1,644 research outputs found

    The Granzyme B ELISPOT assay: an alternative to the (51)Cr-release assay for monitoring cell-mediated cytotoxicity

    Get PDF
    BACKGROUND: The interferon-γ (IFN-γ) ELISPOT assay is one of the most useful techniques for immunological monitoring of cancer vaccine trials and has gained increased application as a measure of specific T cell activation. However, it does not assess cell-mediated cytotoxicity directly as IFN-γ secretion is not limited to only cytolytic cells. Granzyme B (GrB) is a key mediator of target cell death via the granule-mediated pathway. Therefore, the release of GrB by cytolytic lymphocytes upon effector-target interaction may be a more specific indicator of CTL and NK cytotoxic ability than IFN-γ secretion. METHODS: We assessed whether the GrB ELISPOT assay is a viable alternative to the (51)Cr-release and IFN-γ ELISPOT assays for measuring antigen-specific CTL cytotoxicity. Direct comparisons between the three assays were made using human CTL cell lines (αEN-EBV and αJY) and an in vitro stimulated anti-Flu matrix peptide (FMP)-specific CTL. RESULTS: When the GrB ELISPOT was directly compared to the IFN-γ ELISPOT and (51)Cr-release assays, excellent cross-correlation between all three assays was shown. However, measurable IFN-γ secretion in the ELISPOT assay was observed only after 1 hour of incubation and cytotoxicity assessed via the (51)Cr-release assay after 4 hours, whereas GrB secretion was detectable within 10 min of effector-target contact with significant secretion observed after 1 h. Titration studies demonstrated a strong correlation between the number of effector cells and GrB spots per well. Irrelevant targets or antigens did not induce significant GrB secretion. Additionally, GrB secretion was abrogated when CTL cultures were depleted of CD8+ cells. CONCLUSION: Our findings demonstrate that the GrB ELISPOT assay is a superior alternative to the (51)Cr-release assay since it is significantly more sensitive and provides an estimation of cytotoxic effector cell frequency. Additionally, unlike the IFN-γ ELISPOT assay, the GrB ELISPOT directly measures the release of a cytotolytic protein. Detection of low frequency tumor-specific CTL and their specific effector functions can provide valuable insight with regards to immunological responses

    Evaluating the cytotoxicity of innate immune effector cells using the GrB ELISPOT assay

    Get PDF
    BACKGROUND: This study assessed the Granzyme B (GrB) ELISPOT as a viable alternative to the (51)Cr-release assay for measuring cytotoxic activity of innate immune effector cells. We strategically selected the GrB ELISPOT assay because GrB is a hallmark effector molecule of cell-mediated destruction of target cells. METHODS: We optimized the GrB ELISPOT assay using the human-derived TALL-104 cytotoxic cell line as effectors against K562 target cells. Titration studies were performed to assess whether the ELISPOT assay could accurately enumerate the number of GrB-secreting effector cells. TALL-104 were treated with various secretion inhibitors and utilized in the GrB ELISPOT to determine if GrB measured in the ELISPOT was due to degranulation of effector cells. Additionally, CD107a expression on effector cells after effector-target interaction was utilized to further confirm the mechanism of GrB release by TALL-104 and lymphokine-activated killer (LAK) cells. Direct comparisons between the GrB ELISPOT, the IFN-γ ELISPOT and the standard (51)Cr-release assays were made using human LAK cells. RESULTS: Titration studies demonstrated a strong correlation between the number of TALL-104 and LAK effector cells and the number of GrB spots per well. GrB secretion was detectable within 10 min of effector-target contact with optimal secretion observed at 3–4 h; in contrast, optimal IFN-γ secretion was not observed until 24 h. The protein secretion inhibitor, brefeldin A, did not inhibit the release of GrB but did abrogate IFN-γ production by TALL-104 cells. GrB secretion was abrogated by BAPTA-AM (1,2-bis-(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid tetra(acetoxymethyl) ester), which sequesters intracellular Ca(2+), thereby preventing degranulation. The number of effector cells expressing the degranulation associated glycoprotein CD107a increased after interaction with target cells and correlated with the stimulated release of GrB measured in the ELISPOT assay. CONCLUSIONS: Because of its high sensitivity and ability to estimate cytotoxic effector cell frequency, the GrB ELISPOT assay is a viable alternative to the (51)Cr-release assay to measure MHC non-restricted cytotoxic activity of innate immune cells. Compared to the IFN-γ ELISPOT assay, the GrB ELISPOT may be a more direct measure of cytotoxic cell activity. Because GrB is one of the primary effector molecules in natural killer (NK) cell-mediated killing, detection and enumeration of GrB secreting effector cells can provide valuable insight with regards to innate immunological responses

