342 research outputs found

    Blockchain applications in supply chains, transport and logistics : a systematic review of the literature

    Get PDF
    This paper presents current academic and industrial frontiers on blockchain application in supply chain, logistics and transport management. We conduct a systematic review of the literature and find four main clusters in the co-citation analysis, namely Technology, Trust, Trade, and Traceability/Transparency. For each cluster, and based on the pool of articles included in it, we apply an inductive method of reasoning and discuss the emerging themes and applications of blockchains for supply chains, logistics and transport. We conclude by discussing the main themes for future research on blockchain technology and its application in industry and services

    Order and nFl Behavior in UCu4Pd

    Full text link
    We have studied the role of disorder in the non-Fermi liquid system UCu4Pd using annealing as a control parameter. Measurement of the lattice parameter indicates that this procedure increases the crystallographic order by rearranging the Pd atoms from the 16e to the 4c sites. We find that the low temperature properties depend strongly on annealing. Whereas the non-Fermi liquid behavior in the specific heat can be observed over a larger temperature range after annealing, the clear non-Fermi liquid behavior of the resistivity of the unannealed sample below 10 K disappears. We come to the conclusion that this argues against the Kondo disorder model as an explanation for the non-Fermi liquid properties of both as-prepared and annealed UCu4Pd

    Magnetic-Field Induced Quantum Critical Point in YbRh2_2Si2_2

    Full text link
    We report low-temperature calorimetric, magnetic and resistivity measurements on the antiferromagnetic (AF) heavy-fermion metal YbRh2_2Si2_2 (TN={T_N =} 70 mK) as a function of magnetic field BB. While for fields exceeding the critical value Bc0{B_{c0}} at which TN0{T_N\to0} the low temperature resistivity shows an AT2{AT^2} dependence, a 1/(BBc0){1/(B-B_{c0})} divergence of A(B){A(B)} upon reducing BB to Bc0{B_{c0}} suggests singular scattering at the whole Fermi surface and a divergence of the heavy quasiparticle mass. The observations are interpreted in terms of a new type of quantum critical point separating a weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.Comment: accepted for publication in Phys. Rev. Let

    A triple-win scenario for horizontal collaboration in logistics: determining enabling and key success factors.

    Get PDF
    Horizontal collaborations emerged as a new strategic option in the logistics sector during the last decade. However, successful implementation of horizontal collaborations is far from a developed issue due to several barriers that exist or emerge when setting up such collaborative projects. This study aims at identifying the enabling factors supporting successful implementation of horizontal collaborations in the logistics sector, and in identifying key success factors that logistics service providers (LSPs) should consider. Results from a within- and cross-case analysis of two horizontal collaboration projects in the contract logistics sector support the proposed theoretical framework, highlighting both enabling and key success factors of horizontal collaborations. The former refers to factors that are related to LSPs, customers, and industries, while the latter results in a triple-win scenario characterised by LSP competences, trust, and environmental management orientation of successful horizontal collaboration projects

    The impact of diabetes on multiple avoidable admissions: a cross-sectional study

    Get PDF
    Background Multiple admissions for ambulatory care sensitive conditions (ACSC) are responsible for an important proportion of health care expenditures. Diabetes is one of the conditions consensually classified as an ACSC being considered a major public health concern. The aim of this study was to analyse the impact of diabetes on the occurrence of multiple admissions for ACSC. Methods We analysed inpatient data of all public Portuguese NHS hospitals from 2013 to 2015 on multiple admissions for ACSC among adults aged 18 or older. Multiple ACSC users were identified if they had two or more admissions for any ACSC during the period of analysis. Two logistic regression models were computed. A baseline model where a logistic regression was performed to assess the association between multiple admissions and the presence of diabetes, adjusting for age and sex. A full model to test if diabetes had no constant association with multiple admissions by any ACSC across age groups. Results Among 301,334 ACSC admissions, 144,209 (47.9%) were classified as multiple admissions and from those, 59,436 had diabetes diagnosis, which corresponded to 23,692 patients. Patients with diabetes were 1.49 times (p < 0,001) more likely to be admitted multiple times for any ACSC than patients without diabetes. Younger adults with diabetes (18–39 years old) were more likely to become multiple users. Conclusion Diabetes increases the risk of multiple admissions for ACSC, especially in younger adults. Diabetes presence is associated with a higher resource utilization, which highlights the need for the implementation of adequate management of chronic diseases policies.NOVASaudeinfo:eu-repo/semantics/publishedVersio

