76 research outputs found

    Comparison of vaccination and booster rates and their impact on excess mortality during the COVID-19 pandemic in European countries

    Get PDF
    AimTo evaluate the effect of vaccination/booster administration dynamics on the reduction of excess mortality during COVID-19 infection waves in European countries.MethodsWe selected twenty-nine countries from the OurWorldInData project database according to their population size of more than one million and the availability of information on dominant SARS-CoV-2 variants during COVID-19 infection waves. After selection, we categorized countries according to their “faster” or “slower” vaccination rates. The first category included countries that reached 60% of vaccinated residents by October 2021 and 70% by January 2022. The second or “slower” category included all other countries. In the first or “faster” category, two groups, “boosters faster’’ and “boosters slower” were created. Pearson correlation analysis, linear regression, and chi-square test for categorical data were used to identify the association between vaccination rate and excess mortality. We chose time intervals corresponding to the dominance of viral variants: Wuhan, Alpha, Delta, and Omicron BA.1/2.Results and discussionThe “faster” countries, as opposed to the “slower” ones, did better in protecting their residents from mortality during all periods of the SARS-CoV-2 pandemic and even before vaccination. Perhaps higher GDP per capita contributed to their better performance throughout the pandemic. During mass vaccination, when the Delta variant prevailed, the contrast in mortality rates between the “faster” and “slower” categories was strongest. The average excess mortality in the “slower” countries was nearly 5 times higher than in the “faster” countries, and the odds ratio (OR) was 4.9 (95% CI 4.4 to 5.4). Slower booster rates were associated with significantly higher mortality during periods dominated by Omicron BA.1 and BA.2, with an OR of 2.6 (CI 95%. 2.1 to 3.3). Among the European countries we analyzed, Denmark, Norway, and Ireland did best, with a pandemic mortality rate of 0.1% of the population or less. By comparison, Bulgaria, Serbia, and Russia had a much higher mortality rate of up to 1% of the population.ConclusionThus, slow vaccination and booster administration was a major factor contributing to an order of magnitude higher excess mortality in “slower” European countries compared to more rapidly immunized countries

    A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action

    Get PDF
    BACKGROUND: All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and variable arrays of the CRISPR-associated (cas) genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis. RESULTS: The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS) is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi) systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer), the endonuclease cleaving target mRNAs (slicer), and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA), by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale. Corollaries of this finding are that, even among closely related prokaryotes, the most commonly encountered phages and plasmids are different and/or that the dominant phages and plasmids turn over rapidly. CONCLUSION: We proposed previously that Cas proteins comprise a novel DNA repair system. The association of the cas genes with CRISPR and, especially, the presence, in CRISPR units, of unique inserts homologous to phage and plasmid genes make us abandon this hypothesis. It appears most likely that CASS is a prokaryotic system of defense against phages and plasmids that functions via the RNAi mechanism. The functioning of this system seems to involve integration of fragments of foreign genes into archaeal and bacterial chromosomes yielding heritable immunity to the respective agents. However, it appears that this inheritance is extremely unstable on the evolutionary scale such that the repertoires of unique psiRNAs are completely replaced even in closely related prokaryotes, presumably, in response to rapidly changing repertoires of dominant phages and plasmids. This article was reviewed by: Eric Bapteste, Patrick Forterre, and Martijn Huynen. OPEN PEER REVIEW: Reviewed by Eric Bapteste, Patrick Forterre, and Martijn Huynen. For the full reviews, please go to the Reviewers' comments section

