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Plants are increasingly exposed to the organic persistent pollutants, the dioxins. Here 

we show that the exposure of Arabidopsis thaliana to such pollutants resulted in specific 

perturbations of seed development. 

Abstract  

We have investigated the effects of dioxins on seed development in Arabidopsis 

thaliana. Dioxins are highly toxic persistent organic pollutants bioaccumulated by both 

plants and animals that also cause severe developmental abnormalities in humans. 

Plants were exposed to various concentrations of the most toxic congener of dioxins, 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the effects on seed development were 

analysed in depth at transcriptome, proteome and metabolome levels. Exposure to 

dioxin led to generalised effects on vegetative tissues plus a specific set of perturbations 

to seed development. Mature seeds from TCDD-treated plants had a characteristic 

‘Wrinkled’ phenotype, due to a two-thirds reduction in storage oil content. 

Transcriptional analysis of a panel of genes related to lipid and carbohydrate 

metabolism was consistent with the observed biochemical phenotypes. There were 

increases in WRI1 and LEC1 expression but decreases in ABI3 and FUS3 expression, 

which is puzzling in view of the low seed oil phenotype. This anomaly was explained by 

increased expression of 20S proteasome components that resulted in a substantial 

degradation of WRI1 protein, despite the upregulation of the WRI1 gene. Our findings 

reveal novel effects of dioxins that lead to altered gene regulation patterns that 

profoundly affect seed development in Arabidopsis.  
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Dioxins are hydrophobic compounds that tend to bioaccumulate in fatty tissues of 

animals after ingestion or following direct uptake from the environment. In terrestrial 

and aquatic environments subject to dioxin pollution, elevated levels of dioxins can be 

found in marine organisms harvested as seafood and in herbivorous livestock, such as 

cattle, that are sources of meat and dairy products. From these sources dioxins can 

readily enter human food chains and thereby constitute a potentially serious health risk. 

Indeed, dioxins are well documented as causing irreversible biological damage in 

humans and other animals and can also have significant wider ecological, environmental 

and economic impacts (Desforges et al., 2016;Glazer et al., 2016). 

In animals, it has been shown that dioxins specifically interact with a lipid-soluble 

ligand-dependent ubiquitin ligase complex that includes a dioxin receptor termed AhR 

(Ohtake et al., 2007). The AhR ligands, such as dioxins, can directly modulate steroid 

hormone signaling pathways and also affect specific transcriptional regulatory networks 

(Ohtake et al., 2007). Plants do not have AhR genes and, although they are affected by 

dioxin exposure, there have been very few studies on any wider effects on plant 

development. Our previous work on plant-dioxin interactions described above (Hanano 

et al., 2016a) was done with date palm, which is a large, slow growing perennial tree 

species that is not amenable to molecular developmental studies. We therefore 

selected the model plant Arabidopsis thaliana for more detailed analysis of dioxin 

exposure at the biochemical and genetic levels.  

Plants can be exposed to environmental dioxins and can accumulate them in their root 

system with more hydrophobic congeners being taken up to a greater extent (Inui et al., 

2011;Zhu et al., 2012). Arabidopsis plants can also absorb such xenobiotics from the 

external environment, and tend to accumulate them in leaves, seeds and roots (Hanano 

et al., 2015a). At the subcellular level, one obvious way in which dioxins might interact 

with plants is via their hydrophobic components, the most notable of which are the 

cytosolic lipid droplets (LDs) that are ubiquitous in most living organisms (Murphy, 

Introduction 
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2012). The major site of LD accumulation in plants is in seed tissue where these 

organelles can represent 50-60% of the total dry weight in some mature seeds. 

We have recently demonstrated that LDs extracted from date palm seeds can act as 

extremely effective sequestration agents for the dioxin, TCDD (Hanano et al., 2016a). 

We also found that exposure of date palm seedlings to TCDD resulted in a strong 

transcriptional induction of some members of the caleosin gene family. Caleosins are 

multifunctional lipid-, haem- and calcium-binding proteins that are major components 

of the LD proteome in plants, where they are inserted into the phospholipid monolayer 

that surrounds the triacylglycerol (TAG) core of the LDs (Murphy, 1993). Caleosins are 

also found on the bilayer membrane within the cell and can have peroxygenase 

activities (Hanano et al., 2006). Caleosin genes are strongly upregulated during the TAG 

accumulation phase of seed development. However, they are also highly responsive to a 

range of biotic and abiotic stresses and are involved in physiological processes such as 

stomatal control, transpiration, seed germination and G protein signalling (Poxleitner et 

al., 2006;Aubert et al., 2010;Ehdaeivand, 2014). It is possible that caleosins are directly 

involved in the plant response to dioxins at several different levels. For example, 

caleosins might help stimulate LD accumulation in order to assist toxin sequestration 

(Hanano et al., 2016b). Alternatively, or perhaps additionally, caleosins may act as part 

of an oxylipin signalling pathway that is involved in the overall stress response to the 

toxin (Bagchi and Stohs, 1993).    

The vegetative growth phenotype resulting from TCDD exposure was investigated in a 

previous report (Hanano et al., 2015b), which showed that administration of TCDD to 

Arabidopsis plants caused reductions in fresh weight and chlorophyll content plus 

enhanced hydrogen peroxide production and a massive stimulation of leaf anti-oxidant 

enzyme activities. The TCDD mainly accumulated in rosette leaves and mature seeds 

with much less found in stems, flowers and immature siliques. The roots of TCDD-

exposed plants showed increased lateral growth (Zhu et al., 2012) but there was a delay 

in flowering and reduced seeds yield, oil content and overall seed vitality (Hanano et al., 
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2015b). These initial studies showed that, as in animals, dioxin exposure was associated 

with a complex suite of symptoms in plants, many of which may be related to oxidative 

stress. However, we also suspected that, as in animals, dioxins might also have more 

specific effects related to reproduction. For example, we noted that dioxin exposure 

strongly and reproducibly affected seed development and storage product 

accumulation, and particularly on the amount of storage oil in mature seeds. The 

accumulation of oil in the seeds of plants such as Arabidopsis is regulated by a group of 

transcription factors that are responsible for directing the flux of assimilates imported 

into developing seeds towards TAG rather than other potential storage products such as 

starch or proteins (Maeo et al., 2009;Ma et al., 2013). For example, WRINKLED1 (WRI1) 

genes are downstream members of a group of transcription factors that exert 

considerable control over the latter part of the glycolytic pathway as well as over carbon 

flux towards fatty acid and TAG biosynthesis. WRI1 may also be involved in the 

formation of the LD proteins, such as oleosin and caleosin, which mediate the assembly 

of TAG into stable lipid droplets (Santos-Mendoza et al., 2008;Baud and Lepiniec, 2010). 