    Enhancing the sustainability performance of Agri-Food Supply Chains by implementing Industry 4.0

    Full text link
    [EN] In order to enhance the sustainability in the supply chain, its members should define and pursue common objectives in the three dimensions of the sustainability (economic, environmental and social). The Agri-Food Supply Chain (AFSC) is a network of different members such as farmers (producers), processors and distributors (wholesales, retailers.), etc.. In order to achieve the performance objectives of the AFSC, Industry 4.0 technologies can be implemented. The aim of this paper is to present a classification of these technologies according to two criteria: objective to be achieved (environmental or social) specified in the main issues to be covered in each objective and member of the AFSC supply chain where it is implemented. In this work, we focus on technologies that deal with environmental and social sustainability because economic sustainability will depend on the specific characteristics of the business (a supply chain using a specific Industry 4.0 technology may be profitable while others do not).This work has been funded by the Project GV/2017/065 "Development of a decision support tool for the management and improvement of sustainability in supply chains" funded by the Regional Government of Valencia. Authors also acknowledge the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems.Pérez Perales, D.; Verdecho Sáez, MJ.; Alarcón Valero, F. (2019). Enhancing the sustainability performance of Agri-Food Supply Chains by implementing Industry 4.0. IFIP Advances in Information and Communication Technology. 568:496-503. https://doi.org/10.1007/978-3-030-28464-0_43S496503568Camarinha-Matos, L.M., Fornasiero, R., Afsarmanesh, H.: Collaborative networks as a core enabler of Industry 4.0. In: Camarinha-Matos, L.M., Afsarmanesh, H., Fornasiero, R. (eds.) PRO-VE 2017. IAICT, vol. 506, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65151-4_1Stich, V., Gudergan, G., Zeller, V.: Need and solution to transform the manufacturing industry in the age of Industry 4.0 – a capability maturity index approach. In: Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y. (eds.) PRO-VE 2018. IAICT, vol. 534, pp. 33–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99127-6_3Flores, M., Maklin, D., Golob, M., Al-Ashaab, A., Tucci, C.: Awareness towards Industry 4.0: key enablers and applications for internet of things and big data. In: Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y. (eds.) PRO-VE 2018. IAICT, vol. 534, pp. 377–386. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99127-6_32Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16, 1699–1710 (2008)Prima, W.A., Xing, K., Amer, Y.: Collaboration and sustainable agri-food supply chain: a literature review. In: MATEC (2016). https://doi.org/10.1051/matecconf/20165802004Pérez Perales, D., Alarcón Valero, F., Drummond, C., Ortiz, Á.: Towards a sustainable agri-food supply chain model. The case of LEAF. In: Ortiz, Á., Andrés Romano, C., Poler, R., García-Sabater, J.-P. (eds.) Engineering Digital Transformation. LNMIE, pp. 333–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96005-0_40Savastano, M., Amendola, C., Bellini, F., D’Ascenzo, F.: Contextual impacts on industrial processes brought by the digital transformation of manufacturing: a systematic review. Sustainability 11, 891 (2019)Varela, L., Araújo, A., Ávila, P., Castro, H., Putnik, G.: Evaluation of the relation between lean manufacturing, Industry 4.0, and sustainability. Sustainability 11, 1439 (2019)Bonilla, S.H., Silva, H.R.O., da Silva, M.T., Gonçalves, R.F., Sacomano, J.B.: Industry 4.0 and sustainability implications: a scenario-based analysis of the impacts and challenges. Sustainability 10, 3740 (2018)Bányai, T., Tamás, P., Illés, B., Stankeviciute, Z., Bányai, A.: Optimization of municipal waste collection routing: impact of Industry 4.0 technologies on environmental awareness and sustainability. Int. J. Environ. Res. Public Health. 16, 634 (2019)Lin, K.C., Shyu, J.Z., Ding, K.: A cross-strait comparison of innovation policy under Industry 4.0 and sustainability development transition. Sustainability 9, 786 (2017)Kamble, S.: Sustainable Industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. In: Process Safety and Environmental Protection Transactions of the Institution of Chemical Engineers, Part B, vol. 117, pp. 408–25. Institution of Chemical Engineers (2018)Franciosi, C., Iung, B., Miranda, S., Riemma, S.: Maintenance for sustainability in the Industry 4.0 context: a scoping literature review. IFAC-Pap. Online 51(11), 903–908 (2018)Bocken, N.M.P., Short, S.W., Rana, P., Evans, S.: A literature and practice review to develop sustainable business model archetypes. J. Clean. Prod. 65, 42–56 (2014)Bourlakis, M., Maglaras, G., Aktas, E., Gallear, D., Fotopoulos, C.: Firm size and sustainable performance in food supply chains: insights from Greek SMEs. Int. J. Prod. Econ. 152, 112–130 (2014)Garbie, I.H.: An analytical technique to model and assess sustainable development index in manufacturing enterprises. Int. J. Prod. Res. 52(16), 4876–4915 (2014)Beier, G., Niehoff, S., Ziems, T., Xue, B.: Sustainability aspects of a digitalized industry - a comparative study from China and Germany. Int. J. Precis. Eng. Manuf. Green Technol. 