We introduce the concept of regular quantum graphs and construct connected
quantum graphs with discrete symmetries. The method is based on a decomposition
of the quantum propagator in terms of permutation matrices which control the
way incoming and outgoing channels at vertex scattering processes are
connected. Symmetry properties of the quantum graph as well as its spectral
statistics depend on the particular choice of permutation matrices, also called
connectivity matrices, and can now be easily controlled. The method may find
applications in the study of quantum random walks networks and may also prove
to be useful in analysing universality in spectral statistics.Comment: 12 pages, 3 figure