    Evolution of alternative and constitutive regions of mammalian 5'UTRs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing (AS) in protein-coding sequences has emerged as an important mechanism of regulation and diversification of animal gene function. By contrast, the extent and roles of alternative events including AS and alternative transcription initiation (ATI) within the 5'-untranslated regions (5'UTRs) of mammalian genes are not well characterized.</p> <p>Results</p> <p>We evaluated the abundance, conservation and evolution of putative regulatory control elements, namely, upstream start codons (uAUGs) and open reading frames (uORFs), in the 5'UTRs of human and mouse genes impacted by alternative events. For genes with alternative 5'UTRs, the fraction of alternative sequences (those present in a subset of the transcripts) is much greater than that in the corresponding coding sequence, conceivably, because 5'UTRs are not bound by constraints on protein structure that limit AS in coding regions. Alternative regions of mammalian 5'UTRs evolve faster and are subject to a weaker purifying selection than constitutive portions. This relatively weak selection results in over-abundance of uAUGs and uORFs in the alternative regions of 5'UTRs compared to constitutive regions. Nevertheless, even in alternative regions, uORFs evolve under a stronger selection than the rest of the sequences, indicating that some of the uORFs are conserved regulatory elements; some of the non-conserved uORFs could be involved in species-specific regulation.</p> <p>Conclusion</p> <p>The findings on the evolution and selection in alternative and constitutive regions presented here are consistent with the hypothesis that alternative events, namely, AS and ATI, in 5'UTRs of mammalian genes are likely to contribute to the regulation of translation.</p

    Distinct Patterns of Expression and Evolution of Intronless and Intron-Containing Mammalian Genes

    Get PDF
    Comparison of expression levels and breadth and evolutionary rates of intronless and intron-containing mammalian genes shows that intronless genes are expressed at lower levels, tend to be tissue specific, and evolve significantly faster than spliced genes. By contrast, monomorphic spliced genes that are not subject to detectable alternative splicing and polymorphic alternatively spliced genes show similar statistically indistinguishable patterns of expression and evolution. Alternative splicing is most common in ancient genes, whereas intronless genes appear to have relatively recent origins. These results imply tight coupling between different stages of gene expression, in particular, transcription, splicing, and nucleocytosolic transport of transcripts, and suggest that formation of intronless genes is an important route of evolution of novel tissue-specific functions in animals

    Comparison of approaches for rational siRNA design leading to a new efficient and transparent method

    Get PDF
    Current literature describes several methods for the design of efficient siRNAs with 19 perfectly matched base pairs and 2 nt overhangs. Using four independent databases totaling 3336 experimentally verified siRNAs, we compared how well several of these methods predict siRNA cleavage efficiency. According to receiver operating characteristics (ROC) and correlation analyses, the best programs were BioPredsi, ThermoComposition and DSIR. We also studied individual parameters that significantly and consistently correlated with siRNA efficacy in different databases. As a result of this work we developed a new method which utilizes linear regression fitting with local duplex stability, nucleotide position-dependent preferences and total G/C content of siRNA duplexes as input parameters. The new method's discrimination ability of efficient and inefficient siRNAs is comparable with that of the best methods identified, but its parameters are more obviously related to the mechanisms of siRNA action in comparison with BioPredsi. This permits insight to the underlying physical features and relative importance of the parameters. The new method of predicting siRNA efficiency is faster than that of ThermoComposition because it does not employ time-consuming RNA secondary structure calculations and has much less parameters than DSIR. It is available as a web tool called ‘siRNA scales’

    Identification of regions in multiple sequence alignments thermodynamically suitable for targeting by consensus oligonucleotides: application to HIV genome

    Get PDF
    BACKGROUND: Computer programs for the generation of multiple sequence alignments such as "Clustal W" allow detection of regions that are most conserved among many sequence variants. However, even for regions that are equally conserved, their potential utility as hybridization targets varies. Mismatches in sequence variants are more disruptive in some duplexes than in others. Additionally, the propensity for self-interactions amongst oligonucleotides targeting conserved regions differs and the structure of target regions themselves can also influence hybridization efficiency. There is a need to develop software that will employ thermodynamic selection criteria for finding optimal hybridization targets in related sequences. RESULTS: A new scheme and new software for optimal detection of oligonucleotide hybridization targets common to families of aligned sequences is suggested and applied to aligned sequence variants of the complete HIV-1 genome. The scheme employs sequential filtering procedures with experimentally determined thermodynamic cut off points: 1) creation of a consensus sequence of RNA or DNA from aligned sequence variants with specification of the lengths of fragments to be used as oligonucleotide targets in the analyses; 2) selection of DNA oligonucleotides that have pairing potential, greater than a defined threshold, with all variants of aligned RNA sequences; 3) elimination of DNA oligonucleotides that have self-pairing potentials for intra- and inter-molecular interactions greater than defined thresholds. This scheme has been applied to the HIV-1 genome with experimentally determined thermodynamic cut off points. Theoretically optimal RNA target regions for consensus oligonucleotides were found. They can be further used for improvement of oligo-probe based HIV detection techniques. CONCLUSIONS: A selection scheme with thermodynamic thresholds and software is presented in this study. The package can be used for any purpose where there is a need to design optimal consensus oligonucleotides capable of interacting efficiently with hybridization targets common to families of aligned RNA or DNA sequences. Our thermodynamic approach can be helpful in designing consensus oligonucleotides with consistently high affinity to target variants in evolutionary related genes or genomes