    A modified human ELISPOT assay to detect specific responses to primary tumor cell targets

    Get PDF
    BACKGROUND: The desired outcome of cancer vaccination is to induce a potent T cell response which can specifically recognize and eliminate autologous tumor cells in vivo. Accordingly, immunological assays that demonstrate recognition of native tumor cells (tumor-specific) may be more clinically relevant than assays that demonstrate recognition of tumor protein or peptide (antigen-specific). METHODS: Towards this goal, we adapted the IFN-γ ELISPOT assay to measure immune responses against autologous primary tumor cells in vaccinated cancer patients. As a model system to develop the assay, we utilized peripheral blood mononuclear cells (PBMC) directly isolated from follicular lymphoma patients vaccinated with tumor-derived idiotype protein. RESULTS: After optimizing several variables, we demonstrated that the modified IFN-γ ELISPOT assay could be used to reliably and reproducibly determine the tumor-reactive T cell frequency in the PBMC of these patients. The precursor frequency of tumor-reactive T cells was significantly higher in the postvaccine PBMC, compared with prevaccine samples in all patients tested. Furthermore, the specificity of these T cells was established by the lack of reactivity against autologous normal B cells. CONCLUSIONS: These results demonstrate the feasibility of quantitating tumor-specific T cell responses when autologous, primary tumor cells are available as targets

    Antibodies against insulin measured by electrochemiluminescence predicts insulitis severity and disease onset in non-obese diabetic mice and can distinguish human type 1 diabetes status

    Get PDF
    Abstract Background The detection of insulin autoantibodies (IAA) aids in the prediction of autoimmune diabetes development. However, the long-standing, gold standard 125I-insulin radiobinding assay (RBA) has low reproducibility between laboratories, long sample processing times and requires the use of newly synthesized radiolabeled insulin for each set of assays. Therefore, a rapid, non-radioactive, and reproducible assay is highly desirable. Methods We have developed electrochemiluminescence (ECL)-based assays that fulfill these criteria in the measurement of IAA and anti-insulin antibodies (IA) in non-obese diabetic (NOD) mice and in type 1 diabetic individuals, respectively. Using the murine IAA ECL assay, we examined the correlation between IAA, histopathological insulitis, and blood glucose in a cohort of female NOD mice from 4 up to 36 weeks of age. We developed a human IA ECL assay that we compared to conventional RBA and validated using samples from 34 diabetic and 59 non-diabetic individuals in three independent laboratories. Results Our ECL assays were rapid and sensitive with a broad dynamic range and low background. In the NOD mouse model, IAA levels measured by ECL were positively correlated with insulitis severity, and the values measured at 8-10 weeks of age were predictive of diabetes onset. Using human serum and plasma samples, our IA ECL assay yielded reproducible and accurate results with an average sensitivity of 84% at 95% specificity with no statistically significant difference between laboratories. Conclusions These novel, non-radioactive ECL-based assays should facilitate reliable and fast detection of antibodies to insulin and its precursors sera and plasma in a standardized manner between laboratories in both research and clinical settings. Our next step is to evaluate the human IA assay in the detection of IAA in prediabetic subjects or those at risk of type 1 diabetes and to develop similar assays for other autoantibodies that together are predictive for the diagnosis of this common disorder, in order to improve prediction and facilitate future therapeutic trials.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group.