The upstream transcription factor LEAFYCOTYLEDON2 (LEC2) is proposed to regulate 

WRI1, but also has a role in regulating TAG biosynthesis genes. In turn, LEC2 and WRI1 

are the targets of master regulator genes such as LEC1, PKL and B3 domain genes 

(Swaminathan et al., 2008;Peng and Weselake, 2013). 

In this study we examined the effects of the dioxin, TCDD, on mature Arabidopsis plants 

and characterized several changes in patterns of seed development at the biochemical 

and transcriptional levels. Interestingly, these changes included alterations in expression 

of several transcription factor genes involved in mediating the flux of assimilates 

towards storage compounds. In the case of the transcription factor WRI1, TCDD-

mediated increased transcription of its gene was counterbalanced by an upregulation of 

the expression of 20S proteasome genes, which led to rapid degradation of the newly 

synthesised WRI1 protein following upregulation of the classic ubiquitin-proteasome 
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system. This has interesting analogies with the reported effects of dioxins on protein 

degradation via the ubiquitin ligase complex in animal systems (Ohtake et al., 2007). 

Materials and Methods 

Plant material, culture conditions, TCDD-treatment and microscopy 

Arabidopsis thaliana ecotype Columbia 0 (Col-0) seeds were firstly sterilised with 70% 

alcohol and sown in pots containing a sterilized mixture of potting soil, vermiculite and 

perlite (50:30:20 v/v/v). Seeds were induced to germinate by incubating pots at 4 °C for 

two days and transferring to growth chambers. Plants were grown at 20/15 °C day/night 

temperatures under a 16h/8h light/dark regime (100 mmol m22 s21). 2,3,7,8-

tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD dissolved in toluene at 10 g mL-1, purity 

99%) was purchased from Supelco Inc., USA. Plants were irrigated with TCDD solutions 

(0, 10 and 50 ng L-1) twice a week. These concentrations were chosen as they are below 

the ‘levels of action’ for dioxins in soil as determined by the US Environmental 

Protection Agency that range between 500 and 1,000 ppt (ng L-1). Responses to TCDD 

were analysed during seed development stages starting from 5 days to 17 days post 

flowering (at two-day intervals) according to Focks and Benning (Focks and Benning, 

1998). For each treatment or control, about 10 seeds were sown in individual pots 

containing a sterilized mixture of potting soil, vermiculite and perlite (50:30:20 v/v/v). 

Fifteen pots were prepared and about 150 plants produced from each treatment (10 

and 50 ng L-1) and for controls. Plants were grown at 20/15 °C day/night temperatures 

under the same conditions as mentioned above. Under these conditions, control plants 

began flowering on week 4 while plants treated with 10 or 50 ng L-1 of TCDD began 

flowering on week 5 and 6, respectively. To harvest siliques of defined developmental 

stages, individual flowers were marked by coloured threads on the day of flowering. 

About 10 grams of siliques were collected at each development stage from treated and 

control plants. Representative seeds were carefully separated from siliques and valves, 

replaced in Eppendorf tubes and frozen in liquid nitrogen and kept at – 80 °C for further 

analysis. For each time point, three individual extractions were done and measurements 
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carried out in triplicate. Microscopic imaging for seeds was performed at 30× 

magnification using a LEICA MPS60 microscope and with a Scanning Electron 

Microscope (SEM) using a Vega II XMU, TESCAN, Czech Republic at magnifications of 

200× and 500×. 

Total lipid, proteins and carbohydrate analysis 

Lipids, proteins and carbohydrate were extracted and analysed as described by Focks 

and Benning (Focks and Benning, 1998). For TLC-analysis of triacylglycerol, 50 seeds 

were ground in liquid nitrogen and lipids were extracted in 200 L of 

chloroform/methanol/formic acid (10/10/1, v/v/v). Following the extraction with 50 L 

of 1 M KCl and 0.2 M H3PO4 and separation of the organic and aqueous phases by 

centrifugation at 16,000 × g for 5 min, the lipids in the lower phase were separated on a 

silica TLC plate (TLC AI foils, Sigma-Aldrich, Germany) developed with 

hexane/diethylether/acetic acid (60/40/1, v/v/v). Lipids were visualized by staining with 

iodine vapour and compared with a commercial standard TAG mixture (Sigma-Aldrich, 

Germany). Proteins were extracted according to Focks and Benning (Focks and Benning, 

1998). Total protein was quantified in 200 L supernatant using the Bradford assay (Bio-

Rad) (Bradford, 1976). For starch extraction, the same amount of seeds were ground in 

liquid nitrogen and homogenized in 500 L of 80% (v/v) ethanol then incubated at 70 °C 

for 90 min. The homogenate was centrifuged at 16,000 × g for 5 min and the resulting 

supernatant, representing the soluble sugars fraction, was transferred to a new test 

tube. The solvent of the combined supernatants was evaporated at room temperature 

under a current of nitrogen. The residue was dissolved in 50 L of water. The pellet 

containing starch, was homogenized in 200 mL of 0.2 N KOH, and the suspension was 

incubated at 95 °C for 1 h to dissolve the starch. The quantification of soluble sugars and 

starch was done as described before (Focks and Benning, 1998). 
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Fatty acids were quantified by a GC-MS system (Agilent 6850) of the corresponding fatty 

acyl methyl esters. For that, 50 seeds were ground in liquid nitrogen then transferred 

into a glass reaction tube and incubated in 1 mL of 1 N methanolic HCl at 80 °C for 2 h. 

Fatty acyl methyl esters were extracted into 1 mL of hexane following the addition of 1 

mL of 0.9% (w/v) NaCl. Myristic acid was used as an internal standard. The resulting 

fatty acid methyl esters (FAMEs) were extracted in hexane and analysed by a GC-MS 

(Agilent 6850) as described previously (Murayama et al., 2006). Fatty acids were 

identified and their relative amounts were calculated from their respective 

chromatographic peak areas compared with a standard FAME mixture. 

