s need for professional help, the impact of children’s problems on children and parents, and services used during the previous 6 months were examined in a national sample of 398 children and adolescents with ADHD symptoms aged 6 to 17 years (70% response rate). Information was obtained from parents who completed the Diagnostic Interview Schedule for Children Version IV and standard questionnaires. Data collection took place between February and May 1998. RESULTS: Only 28% of those with ADHD symptomatology had attended health or school-based services. Among these, 41% had attended both health and school-based services, 39% had attended only health services, and 20% had attended only school-based services. Sixty-nine percent of parents attending health services wanted additional help. Parental perceptions that children needed professional help, children’s functional impairment, the impact of problems on parents, and comorbid depressive or conduct disorders had a significant and independent relationship with service use. CONCLUSIONS: A minority of children and adolescents with ADHD symptomatology receives professional help for their problems in Australia. Counseling is the most frequent help provided, with many parents wanting additional help beyond that already provided. Factors other than children’s ADHD symptomatology have a significant relationship with service attendance. Practical issues, including the cost of services and waiting lists are the most common barriers cited by parents as hindering access to services.Michael Gifford Sawyer, Joseph Rey, Fiona Marie Arney, Justine Nikola Whitham, Jennifer Joy Clark and Peter Adrian Baghurs
    corecore