    Get PDF
    Cancer immunotherapy has transformed the treatment of cancer. However, increasing use of immune-based therapies, including the widely used class of agents known as immune checkpoint inhibitors, has exposed a discrete group of immune-related adverse events (irAEs). Many of these are driven by the same immunologic mechanisms responsible for the drugs\u27 therapeutic effects, namely blockade of inhibitory mechanisms that suppress the immune system and protect body tissues from an unconstrained acute or chronic immune response. Skin, gut, endocrine, lung and musculoskeletal irAEs are relatively common, whereas cardiovascular, hematologic, renal, neurologic and ophthalmologic irAEs occur much less frequently. The majority of irAEs are mild to moderate in severity; however, serious and occasionally life-threatening irAEs are reported in the literature, and treatment-related deaths occur in up to 2% of patients, varying by ICI. Immunotherapy-related irAEs typically have a delayed onset and prolonged duration compared to adverse events from chemotherapy, and effective management depends on early recognition and prompt intervention with immune suppression and/or immunomodulatory strategies. There is an urgent need for multidisciplinary guidance reflecting broad-based perspectives on how to recognize, report and manage organ-specific toxicities until evidence-based data are available to inform clinical decision-making. The Society for Immunotherapy of Cancer (SITC) established a multidisciplinary Toxicity Management Working Group, which met for a full-day workshop to develop recommendations to standardize management of irAEs. Here we present their consensus recommendations on managing toxicities associated with immune checkpoint inhibitor therapy

    Intraosseous Nerve Sheath Tumors in the Jaws

    Get PDF
    Although the head and neck region is recognized as the most common location for peripheral nerve sheath tumors, central involvement, particularly in the jaw bones, is quite unusual. Neurofibroma is one of the most common nerve sheath tumors occurring in the soft tissue and generally appears in neurofibromatosis 1 (NF1 or von Recklinghausen's disease). Malignant peripheral nerve sheath tumors (MPNSTs) are uncommon sarcomas that almost always arise in the soft tissue. Here, we report four cases of intraosseous peripheral nerve sheath tumors occurring in the jaw bones and compare the clinical, radiologic, and pathologic findings in order to make a differential diagnosis

    Selection analysis identifies unusual clustered mutational changes in Omicron lineage BA.1 that likely impact Spike function.

    Get PDF
    Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any genomes within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)

    Get PDF
    We present a measurement of time-dependent CP-violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of 29.7 fb1{\rm fb}^{-1} recorded at the Υ(4S)\Upsilon(4S) resonance and 3.9 fb1{\rm fb}^{-1} off-resonance. One of the neutral B mesons, which are produced in pairs at the Υ(4S)\Upsilon(4S), is fully reconstructed in the CP decay modes J/ψKS0J/\psi K^0_S, ψ(2S)KS0\psi(2S) K^0_S, χc1KS0\chi_{c1} K^0_S, J/ψK0J/\psi K^{*0} (K0KS0π0K^{*0}\to K^0_S\pi^0) and J/ψKL0J/\psi K^0_L, or in flavor-eigenstate modes involving D()π/ρ/a1D^{(*)}\pi/\rho/a_1 and J/ψK0J/\psi K^{*0} (K0K+πK^{*0}\to K^+\pi^-). The flavor of the other neutral B meson is tagged at the time of its decay, mainly with the charge of identified leptons and kaons. The proper time elapsed between the decays is determined by measuring the distance between the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample finds Δmd=0.516±0.016(stat)±0.010(syst)ps1\Delta m_d = 0.516\pm 0.016 {\rm (stat)} \pm 0.010 {\rm (syst)} {\rm ps}^{-1}. The value of the asymmetry amplitude sin2β\sin2\beta is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor-eigenstate sample and about 642 tagged B0B^0 decays in the CP-eigenstate modes. We find sin2β=0.59±0.14(stat)±0.05(syst)\sin2\beta=0.59\pm 0.14 {\rm (stat)} \pm 0.05 {\rm (syst)}, demonstrating that CP violation exists in the neutral B meson system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
    corecore