4, 227–234 (2017)Pérez, D., Verdecho, M.J., Alarcón, F: Industry 4.0 for the development of more sustainable decision support tools for agri-food supply chain management. In: 13rd International Conference on Industrial Engineering and Industrial Management, XXIII, Gijón, Spain (2019)Xiaolin, L., Linnan, Y., Lin, P., Wengfeng, L., Limin, Z.: Procedia engineering county soil fertility information management system based on embedded GIS. Procedia Eng. 29, 2388–2392 (2012)Satyanarayana, G.V.: Wireless sensor based remote monitoring system for agriculture using ZigBee and GPS. In: 2013 (CAC2S), pp. 110–114 (2013)Phillips, A.J., Newlands, N.K., Liang, S.H.L., Ellert, B.H.: Integrated sensing of soil moisture at the field-scale: measuring, modeling and sharing for improved agricultural decision support. Comput. Electron. Agric. 107, 73–88 (2014)Liopa-tsakalidi, A., Tsolis, D., Barouchas, P.: Application of mobile technologies through an integrated management system for agricultural production. Procedia Technol. 8, 165–170 (2013). (Haicta)Yerpude, S., Singhal, T.K.: Impact of Internet of Things (IoT) data on demand forecasting. Indian J. Sci. Technol. 10, 5 (2017)Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.: Big data in smart farming – a review. Agric. Syst. 153, 69–80 (2017)Castka, P., Balzarova, M.A.: ISO 26000 and supply chains-on the diffusion of the social responsibility standard. Int. J. Prod. Econ. 111(2), 274–286 (2008)Stock, T., Obenaus, M., Kunz, S., Kohl, H.: Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential. Process. Saf. Environ. 118, 254–267 (2018)Verdecho, M.J., Pérez, D., Alarcón F.: Proposal of a customer-oriented sustainable balanced scorecard for agri-food supply chains. In: 12th International Conference on Industrial Engineering and Industrial Management, Girona, Spain, 12–13 July (2018)Valcour, P.M., Hunter, L.W.: Technology, organizations, and work-life integration. In: Kossek, E.E. Lambert, S.J. (eds.), Work and Life Integration: Organizational, Cultural, and Individual Perspectives, pp. 61–84. Lawrence Erlbaum Associates, Mahwah (2005)Arntz, M., Gregory, T., Zierahn, U.: The risk of automation for jobs in OECD countries: a comparative analysis. In: OECD Social, Employment and Migration Working Papers, no. 189. OECD Publishing, Paris (2016)Grubert, J., Langlotz, T., Zollmann, S., Regenbrecht, H.: Towards pervasive augmented reality: context-awareness in augmented reality. IEEE Trans. Vis. Comput. Graph. 23, 1 (2016)Velthuis, A.G.J.: New Approaches to Food-Safety Economics. Kluwer Academic Publishers, Dordrecht (2003)Sándor, Z.P., Csiszár, C.: Development stages of intelligent parking information systems for trucks. Acta Polytechnica Hungarica 10(4), 161–174 (2013)Scognamiglio, V., Arduini, F., Palleschi, G., Rea, G.: Biosensing technology for sustainable food safety. Trends Analyt. Chem. 62, 1–10 (2014)Brynjolfsson, E., McAfee, A.: The Second Machine Age. Work, Progress, and Prosperity in a Time of Brilliant Technologies. W.W. Norton & Company, London (2014)Smith, A., Caiazza, T.: Automation in everyday life (2017). http://assets.pewresearch.org/wpcontent/uploads/sites/14/2017/10/03151500/PI_2017.10.04_Automation_FINAL.pdfHefferon, K.L.: Nutritionally enhanced food crops; progress and perspectives. Int. J. Mol. Sci. 16, 3895–3914 (2015)Glass, S., Fanzo, J.: Genetic modification technology for nutrition and improving diets: an ethical perspective. Curr. Opin. Biotech. 44, 46–51 (2017)Moe, T.: Perspectives on traceability in food manufacture’. Trends Food Sci. Technol. 9(5), 211–214 (1998)Latino, M., Corallo, A., Menegoli, M.: From Industry 4.0 to Agriculture 4.0: how manage product data in agri-food supply chain for voluntary traceability, a framework proposed. In: 20th International Conference on Food and Environment (ICFE), Rome (2018)Linus, U.O.: Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 1(1), 101–106 (2003)Maumbe, B.M., Okello, J.: Uses of information and communication technology (ICT) in agriculture and rural development in Sub-Saharan Africa: experiences from South Africa and Kenya. IJICTRDA 1(1), 1–22 (2010)Dlodlo, N., Kalezhi, J.: The internet of things in agriculture for sustainable rural development. In: International Conference on Emerging Trends in Networks and Computer Communications (ETNCC) (2015