Preparation of plant enzymes extracts and enzymatic assays 

Plant extracts from approximately one gram of siliques taken on 5 to 17 days after 

flowering were prepared according to (Focks and Benning, 1998). The following 

enzymes were assayed as previously described: hexokinase according to the method of 

Renz et al. (Renz et al., 1993); glucose-6-phosphate dehydrogenase according to the 

method of Burrell et al., (Burrell et al., 1994); AGP-Glc-pyrophosphorylase according to 

the method of Zrenner et al. (Zrenner et al., 1995). 

Isolation and characterization of LDs  

LDs were isolated from Arabidopsis seeds at various stages of development (5, 11 and 

17 days after flowering) according to Hanano et al. (Hanano et al., 2006). The amount of 

fatty acids in LDs was determined by a colorimetric method using oleic acid as standard 

(Nixon and Chan, 1997). Protein concentration in the LDs fraction was estimated by the 

Bradford assay (Bio-Rad) using bovine serum albumin as a standard (Bradford, 1976). 

Encapsulation of LDs was evaluated by a simple method based on extraction of lipids 

with hexane (Tzen et al., 1997). Aggregation and coalescence of LDs as a function of pH 

was performed by suspending the isolated LDs in 100 mM potassium pyrophosphate at 

pH values of 4, 5, 6, 7 and 8 and immediately analysing them by light. LDs were 

subjected to microscopic analysis directly after each extraction without making any 

Fatty acid analysis  
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suspension as described before (Hanano et al., 2016a). Microscopic imaging was 

performed at the magnification of 40× under a LEICA MPS60 microscope and using an 

Olympus FE-4000 camera. The purity of LDs preparation, their native encapsulation and 

their number per mL were evaluated by a Flow cytometer (BD FACSCALIBUR, 

Biosciences, USA). LD size distributions (% frequency) were determined using a laser 

granulometer (Malvern Mastersizer S; Malvern Instruments, England) fitted with a 320 

mm lens as described (White et al., 2006). For TCDD analysis of LDs, the 2,3,7,8-TCDD 

content was quantified in purified seed LDs by GC/MS using an Agilent Technologies 

7890 GC System (USA) coupled to an AMD 402 high-resolution mass spectrometer 

(Germany). Details of the CG/MS analysis and quality control are described in EPA 

methods 1613B and 1668A. LD-associated proteins were isolated according to Katavic et 

al. (Katavic et al., 2006) then analysed by SDS–PAGE using 12 % polyacrylamide gels 

stained with Coomassie Blue R-250. For immunoblotting experiments, proteins were 

electroblotted onto a PVDF membrane (Millipore) in a Semi-Dry Transfer Cell (Bio-Rad). 

The membrane was blocked overnight at 4 °C in a solution of 3 % (w/v) bovine serum 

albumin (BSA) in TRIS-buffered saline (TBS) buffer, pH 7.4. WRI1, CUL3 and -actin 

were immunodetected by incubating the membrane with respective polyclonal 

antibodies (WRI1 and FCUL3 from GeneScript and -actin from Sigma-Aldrich, USA) 

that used in a 1:1000 dilution in TBS buffer (pH 7.4) containing 0.3% (v/v) Tween-20, for 

12 h at 4 °C. The signal was detected in a Pharos FX molecular imager (Bio-Rad). 

Analysis of gene transcripts 

The relative transcriptional abundance of target genes in response to TCDD exposure 

were analysed by reverse-transcription quantitative PCR (RT-qPCR). Two grams of plant 

material were used to total RNA extraction using an RNeasy kit according to the 

manufacturer’s instructions (Qiagen, Germany). Reverse transcription reaction (RT) was 

carried out according to Hanano et al. (Hanano et al., 2006). Real-time PCR was 

performed in 48-well plates using a AriaMx Real-time PCR System (Agillent technologies, 

USA). Briefly, 25 L reaction mixtures contained 0.5  of each specific oligonucleotide 
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primer for the target and the reference genes (Table S1, Additional file 1.), 12.5 L of 

SYBR Green PCR mix (Bio-Rad, USA) and 100 ng cDNA. QPCR conditions were as 

described before (Zhu et al., 2012). The relative expression of target genes was 

normalized using two reference genes SAND and TIP41 (Hu et al., 2009). Each point was 

replicated in triplicate and the average of CT was taken. Subsequently, the relative 

quantification RQ of target genes was calculated directly by the software of the qPCR 

system. The sequences of amplified regions were confirmed by an ABI 310 Genetic 

Analyzer (Applied Biosystems) using Big Dye Terminator kit (Applied Biosystems).  

Stability Assays 

Stability assays were carried out according to Chen et al., (Chen et al., 2013), 

Arabidopsis seedlings were treated with 20 μM of the proteasome inhibitor MG132 

(Sigma-Aldrich)  for 6 h before harvesting at each developmental stage. DMSO was used 

as mock control and as a solvent for all inhibitor experiments.  

Statistics 

All data were expressed as means ± standard deviation (SD). Statistical analysis was 

carried out using STATISTICA software, version10 (StatSoft Inc.). Comparisons between 

control and treatments were evaluated by ANOVA analysis. Difference from control was 

considered significant as P < 0.05 or very significant as P < 0.01. 

Results 

TCDD exposure of Arabidopsis plants results in wrinkled seeds with reduced levels of 

lipid and carbohydrate 

Viewed under light microscopy, mature seeds (wild-type Col-0) obtained from TCDD-

exposed plants were smaller than controls and had a distinctive ‘wrinkled’ appearance 

(Fig. 1A). This wrinkled phenotype was more evident when the seeds were examined 

under scanning electron microscopy (SEM) (Fig. 1B and C). TLC analysis of lipid extracts 

revealed a significant reduction of the seed-oil content in seeds from TCDD-exposed 

plants compared to controls (Fig. 2A). Quantification of fatty acids from storage 
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triacylglycerols confirmed an 80% reduction in oil content from approximately 3.8 g 

per seed in non-exposed controls to 2.1 and 1.0 g for seeds exposed respectively to 10 

and 50 ng L-1 TCDD (Fig. 2B). Similar reductions were observed in levels of total seed 

carbohydrate, which was 1.6 to 3.6-fold lower in seeds of TCDD-exposed plants 

compared to controls. In contrast, seeds of TCDD-exposed plants contained 1.1 to 1.6-

fold higher of proteins compared with controls (Fig. 2B). 

