50 research outputs found

    A function for binaural integration in auditory grouping and segregation in the inferior colliculus

    Get PDF
    Responses of neurons to binaural, harmonic complex stimuli in urethane-anesthetized guinea pig inferior colliculus (IC) are reported. To assess the binaural integration of harmonicity cues for sound segregation and grouping, responses were measured to harmonic complexes with different fundamental frequencies presented to each ear. Simultaneously gated harmonic stimuli with fundamental frequencies of 125 Hz and 145 Hz were presented to the left and right ears, respectively, and recordings made from 96 neurons with characteristic frequencies >2 kHz in the central nucleus of the IC. Of these units, 70 responded continuously throughout the stimulus and were excited by the stimulus at the contralateral ear. The stimulus at the ipsilateral ear excited (EE: 14%; 10/70), inhibited (EI: 33%; 23/70), or had no significant effect (EO: 53%; 37/70), defined by the effect on firing rate. The neurons phase locked to the temporal envelope at each ear to varying degrees depending on signal level. Many of the cells (predominantly EO) were dominated by the response to the contralateral stimulus. Another group (predominantly EI) synchronized to the contralateral stimulus and were suppressed by the ipsilateral stimulus in a phasic manner. A third group synchronized to the stimuli at both ears (predominantly EE). Finally, a group only responded when the waveform peaks from each ear coincided. We conclude that these groups of neurons represent different “streams” of information but exhibit modifications of the response rather than encoding a feature of the stimulus, like pitch

    The neural substrate for binaural masking level differences in the auditory cortex

    Get PDF
    The binaural masking level difference (BMLD) is a phenomenon whereby a signal that is identical at each ear (S0), masked by a noise that is identical at each ear (N0), can be made 12–15 dB more detectable by inverting the waveform of either the tone or noise at one ear (Sπ, Nπ). Single-cell responses to BMLD stimuli were measured in the primary auditory cortex of urethane-anesthetized guinea pigs. Firing rate was measured as a function of signal level of a 500 Hz pure tone masked by low-passed white noise. Responses were similar to those reported in the inferior colliculus. At low signal levels, the response was dominated by the masker. At higher signal levels, firing rate either increased or decreased. Detection thresholds for each neuron were determined using signal detection theory. Few neurons yielded measurable detection thresholds for all stimulus conditions, with a wide range in thresholds. However, across the entire population, the lowest thresholds were consistent with human psychophysical BMLDs. As in the inferior colliculus, the shape of the firing-rate versus signal-level functions depended on the neurons' selectivity for interaural time difference. Our results suggest that, in cortex, BMLD signals are detected from increases or decreases in the firing rate, consistent with predictions of cross-correlation models of binaural processing and that the psychophysical detection threshold is based on the lowest neural thresholds across the population

    Cortical Inactivation by Cooling in Small Animals

    Get PDF
    Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other subcortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20–24°C among cells within a radius of about 2.5 mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C) but this was not sufficient to directly reduce neural activity. In an effort to visualize the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures

    Juxtacellular Labeling of Stellate, Disk and Basket Neurons in the Central Nucleus of the Guinea Pig Inferior Colliculus

    Get PDF
    We reconstructed the intrinsic axons of 32 neurons in the guinea pig inferior colliculus (IC) following juxtacellular labeling. Biocytin was injected into cells in vivo, after first analyzing physiological response properties. Based on axonal morphology there were two classes of neuron: (1) laminar cells (14/32, 44%) with an intrinsic axon and flattened dendrites confined to a single fibrodendritic lamina and (2) translaminar cells (18/32, 56%) with axons that terminated in two or more laminae in the central nucleus (ICc) or the surrounding cortex. There was also one small, low-frequency cell with bushy-like dendrites that was very sensitive to interaural timing differences. The translaminar cells were subdivided into three groups of cells with: (a) stellate dendrites that crossed at least two laminae (8/32, 25%); (b) flattened dendrites confined to one lamina and that had mainly en passant axonal swellings (7/32, 22%) and (c) short, flattened dendrites and axons with distinctive clusters of large terminal boutons in the ICc (3/32, 9%). These terminal clusters were similar to those of cortical basket cells. The 14 laminar cells all had sustained responses apart from one offset response. Almost half the non-basket type translaminar cells (7/15) had onset responses while the others had sustained responses. The basket cells were the only ones to have short-latency (7–9 ms), chopper responses and this distinctive temporal response should allow them to be studied in more detail in future. This is the first description of basket cells in the auditory brainstem, but more work is required to confirm their neurotransmitter and precise post-synaptic targets

    Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes

    Get PDF
    A differential response to sound frequency is a fundamental property of auditory neurons. Frequency analysis in the cochlea gives rise to V-shaped tuning functions in auditory nerve fibres, but by the level of the inferior colliculus (IC), the midbrain nucleus of the auditory pathway, neuronal receptive fields display diverse shapes that reflect the interplay of excitation and inhibition. The origin and nature of these frequency receptive field types is still open to question. One proposed hypothesis is that the frequency response class of any given neuron in the IC is predominantly inherited from one of three major afferent pathways projecting to the IC, giving rise to three distinct receptive field classes. Here, we applied subjective classification, principal component analysis, cluster analysis, and other objective statistical measures, to a large population (2826) of frequency response areas from single neurons recorded in the IC of the anaesthetised guinea pig. Subjectively, we recognised seven frequency response classes (V-shaped, non-monotonic Vs, narrow, closed, tilt down, tilt up and double-peaked), that were represented at all frequencies. We could identify similar classes using our objective classification tools. Importantly, however, many neurons exhibited properties intermediate between these classes, and none of the objective methods used here showed evidence of discrete response classes. Thus receptive field shapes in the IC form continua rather than discrete classes, a finding consistent with the integration of afferent inputs in the generation of frequency response areas. The frequency disposition of inhibition in the response areas of some neurons suggests that across-frequency inputs originating at or below the level of the IC are involved in their generation