    Artificial Intelligence in Supply Chain Operations Planning: Collaboration and Digital Perspectives

    Full text link
    [EN] Digital transformation provide supply chains (SCs) with extensive accurate data that should be combined with analytical techniques to improve their management. Among these techniques Artificial Intelligence (AI) has proved their suitability, memory and ability to manage uncertain and constantly changing information. Despite the fact that a number of AI literature reviews exist, no comprehensive review of reviews for the SC operations planning has yet been conducted. This paper aims to provide a comprehensive review of AI literature reviews in a structured manner to gain insights into their evolution in incorporating new ICTs and collaboration. Results show that hybrization man-machine and collaboration and ethical aspects are understudied.This research has been funded by the project entitled NIOTOME (Ref. RTI2018-102020-B-I00) (MCI/AEI/FEDER, UE). The first author was supported by the Generalitat Valenciana (Conselleria de Educación, Investigación, Cultura y Deporte) under Grant ACIF/2019/021.Rodríguez-Sánchez, MDLÁ.; Alemany Díaz, MDM.; Boza, A.; Cuenca, L.; Ortiz Bas, Á. (2020). Artificial Intelligence in Supply Chain Operations Planning: Collaboration and Digital Perspectives. IFIP Advances in Information and Communication Technology. 598:365-378. https://doi.org/10.1007/978-3-030-62412-5_30S365378598Lezoche, M., Hernandez, J.E., Alemany, M.M.E., Díaz, E.A., Panetto, H., Kacprzyk, J.: Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Comput. Ind. 117, 103–187 (2020)Stock, J.R., Boyer, S.L.: Developing a consensus definition of supply chain management: a qualitative study. Int. J. Phys. Distrib. Logistics Manag. 39(8), 690–711 (2009)Min, H.: Artificial intelligence in supply chain management: theory and applications. Int. J. Logistics Res. Appl. 13(1), 13–39 (2010). https://doi.org/10.1080/13675560902736537Hariri, R.H., Fredericks, E.M., Bowers, K.M.: Uncertainty in big data analytics: survey, opportunities, and challenges. J. Big Data 6(1), 1–16 (2019). https://doi.org/10.1186/s40537-019-0206-3Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. Int. J. Inf. Manage. 48(2019), 63–71 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.01.021McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the dartmouth summer research project on artificial intelligence. AI Mag. 27(4), 12–14 (2006)Barr, A., Feigenbaum, E.A.: The Handbook of Artificial Intelligence, vol. 2. Heuristech: William Kaufmann, Pitman (1982)High-Level Expert Group on Artificial Intelligence, European Commission. A definition of AI: main capabilities and disciplines (2019)Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., De Felice, F.: Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability (Switzerland) 12(2) (2020). https://doi.org/10.3390/su12020492Cheng, L., Yu, T.: A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 43(6), 1928–1973 (2019). https://doi.org/10.1002/er.4333Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision-making in the era of big data. Evolution, challenges and research agenda. Int. J. Inf. Manag. 