6,210 research outputs found
Universal quantum computation with unlabeled qubits
We show that an n-th root of the Walsh-Hadamard transform (obtained from the
Hadamard gate and a cyclic permutation of the qubits), together with two
diagonal matrices, namely a local qubit-flip (for a fixed but arbitrary qubit)
and a non-local phase-flip (for a fixed but arbitrary coefficient), can do
universal quantum computation on n qubits. A quantum computation, making use of
n qubits and based on these operations, is then a word of variable length, but
whose letters are always taken from an alphabet of cardinality three.
Therefore, in contrast with other universal sets, no choice of qubit lines is
needed for the application of the operations described here. A quantum
algorithm based on this set can be interpreted as a discrete diffusion of a
quantum particle on a de Bruijn graph, corrected on-the-fly by auxiliary
modifications of the phases associated to the arcs.Comment: 6 page
Regular quantum graphs
We introduce the concept of regular quantum graphs and construct connected
quantum graphs with discrete symmetries. The method is based on a decomposition
of the quantum propagator in terms of permutation matrices which control the
way incoming and outgoing channels at vertex scattering processes are
connected. Symmetry properties of the quantum graph as well as its spectral
statistics depend on the particular choice of permutation matrices, also called
connectivity matrices, and can now be easily controlled. The method may find
applications in the study of quantum random walks networks and may also prove
to be useful in analysing universality in spectral statistics.Comment: 12 pages, 3 figure
Matrix permanent and quantum entanglement of permutation invariant states
We point out that a geometric measure of quantum entanglement is related to
the matrix permanent when restricted to permutation invariant states. This
connection allows us to interpret the permanent as an angle between vectors. By
employing a recently introduced permanent inequality by Carlen, Loss and Lieb,
we can prove explicit formulas of the geometric measure for permutation
invariant basis states in a simple way.Comment: 10 page
A Comparison between the Zero Forcing Number and the Strong Metric Dimension of Graphs
The \emph{zero forcing number}, , of a graph  is the minimum
cardinality of a set  of black vertices (whereas vertices in  are
colored white) such that  is turned black after finitely many
applications of "the color-change rule": a white vertex is converted black if
it is the only white neighbor of a black vertex. The \emph{strong metric
dimension}, , of a graph  is the minimum among cardinalities of all
strong resolving sets:  is a \emph{strong resolving set} of
 if for any , there exists an  such that either 
lies on an  geodesic or  lies on an  geodesic. In this paper, we
prove that  for a connected graph , where  is
the cycle rank of . Further, we prove the sharp bound 
when  is a tree or a unicyclic graph, and we characterize trees 
attaining . It is easy to see that  can be
arbitrarily large for a tree ; we prove that  and
show that the bound is sharp.Comment: 8 pages, 5 figure
Performance of an Operating High Energy Physics Data Grid: D0SAR-Grid
The D0 experiment at Fermilab's Tevatron will record several petabytes of
data over the next five years in pursuing the goals of understanding nature and
searching for the origin of mass. Computing resources required to analyze these
data far exceed capabilities of any one institution. Moreover, the widely
scattered geographical distribution of D0 collaborators poses further serious
difficulties for optimal use of human and computing resources. These
difficulties will exacerbate in future high energy physics experiments, like
the LHC. The computing grid has long been recognized as a solution to these
problems. This technology is being made a more immediate reality to end users
in D0 by developing a grid in the D0 Southern Analysis Region (D0SAR),
D0SAR-Grid, using all available resources within it and a home-grown local task
manager, McFarm. We will present the architecture in which the D0SAR-Grid is
implemented, the use of technology and the functionality of the grid, and the
experience from operating the grid in simulation, reprocessing and data
analyses for a currently running HEP experiment.Comment: 3 pages, no figures, conference proceedings of DPF04 tal
A quantum Bose-Hubbard model with evolving graph as toy model for emergent spacetime
We present a toy model for interacting matter and geometry that explores
quantum dynamics in a spin system as a precursor to a quantum theory of
gravity. The model has no a priori geometric properties, instead, locality is
inferred from the more fundamental notion of interaction between the matter
degrees of freedom. The interaction terms are themselves quantum degrees of
freedom so that the structure of interactions and hence the resulting local and
causal structures are dynamical. The system is a Hubbard model where the graph
of the interactions is a set of quantum evolving variables. We show
entanglement between spatial and matter degrees of freedom. We study
numerically the quantum system and analyze its entanglement dynamics. We
analyze the asymptotic behavior of the classical model. Finally, we discuss
analogues of trapped surfaces and gravitational attraction in this simple
model.Comment: 23 pages, 6 figures; updated to published versio
Multi-core job submission and grid resource scheduling for ATLAS AthenaMP
AthenaMP is the multi-core implementation of the ATLAS software framework and allows the efficient sharing of memory pages between multiple threads of execution. This has now been validated for production and delivers a significant reduction on the overall application memory footprint with negligible CPU overhead. Before AthenaMP can be routinely run on the LHC Computing Grid it must be determined how the computing resources available to ATLAS can best exploit the notable improvements delivered by switching to this multi-process model. A study into the effectiveness and scalability of AthenaMP in a production environment will be presented. Best practices for configuring the main LRMS implementations currently used by grid sites will be identified in the context of multi-core scheduling optimisation
- …