Comparison of the fatty acid compositions of triacylglycerols extracted from mature 

control or TCDD-exposed seeds showed that i) the percentage of 16:0 (palmitic acid) and 

18:0 (stearic acid) did not change as a function of TCDD-exposure. ii) percentages of 

18:1 Δ9 (oleic acid) and 18:2 Δ9, 12 (linoleic acid) were strongly reduced. iii) percentages 

of 18:3 Δ9, 12, 15 (α-linolenic acid), 20:0 (arachidic acid), 20:1 Δ9 (gadoleic acid), 22:0 

(behenic acid) and particularly 22:1 Δ9 (erucic acid) were greatly elevated in the reduced 

amount of seed oil in TCDD-exposed plants (Fig. 2C). These data showed that exposure 

of Arabidopsis plants to TCDD results in small, wrinkled seeds with very different lipid 

and carbohydrate contents compared to controls.     

TCDD treatment is associated with increases in LEC1 and WRI1 and decreases in ABI3 

and FUS3 transcripts 

The much reduced oil content in seeds from TCDD-exposed plants raises the question of 

whether this decrease is due to a global regulatory effect mediated by LEAFY 

COTYLEDON1 (LEC1), (LEC2), ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3) and 

WRINLED1 (WRI1), four master transcription factors known as key regulators of fatty 

acid and TAG biosynthesis/accumulation. In Fig. 3, transcriptome data for LEC1, LEC2, 

ABI3, FUS3 and WRI1 genes show that expression of LEC1, LEC2 and WRI1 genes was 

progressively raised after flowering in control plants and that their transcript levels were 

elevated in TCDD-exposed plants. These increases were about 42, 48 and 33-fold for 

LEC1, LEC2 and WRI1, respectively, by 7 days after flowering (DAF). Inversely, transcript 

levels of ABI3 and FUS3 were greatly reduced in TCDD-exposed plants: the largest 

decrease was about 17 to 28-fold at 7 to 9 DAF for the two genes respectively. In 
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contrast, the expression of ABI3 and FUS3 genes was higher in control plants at the 

same time points. These results indicate that TCDD-exposed plants accumulate more of 

the LEC1, LEC2 and WRI1 transcripts but less of the ABI3 and FUS3 transcripts compared 

with control plants. 

Expression of fatty acid biosynthesis genes was altered in TCDD-exposed plants  

The increased expression of transcription factors LEC1, LEC2 and WRI1 in TCDD-exposed 

plants raised the issue of whether the expression of downstream target genes was also 

affected, notably genes involved in the fatty acid biosynthetic pathway. RT-qPCR-

analysis of genes transcripts for enzymes of fatty acid biosynthesis was performed as 

shown in Fig. 4A. The results showed that transcripts of Accase, BCCP2, PKP-1, ACP1 

and MCAT (encoding the first three fatty acid biosynthetic enzymes acetyl-CoA 

carboxylase, biotin carboxyl carrier protein 2, pyruvate kinase beta subunit 1, acyl 

carrier protein and malonyl-CoA: ACP malonyltransferase, respectively) were mainly 

increased between 11 to 15 DAF in control plants but significantly decreased in TCDD-

exposed plants. Similarly, transcripts levels of KASI, KASII and KASIII (ketoacyl-ACP 

synthase I, II and III), which were briefly increased in control plants, actually decreased 

about 8 to 12-fold in TCDD-exposed plants. Likewise, the expression of FATA and FATB 

(acyl-ACP thioesterase A and B, respectively) was highly induced during normal seed 

development stage, reaching a maximum at 13 DAF. In contrast, transcript levels of both 

genes were reduced by between 18 and 22-fold in TCDD-exposed plants. Intriguingly, 

while the transcripts of FAD2 and FAD3  (fatty acid desaturase 2 and fatty acid 

desaturase 3) increased in control plants, these transcripts were even more elevated in 

TCDD-exposed plants reaching peaks of 29- and 36-fold, respectively by 15 DAF. Finally, 

transcripts of DGAT (diacylglycerol acyltransferase) were more elevated in TCDD-

exposed plants than in control plants. The maximal accumulation of DGAT transcripts 

(about 34-fold) was detected in plants treated with 50 ng L-1 TCDD at 15 DAF.  

The transcriptome results for fatty acid biosynthesis genes were complemented by 

metabolome analysis of the major fatty acids during seed development. Firstly, although 
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the total amount of seed oil increased during seed development, the final amount of 

seed oil was reduced compared to controls by about 1.5 to 2.4-fold in plants exposed to 

10 or 50 ng L-1 of TCDD, respectively (Fig. 4B). Furthermore, when the composition of 

fatty acids extracted from seeds of non-exposed or TCDD-exposed plants was analysed, 

percentages of C18:1 and C18:2 were drastically reduced, while those of C18:3, C20:0, 

C20:1, C22:0 and particularly C22:1 were significantly increased, and the amounts of 

C16:0 and C18:0 were unaltered (Fig. 4C). Altogether, these results show that TCDD 

exposure reduces overall fatty acid biosynthesis and selectively alters the net activity of 

some enzymes thereby changing the final acyl composition of the seed oil.        

TCDD exposure affects seed carbohydrate metabolism  

As shown in Figure 5A, transcripts of HXK1 and G6PDH genes (encoding hexokinase 1 

and glucose-6-phosphate dehydrogenase respectively) were approximately 12-fold 

more abundant in controls compared with TCDD-exposed plants on day 9 after 

flowering. On the other hand, the small subunit of ADP-glucose pyrophosphorylase 

(ADPase-ApS1) and starch synthase I (SSI) encoding genes, AGPase-ApS1 and SSI, were 

increasingly expressed in control plants but significantly decreased in seeds of TCDD-

exposed plants. These results were complemented by quantitative analysis of soluble 

sugars and starch, which showed a 3-fold decrease in their respective amounts in TCDD-

exposed plants compared with controls (Fig. 5C and D). These data show that the 

exposure of plants to TCDD significantly affects carbohydrate metabolism in developing 

seeds.  