    Responses to Diotic, Dichotic, and Alternating Phase Harmonic Stimuli in the Inferior Colliculus of Guinea Pigs

    Get PDF
    Humans perceive a harmonic series as a single auditory object with a pitch equivalent to the fundamental frequency (F0) of the series. When harmonics are presented to alternate ears, the repetition rate of the waveform at each ear doubles. If the harmonics are resolved, then the pitch perceived is still equivalent to F0, suggesting the stimulus is binaurally integrated before pitch is processed. However, unresolved harmonics give rise to the doubling of pitch which would be expected from monaural processing (Bernstein and Oxenham, J. Acoust. Soc. Am., 113:3323–3334, 2003). We used similar stimuli to record responses of multi-unit clusters in the central nucleus of the inferior colliculus (IC) of anesthetized guinea pigs (urethane supplemented by fentanyl/fluanisone) to determine the nature of the representation of harmonic stimuli and to what extent there was binaural integration. We examined both the temporal and rate-tuning of IC clusters and found no evidence for binaural integration. Stimuli comprised all harmonics below 10 kHz with fundamental frequencies (F0) from 50 to 400 Hz in half-octave steps. In diotic conditions, all the harmonics were presented to both ears. In dichotic conditions, odd harmonics were presented to one ear and even harmonics to the other. Neural characteristic frequencies (CF, n = 85) were from 0.2 to 14.7 kHz; 29 had CFs below 1 kHz. The majority of clusters responded predominantly to the contralateral ear, with the dominance of the contralateral ear increasing with CF. With diotic stimuli, over half of the clusters (58%) had peaked firing rate vs. F0 functions. The most common peak F0 was 141 Hz. Almost all (98%) clusters phase locked diotically to an F0 of 50 Hz, and approximately 40% of clusters still phase locked significantly (Rayleigh coefficient >13.8) at the highest F0 tested (400 Hz). These results are consistent with the previous reports of responses to amplitude-modulated stimuli. Clusters phase locked significantly at a frequency equal to F0 for contralateral and diotic stimuli but at 2F0 for dichotic stimuli. We interpret these data as responses following the envelope periodicity in monaural channels rather than as a binaurally integrated representation

    Communication calls produced by electrical stimulation of four structures in the guinea pig brain

    Get PDF
    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation

    Psychosocial impact of undergoing prostate cancer screening for men with BRCA1 or BRCA2 mutations.

    Get PDF
    OBJECTIVES: To report the baseline results of a longitudinal psychosocial study that forms part of the IMPACT study, a multi-national investigation of targeted prostate cancer (PCa) screening among men with a known pathogenic germline mutation in the BRCA1 or BRCA2 genes. PARTICPANTS AND METHODS: Men enrolled in the IMPACT study were invited to complete a questionnaire at collaborating sites prior to each annual screening visit. The questionnaire included sociodemographic characteristics and the following measures: the Hospital Anxiety and Depression Scale (HADS), Impact of Event Scale (IES), 36-item short-form health survey (SF-36), Memorial Anxiety Scale for Prostate Cancer, Cancer Worry Scale-Revised, risk perception and knowledge. The results of the baseline questionnaire are presented. RESULTS: A total of 432 men completed questionnaires: 98 and 160 had mutations in BRCA1 and BRCA2 genes, respectively, and 174 were controls (familial mutation negative). Participants' perception of PCa risk was influenced by genetic status. Knowledge levels were high and unrelated to genetic status. Mean scores for the HADS and SF-36 were within reported general population norms and mean IES scores were within normal range. IES mean intrusion and avoidance scores were significantly higher in BRCA1/BRCA2 carriers than in controls and were higher in men with increased PCa risk perception. At the multivariate level, risk perception contributed more significantly to variance in IES scores than genetic status. CONCLUSION: This is the first study to report the psychosocial profile of men with BRCA1/BRCA2 mutations undergoing PCa screening. No clinically concerning levels of general or cancer-specific distress or poor quality of life were detected in the cohort as a whole. A small subset of participants reported higher levels of distress, suggesting the need for healthcare professionals offering PCa screening to identify these risk factors and offer additional information and support to men seeking PCa screening

    The Time Course of Binaural Masking in the Inferior Colliculus of Guinea Pig Does Not Account for Binaural Sluggishness

    No full text
    Psychophysical studies show a slower response to changes in the specifically binaural input than to changes in the monaural input (binaural sluggishness). However, there is disagreement about the time course. Tracking changes in a target yields fast time constants, while detecting a constant target against a varying background yields the slowest. Changes in the binaural properties of a target are tracked up to high rates by cells in the midbrain. Indeed cells respond rapidly to a step change and then the firing rate slowly adapts. These experiments, though, are analogues of psychophysical experiments that give the faster time constants. Sluggishness should be more apparent physiologically in a binaural masking paradigm, detecting a short tone in a noise masker with a step change in masker correlation: the small change in firing rate due to the signal must be detected against the adapting firing rate change caused by the step change in the masker. However, in 40 inferior colliculus cells in the anesthetized guinea pig, in a direct analogue of the psychophysical masking paradigm, measuring thresholds for short tones across a transition in a binaural masker (e.g., from N0S0 to NĎ€S0) provided little evidence of sluggishness within individual cells despite masking level differences in these cells comparable with previous data. Previous studies of physiological correlates of binaural masking level difference suggested that different psychophysical thresholds arise from different populations of cells. This suggests the hypothesis that sluggishness may result from a change in focus between the different populations of cells signaling threshold in different binaural configurations rather than within the intrinsic properties of the cells themselves
    corecore