48, 63–71 (2019)Varshney, S., Jigyasu, R., Sharma, A., Mathew, L.: Review of various artificial intelligence techniques and its applications. IOP Conf. Ser. Mater. Sci. Eng. 594(1) (2019)Cheng, L., Yu, T.: A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 43, 1928–1973 (2019)Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16(15), 1699–1710 (2008). https://doi.org/10.1016/j.jclepro.2008.04.020Metaxiotis, K.S., Askounis, D., Psarras, J.: Expert Systems In Production Planning And Scheduling: A State-Of-The-Art Survey. J. Intell. Manuf. 13(4), 253–260 (2002). https://doi.org/10.1023/A:1016064126976Power, Y., Bahri, P.A.: Integration techniques in intelligent operational management: a review. Knowl. Based Syst. 18(2–3), 89–97 (2005). https://doi.org/10.1016/j.knosys.2004.04.009Shen, W., Hao, Q., Yoon, H.J., Norrie, D.H.: Applications of agent-based systems in intelligent manufacturing: an updated review. Adv. Eng. Inform. 20(4), 415–431 (2006). https://doi.org/10.1016/j.aei.2006.05.004Kobbacy, K.A.H., Vadera, S., Rasmy, M.H.: AI and OR in management of operations: history and trends. J. Oper. Res. Soc. 58(1), 10–28 (2007). https://doi.org/10.1057/palgrave.jors.2602132Zhang, W.J., Xie, S.Q.: Agent technology for collaborative process planning: a review. Int. J. Adv. Manuf. Technol. 32(3), 315–325 (2007). https://doi.org/10.1007/s00170-005-0345-xIbáñez, O., Cordón, O., Damas, S., Magdalena, L.: A review on the application of hybrid artificial intelligence systems to optimization problems in operations management. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 360–367. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02319-4_43Kobbacy, K.A.H., Vadera, S.: A survey of AI in operations management from 2005 to 2009. J. Manuf. Technol. Manag. 22(6), 706–733 (2011). https://doi.org/10.1108/17410381111149602Guo, Z.X., Wong, W.K., Leung, S.Y.S., Li, M.: Applications of artificial intelligence in the apparel industry: a review. Text. Res. J. 81(18), 1871–1892 (2011). https://doi.org/10.1177/0040517511411968Priore, P., Gómez, A., Pino, R., Rosillo, R.: Dynamic scheduling of manufacturing systems using machine learning: an updated review. Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM 28(1), 83–97 (2014). https://doi.org/10.1017/S0890060413000516Renzi, C., Leali, F., Cavazzuti, M., Andrisano, A.: A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems. Int. J. Adv. Manuf. Technol. 72(1–4), 403–418 (2014). https://doi.org/10.1007/s00170-014-5674-1Ngai, E.W.T., Peng, S., Alexander, P., Moon, K.K.L.: Decision support and intelligent systems in the textile and apparel supply chain: an academic review of research articles. Expert Syst. Appl. 41(1), 81–91 (2014). https://doi.org/10.1016/j.eswa.2013.07.013Rooh, U.A., Li, A., Ali, M.M.: Fuzzy, neural network and expert systems methodologies and applications - a review. J. Mob. Multimedia 11, 157–176 (2015)Bello, O., Teodoriu, C., Yaqoob, T., Oppelt, J., Holzmann, J., Obiwanne, A.: Application of artificial intelligence techniques in drilling system design and operations: a state of the art review and future research pathways. In: Society of Petroleum Engineers - SPE Nigeria Annual International Conference and Exhibition (2016)Arvitrida, N.I.: A review of agent-based modeling approach in the supply chain collaboration context. IOP Conf. Ser. Mater. Sci. Eng. 337(1) (2018). https://doi.org/10.1088/1757-899x/337/1/012015Zanon, L.G., Carpinetti, L.C.R.: Fuzzy cognitive maps and grey systems theory in the supply chain management context: a literature review and a research