LDs-associated proteins were increased by TCDD-exposure 

In contrast to lipid and carbohydrate levels, the amount of seed storage proteins 

increased after exposure to TCDD. Among the major classes of seed proteins are those 

associated with lipid droplets (LDs). In Arabidopsis the major LD proteins are encoded by 

11 genes, namely 5 oleosins and 6 caleosins. As Figure 6A shows, the expression of three 

oleosin genes, namely OLEO1, OLEO3 and OLEO5, was induced by TCDD with maximal 

transcript levels detected at 7 - 9 DAF. The transcripts of caleosins CLO1, CLO3 and CLO4 
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were also 35 to 40-fold higher in seeds collected from the TCDD-exposed plants than in 

controls. At biochemical level, LDs were fractioned at the indicated stages of seeds 

development and their respective protein contents determined. As indicated in Fig. 6B, 

the total amount of LD-associated proteins was doubled in the samples prepared from 

TCDD-exposed plants compared with control samples. In parallel, the total enzymatic 

activity of peroxygenase, an activity found in caleosin proteins, was elevated three fold 

in LDs of TCDD-exposed plants compared with controls (Fig. 6C). These data suggest that 

TCDD-exposure induces accumulation of some members of LD-associated proteins and 

especially the caleosins.  

LD morphology was affected in developing seeds exposed to TCDD   

The significant alteration in the biochemical composition of LDs raises the question of 

possible effects on their morphogenesis. To investigate this, LDs were isolated from 

seeds at 5, 11 and 17 DAF and subjected to morphological characterization. The isolated 

and purified LD fractions represented about 6.6, 12.8 and 17.9 % of the total control 

seed weight on 5, 11 and 17 DAF. In contrast, LDs only accounted for 4.1, 5.4 and 6.5 % 

total weight of seeds exposed to TCDD at the indicated stages. Extraction with hexane, a 

classical method to determine the native structures of isolated LDs (Tzen et al., 1997) 

showed that about 86 % of LDs in all preparations had an intact membrane. Light images 

showed the presence of spherical LDs with a clear surrounding membrane (Fig. 7A). 

Moreover, the purity and the native structure of LDs were confirmed by flow cytometry. 

LD size analysis at various stages for control and TCDD-exposed samples showed that 

the diameters of LDs isolated from control seeds were normally about 2 to 2.2 m at pH 

7.5 (Fig. 7B), while the LDs isolated from TCDD-exposed seeds were twofold smaller at 

the equivalent pH at each stage (Fig. 7C).  

The exposed domains of LD-associated proteins on the surface of the phospholipid 

monolayer may serve as a physical barrier to prevent aggregation and/or coalescence of 

LDs at physiological pH (11, 12, 18). However, it is known that isolated LDs aggregate 

and/or coalesce when the pH of the medium is reduced lower than the isoelectric point 
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of such proteins (Tzen et al., 1997). To investigate whether isolated LDs from TCDD-

exposed seeds might possess different physico-chemical properties, we compared their 

pH responses with those isolated from control seeds. LDs from control seeds started to 

aggregate at pH 6 and massively coalesced at pH 5 and 4, whilst the LDs of TCDD-

exposed seeds showed a remarkable stability at acidic pH with only few of them 

coalescing at pH 4 (data not shown). When the diameter of LDs was measured for both 

samples along the indicated pH range, we found that control LDs were normally about 

of 2.1 to 2.4 m at pH 8 to 6 and increased about 4-fold at pH 5 and 4 (Fig. 7D). In 

contrast, the LDs of TCDD-exposed seeds were slightly larger at pH 4 (2.3 m in 

diameter) than they were at pH 7. TCDD-sequestration by LDs was examined using 

HR/GC-MS as shown in Fig. 7E, which clearly show the presence of a single peak that 

corresponds exactly to the TCDD standard with a retention time 5.33 min) in organic 

extracts from the LDs fractioned from seeds of TCDD-exposed plants compared with the 

extract from LDs of control plants. These results suggest that the TCDD-exposed plant 

produces LDs that are reduced in size but are more numerous and that possess an 

increased stability towards pH changes and an enhanced  ability to sequester TCDD.  

WRI1 is degraded by 26S proteasome in TCDD-treated plants 

The TCDD-transcriptional activation of WRI1 (Fig. 3) did not lead to significant activation 

of fatty acid biosynthesis genes (Fig. 4A). This led us to investigate whether TCDD-

exposure might instead be associated with the post-transcriptional or post-translational 

regulation of WRI1. The ubiquitination/degradation of WRI1 protein via the 26S 

proteasome and possibly a CRL3BPM E3 ligase is suggested to be one of the most potent 

mechanisms involved in the regulation of WRI1 biosynthesis (Chen et al., 2013). When 

we checked this possibility, we found that the WRI1 protein was indeed highly degraded 

in TCDD-exposed plants compared with controls (Fig. 8A). In parallel, transcript levels of 

a 14-subunit core protease (CP) of 20S proteasome were differentially increased as a 

function of TCDD-exposure in developing seeds coincidentally with WRI1 disappearance. 

In particular, the transcripts levels of the subunits PAA1, PAC1, PAF1, PBA1, PBB1, PBD1 
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and PBE1 were greatly increased in TCDD-exposed plants at 11 DAF (Fig. 8B). 

Furthermore, Inhibition of proteasome by MG132, a cell permeable proteasomal 

inhibitor, restored the accumulation of WRI1 protein in TCDD-exposed developing seeds 

but did not affect stability of WRI1 protein in non-exposed plants (Fig. 8C). Additionally, 

the interaction of WRI1 with CUL3-based ligase was demonstrated by 

immunoprecipitation using WRI1 or CUL3 antibodies. The WRI1 antibody successfully 

precipitated CUL3 from protein plant extracts in the controls much more effectively 

than in TCDD-exposed plants. Inversely, CUL3 antibody successfully precipitated WRI1 

(Fig. 8D). These data suggest that the instability of the WRI1 protein in TCDD-exposed 

plants might be regulated by a 20S proteasome-dependent process.  

Discussion 

TCDD, which is the most toxic congener of the dioxin group of xenobiotics, is a highly 

persistent organic pollutant that can severely impact on animal and human health 

(McConkey et al., 1988;Carney et al., 2006). Here we have now shown that TCDD can 

have very specific effects on aspects of plant development, and especially on seed 

maturation in Arabidopsis. These effects appear to be mediated via interactions of TCDD 

with some of the major transcription factors involved in mediating the flux of assimilates 

towards storage compounds in seeds.  TCDD-treated Arabidopsis plants yielded highly 

abnormal seeds that were smaller than controls, with a wrinkled phenotype and severe 

reductions in levels of lipid and carbohydrate. Such a phenotype bears a close 

resemblance to the WRI1-deficient mutant phenotype, as reported in Arabidopsis 

(wrinkled1) and other plants, and which is also characterized by low-seed-oil and 

abnormal carbohydrate metabolism (Focks and Benning, 1998).  