    Connections between Alternative Transcription and Alternative Splicing in Mammals

    Get PDF
    The majority of mammalian genes produce multiple transcripts resulting from alternative splicing (AS) and/or alternative transcription initiation (ATI) and alternative transcription termination (ATT). Comparative analysis of the number of alternative nucleotides, isoforms, and introns per locus in genes with different types of alternative events suggests that ATI and ATT contribute to the diversity of human and mouse transcriptome even more than AS. There is a strong negative correlation between AS and ATI in 5′ untranslated regions (UTRs) and AS in coding sequences (CDSs) but an even stronger positive correlation between AS in CDSs and ATT in 3′ UTRs. These observations could reflect preferential regulation of distinct, large groups of genes by different mechanisms: 1) regulation at the level of transcription initiation and initiation of translation resulting from ATI and AS in 5′ UTRs and 2) posttranslational regulation by different protein isoforms. The tight linkage between AS in CDSs and ATT in 3′ UTRs suggests that variability of 3′ UTRs mediates differential translational regulation of alternative protein forms. Together, the results imply coordinate evolution of AS and alternative transcription, processes that occur concomitantly within gene expression factories

    Viruses with More Than 1,000 Genes: Mamavirus, a New Acanthamoeba polyphaga mimivirus Strain, and Reannotation of Mimivirus Genes

    Get PDF
    The genome sequence of the Mamavirus, a new Acanthamoeba polyphaga mimivirus strain, is reported. With 1,191,693 nt in length and 1,023 predicted protein-coding genes, the Mamavirus has the largest genome among the known viruses. The genomes of the Mamavirus and the previously described Mimivirus are highly similar in both the protein-coding genes and the intergenic regions. However, the Mamavirus contains an extra 5′-terminal segment that encompasses primarily disrupted duplicates of genes present elsewhere in the genome. The Mamavirus also has several unique genes including a small regulatory polyA polymerase subunit that is shared with poxviruses. Detailed analysis of the protein sequences of the two Mimiviruses led to a substantial amendment of the functional annotation of the viral genomes

    Disruptive mRNA folding increases translational efficiency of catechol-O-methyltransferase variant

    Get PDF
    Catechol-O-methyltransferase (COMT) is a major enzyme controlling catecholamine levels that plays a central role in cognition, affective mood and pain perception. There are three common COMT haplotypes in the human population reported to have functional effects, divergent in two synonymous and one nonsynonymous position. We demonstrate that one of the haplotypes, carrying the non-synonymous variation known to code for a less stable protein, exhibits increased protein expression in vitro. This increased protein expression, which would compensate for lower protein stability, is solely produced by a synonymous variation (C166T) situated within the haplotype and located in the 5′ region of the RNA transcript. Based on mRNA secondary structure predictions, we suggest that structural destabilization near the start codon caused by the T allele could be related to the observed increase in COMT expression. Our folding simulations of the tertiary mRNA structures demonstrate that destabilization by the T allele lowers the folding transition barrier, thus decreasing the probability of occupying its native state. These data suggest a novel structural mechanism whereby functional synonymous variations near the translation initiation codon affect the translation efficiency via entropy-driven changes in mRNA dynamics and present another example of stable compensatory genetic variations in the human population
    corecore