819 research outputs found
A new operational matrix based on Bernoulli polynomials
In this research, the Bernoulli polynomials are introduced. The properties of
these polynomials are employed to construct the operational matrices of
integration together with the derivative and product. These properties are then
utilized to transform the differential equation to a matrix equation which
corresponds to a system of algebraic equations with unknown Bernoulli
coefficients. This method can be used for many problems such as differential
equations, integral equations and so on. Numerical examples show the method is
computationally simple and also illustrate the efficiency and accuracy of the
method
Effects of Monopotassium-phosphate, Nano-calcium fertilizer, Acetyl salicylic acid and Glycinebetaine application on growth and production of tomato (Solanum lycopersicum) crop under salt stress
ArticleSalinity problem is increasingly affecting tomato production in Lebanon leading to
economic losses.
The study investigated the potential effects of nano
-
Calcium (LITHOVIT®),
monopotassium
-
phosphate (MKP: 0
-
52
-
34) fertilizers,
Acetyl salicylic aci
d
(Aspirin) and the
osmoregulator glycinebetaine (GB) on salt tolerance of potted determinate tomato
(variety Sila)
plants in open
-
field. Salt stress was induced by irrigation solutions of EC
=
2, 4, 6, 8 and
10
mS
cm
-
1
and MKP (2, 3 and 3.5
g
L
-
1
),
Aspirin (50, 75 and 100
mg
L
-
1
), LITHOVIT® (0.5,
0.75 and 1
g
L
-
1
) and GB (4.5, 6 and 7.5
g
L
-
1
) were applied through foliar application or
fertigation. Comparisons between treated and non
-
treated plants at each salinity level (control)
showed that LITHOVI
T® decreased the salinity
-
induced reductions in stem diameter, leaf area
and chlorophyll content. Medium concentrations of LITHOVIT® and Aspirin improved stem
diameter and all products except Glycinebetaine improved flower number compared to control.
Root
dry weight and Root Mass Fraction were mostly enhanced in MKP and Aspirin
-
treated
plants. Best improvement in plant yield (76%) was obtained with low concentrations of MKP and
LITHOVIT® at EC
=
8
mS
cm
-
1
due to improvement in fruit number rather than fruit
weight.
Consequently, LITHOVIT® and MKP showed superior effects under salt stress compared to
Aspirin and Glycinebtaine
Identification of a dioxin-responsive oxylipin signature in roots of date palm:involvement of a 9-hydroperoxide fatty acid reductase, caleosin/peroxygenase PdPXG2
Abstract Dioxins are highly hazardous pollutants that have well characterized impacts on both animal and human health. However, the biological effects of dioxins on plants have yet to be described in detail. Here we describe a dioxin-inducible caleosin/peroxygenase isoform, PdPXG2, that is mainly expressed in the apical zone of date palm roots and specifically reduces 9-hydroperoxide fatty acids. A characteristic spectrum of 18 dioxin-responsive oxylipin (DROXYL) congeners was also detected in date palm roots after exposure to dioxin. Of particular interest, six oxylipins, mostly hydroxy fatty acids, were exclusively formed in response to TCDD. The DROXYL signature was evaluated in planta and validated in vitro using a specific inhibitor of PdPXG2 in a root-protoplast system. Comparative analysis of root suberin showed that levels of certain monomers, especially the mono-epoxides and tri-hydroxides of C16:3 and C18:3, were significantly increased after exposure to TCDD. Specific inhibition of PdPXG2 activity revealed a positive linear relationship between deposition of suberin in roots and their permeability to TCDD. The results highlight the involvement of this peroxygenase in the plant response to dioxin and suggest the use of dioxin-responsive oxylipin signatures as biomarkers for plant exposure to this important class of xenobiotic contaminants
Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking
The oxidative cyclisation of a range of benzothieno[2,3-d]pyrimidine hydrazones (7a–j) to the 1,2,4-triazolo[4,3-c]pyrimidines (8a–j) catalysed by lithium iodide or to the 1,2,4-triazolo[1,5-c]pyrimidines (10a–j) with sodium carbonate is presented. A complementary synthesis of the 1,2,4-triazolo[1,5-c]pyrimidines starting from the amino imine 11 is also reported. The effect of these compounds on Shiga toxin (STx) trafficking in HeLa cells and comparison to the previously reported Exo2 is also detailed
Prophylactic Bacteriophage Administration More Effective than Post-infection Administration in Reducing Salmonella enterica serovar Enteritidis Shedding in Quail