This suggests a possible involvement of key regulators of storage compound 

biosynthesis in the TCDD-induced phenotype. In line with these observations, decreases 

in the size of seeds and their oil content were previously reported in Arabidopsis plants 

exposed to TCDD (Hanano et al., 2015b). Moreover, a negative regulatory effect of 
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TCDD on fatty acid, cholesterol and carbohydrate metabolism was also demonstrated in 

mouse liver (Lakshman et al., 1988;Angrish et al., 2013). The deficiency in seed lipid and 

carbohydrate levels could be due to a direct reduction in their respective anabolic 

pathways and/or to an activation of their catabolic pathways. The increase in seed 

protein levels in such seeds is not surprising since an inverse relationship between oil 

and protein accumulation in seeds has been reported for a range of plant species 

including Arabidopsis (Siloto et al., 2006;Eskandari et al., 2013). In addition, TCDD 

treatments led to the induction of two relatively abundant proteins, lipoxygenase and 

caleosin/peroxygenases that metabolize fatty acids from storage and membrane lipids 

to oxylipins, hence further increasing protein and decreasing lipid in the seeds (Hanano 

et al., 2016c).    

In order to gain further insights into the molecular regulation of oil/carbohydrate 

metabolism during seed maturation of Arabidopsis, gene expression patterns of the 

master transcription factors LEC1, LCE2, WRI1, ABI3 and FUS3 that regulate storage 

compound accumulation in Arabidopsis (Focks and Benning, 1998;Mu et al., 2008b) 

were investigated. In seeds from TCDD-exposed plants, the dearth in seed reserves was 

consistent with reduced levels of ABI3 and FUS3 expression compared to controls. For 

example, Arabidopsis plants with mutations in abi3 and fus3 genes exhibit similar 

defects in the accumulation of seed reserves, acquisition of desiccation tolerance, 

reduction of chlorophyll, and inhibition of anthocyanin accumulation (Keith et al., 

1994a;Parcy et al., 1997). Moreover, a particular abscisic acid (ABA)-insensitivity is 

observed in abi3 mutant but not in fus3 mutants  suggesting collaborative and 

independent roles of ABI3 and FUS3 on various ABA-related processes during 

Arabidopsis seed development. In particular, FUS3, which was characterized initially as a 

transcription factor with a B3-domain, binds the RY cis-motif in promoter regions of 

many seed specific genes. Greatly reduced numbers of LDs were found in cotyledons of 

developing seeds of fus3 mutants (Keith et al., 1994b), and the total fatty acid content in 

fus3 seeds was one-third of WT seeds . Despite FUS3 and ABI3 being synchronously 
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downregulated by TCDD, LEC1 and LEC2 were significantly upregulated. There is no 

definitive evidence that excludes the possibility that LEC1 and LEC2 can directly act on 

the promoters of fatty acid biosynthetic genes. However, genetic analysis indicates that 

the LEC1 function is partially dependent on ABI3, FUS3, and WRI1 in the regulation of 

fatty acid biosynthesis (Mu et al., 2008b). FUS3 acts exclusively as a transcriptional 

activator and the regulation of microRNA-encoding genes is one mechanism by which 

FUS3 may indirectly repress target genes. FUS3 also directly up-regulates VP1/ABI3-

LIKE1 (VAL1), which encodes a repressor of transcription involved in the transition from 

embryo to seedling development (Wang and Perry, 2013). In this context, the down-

regulation of ABI3 and FUS3 can be a possible explanation as to why TCDD-exposed 

Arabidopsis plants had reduced chlorophyll, lower seed yields and much reduced rates 

of seed germination.  

Unexpectedly, our results showed that seeds from TCDD-exposed plants, with a 

wrinkled phenotype and much-reduced amounts of seed storage reserves, actually 

displayed considerably elevated levels LEC1, LEC2 and WRI1 transcripts. Such increases 

in transcripts levels are inconsistent with previous findings indicating that; i) 

overexpression of LEC1 normally causes globally elevated level of seed lipid 

accumulation (Mu et al., 2008a) – contrary to what was observed in our TCDD-exposed 

plants; ii) LEC1 acts as a positive regulator upstream of ABI3, FUS3 and WRI1 (Baud and 

Lepiniec, 2009;To et al., 2012). Our findings that the reduction of ABI3 and FUS3 

transcripts is associated with serious defects in the seed maturation process consistent 

with several lines of genetic, molecular and biochemical evidence. In contrast, the 

transcriptional activation of LEC1/WRI1 conflicts with published data because a such 

activation did not lead to increases in levels of seed oil (Cernac and Benning, 2004). To 

investigate this apparent inconsistency, transcriptome and metabolome analysis for the 

major components of fatty acid and carbohydrate metabolism was performed. 

Surprisingly, the transcripts levels of genes encoding key enzymes involved in the fatty 

acid biosynthesis were decreased, while the transcripts of the genes that govern their 
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desaturation and TAG assembly were increased. These transcriptional changes were 

associated with a reduction in the overall amount of seed oil and of oleic and linoleic 

acids plus a relative increase in levels of very long chain fatty acids.  

Although there is no comparative data on the effect of persistent xenobiotics such as 

dioxins on the plant lipidome, similar alternations in lipid content and FAs composition 

were reported when marine animals exposed to such compounds. It was suggested 

therefore the lipidome “signature” could be used as a biomarker to assess the severity 

of effective exposure to dioxins. Furthermore, in the context of plant responses to 

environmental stress, several lines of biochemical evidence have indicated that extreme 

environmental factors including high temperature, severe drought, high salinity, high 

nitrogen, and heavy-metal stress tend to decrease seed oil content and increase the 

percentage of unsaturated fatty acids (Canvin, 1965;Flagella et al., 2002;Hou et al., 

2006). One of the biological implications of the increasing level of polyunsaturated fatty 

acids (PUFAs) has been demonstrated by a particular modification in the composition of 

the cell membrane fatty acids (FAs) under the activation of adjacent membrane-bound 

desaturases adjusting therefore the membrane permeability and insuring an effective 

acclimation of plants to environment (Williams et al., 1988;Falcone et al., 2004). Other 

possible roles of PUFAs, in particularly C18:2 and C18:3, is their use as substrates in the 

biosynthesis of the most active plant oxylipins via the lipoxygenase (LOX) pathways 

(Feussner and Wasternack, 2002). Interestingly, a coordinated increase in transcript 

levels of 9-LOX and 13-LOX genes with the accumulation of their corresponding FA-

hydroperoxides deriving from linoleic or linolenic acids in Arabidopsis exposed to TCDD 

was recently reported (Hanano et al., 2015b).  