proposal. In: IEEE International Conference on Fuzzy Systems, July 2018, pp. 1–8 (2018). https://doi.org/10.1109/fuzz-ieee.2018.8491473Burggräf, P., Wagner, J., Koke, B.: Artificial intelligence in production management: a review of the current state of affairs and research trends in academia. In: 2018 International Conference on Information Management and Processing, ICIMP 2018, January 2018, pp. 82–88 (2018). https://doi.org/10.1109/icimp1.2018.8325846Diez-Olivan, A., Del Ser, J., Galar, D., Sierra, B.: Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0. Inf. Fusion 50, 92–111 (2019). https://doi.org/10.1016/j.inffus.2018.10.005Ni, D., Xiao, Z., Lim, M.K.: A systematic review of the research trends of machine learning in supply chain management. Int. J. Mach. Learn. Cybernet. 11(7), 1463–1482 (2019). https://doi.org/10.1007/s13042-019-01050-0Ning, C., You, F.: Optimization under uncertainty in the era of big data and deep learning: when machine learning meets mathematical programming. Comput. Chem. Eng. 125, 434–448 (2019). https://doi.org/10.1016/j.compchemeng.2019.03.034Okwu, M.O., Nwachukwu, A.N.: A review of fuzzy logic applications in petroleum exploration, production and distribution operations. J. Petrol. Explor. Prod. Technol. 9(2), 1555–1568 (2018). https://doi.org/10.1007/s13202-018-0560-2Weber, F.D., Schütte, R.: State-of-the-art and adoption of artificial intelligence in retailing. Digit. Policy Regul. Gov. 21(3), 264–279 (2019). https://doi.org/10.1108/DPRG-09-2018-0050Giri, C., Jain, S., Zeng, X., Bruniaux, P.: A detailed review of artificial intelligence applied in the fashion and apparel industry. IEEE Access 7, 95376–95396 (2019). https://doi.org/10.1109/ACCESS.2019.2928979Leo Kumar, S.P.: Knowledge-based expert system in manufacturing planning: State-of-the-art review. Int. J. Prod. Res. 57(15–16), 4766–4790 (2019). https://doi.org/10.1080/00207543.2018.1424372Barua, L., Zou, B., Zhou, Y.: Machine learning for international freight transportation management: a comprehensive review. Res. Transp. Bus. Manag. (2020). https://doi.org/10.1016/j.rtbm.2020.100453Chai, J., Ngai, E.W.T.: Decision-making techniques in supplier selection: recent accomplishments and what lies ahead. Expert Syst. Appl. 140 (2020). https://doi.org/10.1016/j.eswa.2019.112903Usuga Cadavid, J.P., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 31(6), 1531–1558 (2020). https://doi.org/10.1007/s10845-019-01531-7Ekramifard, A., Amintoosi, H., Seno, A.H., Dehghantanha, A., Parizi, R.M.: A systematic literature review of integration of blockchain and artificial intelligence. In: Choo, K.-K.R., Dehghantanha, A., Parizi, R.M. (eds.) Blockchain Cybersecurity, Trust and Privacy. AIS, vol. 79, pp. 147–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38181-3_8Vrbka, J., Rowland, Z.: Using artificial intelligence in company management. In: Ashmarina, S.I., Vochozka, M., Mantulenko, V.V. (eds.) ISCDTE 2019. LNNS, vol. 84, pp. 422–429. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27015-5_51Leslie, D.: Understanding artificial intelligence ethics and safety: a guide for the responsible design and implementation of AI systems in the public sector. The Alan Turing Institute (2019)Queiroz, M.M., Ivanov, D., Dolgui, A., et al.: Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Ann Oper Res (2020). https://doi.org/10.1007/s10479-020-03685-
    corecore