Infections caused by Salmonella bacteria, often through poultry products, are a serious public health issue. Because of drawbacks associated with antibiotic prophylaxis, alternative treatments are sought. Bacterial viruses (bacteriophages) may provide an effective alternative, but concerns remain with respect to bacteriophage stability and effectiveness. To this end, we assessed the stability of a novel bacteriophage isolated from poultry excreta, siphovirus PSE, and its effectiveness in reducing Salmonella enterica serovar Enteritidis colonization in vitro and in vivo. Moreover, we sought to determine how the timing (prophylactic or therapeutic) and route (oral gavage or vent lip) of PSE administration impacted its effectiveness. Here we report that significant quantities of viable PSE bacteriophages were recovered following exposure to high and low pH, high temperatures, and bile salts, testifying to its ability to survive extreme conditions. In addition, we found that ileal lactic acid bacteria and Streptococcus spp. counts increased, but colibacilli and total aerobe counts decreased, in quail receiving phage PSE through both oral gavage and vent lip routes. In other experiments, we assessed the efficiency of PSE administration, in both prophylactic and therapeutic contexts, via either oral gavage or vent lip administration, on S. Enteritidis colonization of quail cecal tonsils. Our results demonstrate that administration of PSE as a preventive agent could reduce the S. Enteritidis colonization more effectively than post-challenge administration. Furthermore, oral administration of PSE phage is a more effective prophylactic tool for reduction of S. Enteritidis shedding in poultry than is vent lip administration
Candida albicans biofilm heterogeneity and tolerance of clinical isolates: implications for secondary endodontic infections
Aim: Endodontic infections are caused by the invasion of various microorganisms into the root canal system. Candida albicans is a biofilm forming yeast and the most prevalent eukaryotic microorganism in endodontic infections. In this study we investigated the ability of C. albicans to tolerate treatment with standard endodontic irrigants NaOCl (sodium hypochlorite), ethylenediaminetetraacetic acid (EDTA) and a combination thereof. We hypothesized that biofilm formed from a panel of clinical isolates differentially tolerate disinfectant regimens, and this may have implications for secondary endodontic infections. Methodology: Mature C. albicans biofilms were formed from 30 laboratory and oral clinical isolates and treated with either 3% NaOCl, 17% EDTA or a sequential treatment of 3% NaOCl followed by 17% EDTA for 5 min. Biofilms were then washed, media replenished and cells reincubated for an additional 24, 48 and 72 h at 37 °C. Regrowth was quantified using metabolic reduction, electrical impedance, biofilm biomass and microscopy at 0, 24, 48 and 72 h. Results: Microscopic analysis and viability readings revealed a significant initial killing effect by NaOCl, followed by a time dependent significant regrowth of C. albicans, but with inter-strain variability. In contrast to NaOCl, there was a continuous reduction in viability after EDTA treatment. Moreover, EDTA significantly inhibited regrowth after NaOCl treatment, though viable cells were still observed. Conclusions: Our results indicate that different C. albicans biofilm phenotypes grown in a non-complex surface topography have the potential to differentially tolerate standard endodontic irrigation protocols. This is the first study to report a strain dependent impact on efficacy of endodontic irrigants. Its suggested that within the complex topography of the root canal, a more difficult antimicrobial challenge, that existing endodontic irrigant regimens permit cells to regrow and drive secondary infections
A mitigation of channel crosstalk effect in dispersion shifted fiber based on durability of modulation technique
In fiber optics the Four Wave Mixing (FWM) has the harmful effect of an optical transmission system that can severely limit Wavelength Division Multiplexing (WDM) and reduce the transmission aptness. This work preset the durability of the different modulation format was tested to FWM by using Dispersion Shifted Fiber (DSF). Moreover, the performance of the proposed system is surveyed by changing the fiber length and applying an information rate of 200 Gb/s. The experimental results show that the FWM capacity has decreased significantly by more than 14 dB when applying Return to Zero (RZ) modulation form. In addition, in terms of the propsed system performance in the first channel and with 700 km distance, it was observed that the lower Bit Error Rate (BER) in the normal RZ modulation is equal to 1.3Ă—10-13. As well as it is noticeable when applied the Non Return to Zero (NRZ), the Modified Duobinary Return to Zero (MDRZ) and Gaussian modulation, the system performance will be quickly changed and getting worse, where the BERs increased to 1.3Ă—10-4, 1.3Ă—10-6 and 1.3Ă—10-2 consecutively at same channel and for the same parameters
- …