Our results showed that the degradation of WRI1 protein in the TCDD-exposed is 

coordinated with the up-regulation of some specific proteolytic subunits of 20S 

proteasome and the inhibition of the proteasome machinery by MG132 blocked the 

TCDD-induced turnover of WRI1. This result suggests that the regulation of fatty acid 

biosynthesis in the TCDD-exposed plants may be governed by 
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ubiquitination/degradation of the WRI1 protein via the 20S proteasome. In line with 

this, the involvement of 26S proteasome-induced ubiquitination/degradation of WRI1 

protein was demonstrated in Arabidopsis plants and this had widespread effects on 

plant development and fatty acid content in mutant seeds (Chen et al., 2013). Our 

observations are supported by several lines of molecular, biochemical and genetic 

evidence suggesting a pivotal role the ubiquitin/26S proteasome machinery in plant 

developmental process and its tolerance to oxidative stress (Wang et al., 2009), in plant 

hypersensitive responses (Dahan et al., 2001) and in plant–virus interactions during 

infection (Sahana et al., 2012).  

The involvement of 26S proteasome as part of the response to TCDD exposure has also 

been demonstrated in animals. For example, it was reported that the 26S proteasome 

degraded the TCDD-receptor, the Aryl Hydrocarbon Receptor (AHR), when hepa1c1c7 

mouse cells were exposed to TCDD. Also, the inhibition of the 26S proteasome by 

MG132 blocked the TCDD-induced turnover of AhR and subsequently increased the 

accumulation of CYP1A1 gene transcripts, encoding a first-line enzyme in the 

detoxification of such xenobiotics (Ma and Baldwin, 2000). It is interesting therefore 

that the induced 26S proteasome-degradation of WRI1 resulted in a phenotype which is 

quite similar to wrinkled1 phenotype, a mutant of Arabidopsis initially characterized by 

a deficiency in the seed-specific regulation of carbohydrate metabolism (Focks and 

Benning, 1998). This is in agreement with our results that seeds from TCDD-exposed 

plants showed reduced carbohydrate accumulation. Moreover, in wri1 mutant lines, the 

lack of transcriptional activation of the fatty acid biosynthetic pathway in early maturing 

embryos is responsible for a severe defect in TAG biosynthesis that results in the 

production of wrinkled seeds depleted in oil (Focks and Benning, 1998). Inversely, 

Arabidopsis lines overexpressed wri1 were typified by an increasing seed oil content 

(Cernac and Benning, 2004). More intriguingly, the overexpression of WRI1 in Brassica 

napus resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid 

assembly, and flowering. Membrane lipid profiling showed increased levels of the 
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membrane lipids, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol 

(DGDG), and phosphatidylcholine (PC) in leaves, but reduced level of DGDG, MGDG and 

increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the 

siliques during early seed development stage plus a positive effect on flowering and oil 

accumulation (To et al., 2012;Li et al., 2015). This supports our previous data which 

showed that TCDD-exposed Arabidopsis plants were delayed in flowering (Hanano et al., 

2015b) suggesting a key role of  WRI1 in several diverse plant responses to TCDD 

exposure.  

We have shown in date palm seedlings that TCDD-exposed plants had increased levels 

of some oleosin and caleosin gene transcripts, notably CLO4, which was accompanied by 

increased peroxygenase enzyme activity (Hanano et al., 2016a). Caleosins can act as 

peroxygenases are involved in oxylipin metabolism, a variety of developmental 

processes, and a range of biotic and abiotic stress responses in both plants and fungi. In 

contrast, oleosins confer a remarkable stability that prevents aggregation or 

coalescence of LDs over a wide range of environmental conditions (Leprince et al., 

1998;Beisson et al., 2001). Intriguingly, the formation of small LDs with increasing 

amounts of LD-associated proteins seems to be a strategy by which plants can sequester 

certain classes of toxic hydrophobic pollutants. These findings strongly support our data 

showing that LDs isolated from TCDD-exposed seeds had a reduced size and elevated 

resistance to aggregate/coalesce at acidic pH. In fungi, the protective effect of LDs was 

limited to lipophilic toxins and LDs were ineffective against more polar antibiotic agents, 

such as terbinafine or caspofungin (Chang et al., 2015). Larger fungal LDs were more 

effective protective agents than smaller LDs as they were able to sequester larger 

quantities of lipophilic toxins. In date palm the most effective anti-dioxin protective 

activity was found in LDs with a size range of about 1-2 m (Hanano et al., 2016a), which 

is similar to the most abundant size range in the TCDD-exposed seeds of Arabidopsis. 

Together, these data suggest that intracellular LDs may play important roles in the 
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response of a wide range of organisms, from plants and animals to fungi, to potentially 

toxic xenobiotic agents such as dioxins.  
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Figure legends 

FIGURE 1. Wrinkled-like phenotype of mature seeds following TCDD-exposure. (A) 

Micrographs of mature seeds  (wild-type Col-0) of control plants (0) and from plants 

exposed to 10 and 50 ng L-1 TCDD taken at 30X magnification. (B) and (C) Scanning 

Electronic Microscopy (SEM) of the whole seeds from control and TCDD-exposed plants 

or for a focusing zone on their respective surfaces at magnification of 200× or 500×, 

respectively. Scans were performed using a Vega II XMU, TESCAN, Czech Republic. Bars 

represent 200 m and 50 m for both set of photos in (B) and (C), respectively. 

FIGURE 2. Biochemical composition of mature seeds from TCDD-exposed plants. (A) 

Qualitative TLC of lipid extracts from mature seeds of control or TCDD-exposed plants. 

Triacylglycerols (TAG) were visualized by exposure to iodine vapour and compared with 

a standard mixture TAGs (S). (B) Relative amounts of TAGs, carbohydrate and proteins in 

TCDD-exposed seeds compared with controls. (C) Fatty acid composition of TCDD-

exposed seeds compared with controls. Values are mean ± SD (n = 6) of three 

measurements for each treatment. Asterisks indicate significant differences in fatty 

acids composition between non-exposed and TCDD-exposed plants (* P < 0.05; ** P < 

0.01). 

FIGURE 3. Heat map of the effects of TCDD treatments on the expression levels of 

selected transcription factors involved in the regulation of seed development. Seeds 

from control plants or TCDD-exposed plants to 10 and 50 ng.L-1 TCDD were analysed 
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from 5 to 17 days after flowering at 2-day intervals. RNAs were isolated and their 

respective cDNAs were prepared. Gene transcripts were analysed by qRT-PCR as 

described in Methods. Three independent measurements were taken of cDNAs 

prepared from three individual plants for each treatment. The colour scale (red-white-

green) indicates relative changes of transcript abundance of -50, 1 and +50 fold, 

respectively. For each stage, the expression level for a given gene in seeds unexposed to 

TCDD was defined as 1, and the corresponding abundance changes under 10 and 50 

ng.L-1 TCDD were calculated directly using the Applied Biosystems qPCR system 

software. 

FIGURE 4. Effects of TCDD on transcriptional and post-transcriptional components of 

the fatty acid biosynthesis pathway in the seeds of Arabidopsis. (A) Transcriptional 

analysis of key genes involved in the synthesis, elongation, desaturation and assembly of 

fatty acids as determined by qRT-PCR. Data are mean values ± SD (n = 6) of three 

measurements of cDNAs prepared from three individual plants for each developmental 

stage. The colour scale (white-green-black) indicates relative changes in transcript 

abundance of 1, 25 and 50 fold, respectively. For each stage, the expression level for a 

given gene in seeds unexposed to TCDD was defined as 1. (B) Seed oil content expressed 

as % seed dry weight. (C) Fatty acid composition in seeds after TCDD-exposure 

compared with controls. Data are mean values ± SD (n = 6) of three measurements were 

taken in three individual plants for each treatment. Different lowercase letters indicate 

significant differences (P < 0.05) in oil content between various developmental stages. 

Asterisks indicate significant differences in oil content or fatty acids composition 

between non-exposed and TCDD-exposed plants (* P < 0.05; ** P < 0.01). 

FIGURE 5. TCDD affects carbohydrate metabolism in Arabidopsis seeds. (A) Transcript 

levels of selected carbohydrate metabolism genes were analysed by qRT-PCR. Data are 

mean values ± SD (n = 6) of three measurements of cDNAs prepared from three 

individual plants for each developmental stage. The colour scale (red-white-green) 

indicates relative changes of transcript abundance of -50, 1and +50 fold, respectively. 
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For each stage, the expression level for a given gene in seeds unexposed to TCDD was 

defined as 1 and the relative abundance changes under 10 and 50 ng.L-1 TCDD were 

calculated. (B) and (C) Levels of soluble sugars and starch during seed development in 

TCDD-exposed plants versus control plants. Values are mean ± SD (n = 6) of three 

measurements in three individual plants for each dose of TCDD.  

FIGURE 6. Regulation of oleosin and caleosin encoding genes expression as a function 

of TCDD treatment. (A) Transcriptional analysis of OLEO and CLO-encoding genes was 

performed at various stages of the seed development in the presence or absence of 

TCDD. Data are mean values ± SD (n = 6) of three measurements taken in three cDNAs 

prepared from three individual plants for each developmental stage. The colour scale 

(white-green-black) indicates relative changes of transcript abundance of 1, 25 and 50 

fold, respectively. (B) Immunodetection of caleosins in LDs fractioned from seeds at 

various developmental stages using a polyclonal antibody prepared from the complete 

sequence of Clo1 from A. thaliana used at dilution of 1:500 in TBS buffer (pH 7.4). The 

secondary antibody was horseradish peroxidase-conjugated anti mouse IgG (Sigma-

Aldrich, USA), diluted 1:2000. The signal was detected in a Pharos FX molecular imager 

(Bio-Rad). (C) Caleosin/Peroxygenase enzymatic activities associated with LDs during 

seed development as a function of TCDD treatment. Hydroxylation of aniline was 

measured in LDs prepared from seeds at various stages after administration of TCDD at 

0, 10 and 50 ng L-1. Three independent experiments were analysed and data averaged.  

FIGURE 7. Effects of TCDD-exposure on the physico-chemical properties of LDs isolated 

from Arabidopsis seeds. (A) Light micrographs of the isolated LDs from seeds of 

Arabidopsis treated or untreated with TCDD on day 17 after flowering. LDs suspended in 

100 mM potassium pyrophosphate at pH 7.4 were observed under a LEICA MPS60 

microscope and the images viewed at a magnification of 40×. Bar represents 5 m. (B) 

and (C) Size distributions (% frequency) of LDs isolated from non-exposed or TCDD-

exposed seeds, respectively, at different developmental stages. (D) Evaluation of LD 

diameters (m) after their aggregation and/or coalescence as a function of pH medium. 
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LDs sizes were determined using a laser granulometer as described in Methods. (E) 

GC/MS analysis showing a pronounced TCDD peak (Retention time ≈ 5.33) in LDs 

isolated from seeds on day 17 compared with the respective control. Three 

measurements were done for three individual plants. Data are mean values ± SD (n = 6). 

FIGURE 8. Degradation of WRI1 protein in TCDD-exposed Arabidopsis seeds. (A) 

Western blot analysis of WRI1 protein levels in control and TCDD-exposed seeds at 

various stages of development. -actin is used as a loading control in western 

blot analysis. (B) Transcriptional analysis of the genes encoding fourteen subunits of 

proteasome 20S at various stages of seed development in the presence or absence of 

TCDD. Data are mean values ± SD (n = 6) of three measurements of cDNAs prepared 

from three individual plants for each developmental stage. The colour scale (white-green-

black) indicates relative changes of transcript abundance of 1, 25 and 50 fold, 

respectively. (C) Stabilizing essay of WRI1 protein by inhibition of proteasome activity 

with MG123. (D) Immunoprecipitation (IP) of the complex WRI1-CUL3 with WRI1 or 

with CUL3 antibodies. Data show co-precipitation of CUL3 with WRI1 in TCDD-

exposed protein extracts at days 5, 11 and 17 post-flowering compared with controls. 

About 40 mg of total protein extract was loaded and immunodetection performed using 

CUL3 or WRI1 antibodies, respectively. Note that the CUL3 and WRI1 immunoblots 

have been cropped to maximize clarity as there were no non-specific bands present on the 

membranes. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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