555 research outputs found

    Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices.

    Get PDF
    The origin of negative differential resistance (NDR) and its derivative intermediate resistive states (IRSs) of nanocomposite memory systems have not been clearly analyzed for the past decade. To address this issue, we investigate the current fluctuations of organic nanocomposite memory devices with NDR and the IRSs under various temperature conditions. The 1/f noise scaling behaviors at various temperature conditions in the IRSs and telegraphic noise in NDR indicate the localized current pathways in the organic nanocomposite layers for each IRS. The clearly observed telegraphic noise with a long characteristic time in NDR at low temperature indicates that the localized current pathways for the IRSs are attributed to trapping/de-trapping at the deep trap levels in NDR. This study will be useful for the development and tuning of multi-bit storable organic nanocomposite memory device systems

    Generalised optical printing of photocurable metal chalcogenides

    Get PDF
    Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to traditional lithography, the printable materials obtained from these methods are strictly limited to photocurable resins, thereby restricting the functionality of the printed objects and their application areas. Herein, we report a generalised direct optical printing technique to obtain functional metal chalcogenides via digital light processing. We developed universally applicable photocurable chalcogenidometallate inks that could be directly used to create 2D patterns or micrometre-thick 2.5D architectures of various sizes and shapes. Our process is applicable to a diverse range of functional metal chalcogenides for compound semiconductors and 2D transition-metal dichalcogenides. We then demonstrated the feasibility of our technique by fabricating and evaluating a micro-scale thermoelectric generator bearing tens of patterned semiconductors. Our approach shows potential for simple and cost-effective architecturing of functional inorganic materials

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Unraveling the Rapid Redox Behavior of Li-Excess 3d-Transition Metal Oxides for High Rate Capability

    No full text
    Li-excess 3d-transition metal layered oxides are promising candidates in high-energy-density cathode materials for improving the mileage of electric vehicles. However, their low rate capability has hindered their practical application. The lack of understanding about the redox reactions and migration behavior at high C-rates make it difficult to design Li-excess materials with high rate capability. In this study, the characteristics of the atomic behavior that is predominant at fast charge/discharge are investigated by comparing cation-ordered and cation-disordered materials using X-ray absorption spectroscopy (XAS). The difference in the atomic arrangement determines the dominance of the transition metal/oxygen redox reaction and the variations in transition metal-oxygen hybridization. In-depth electrochemical analysis is combined with operando XAS analysis to reveal electronically and structurally preferred atomic behavior when a redox reaction occurs between oxygen and each transition metal under fast charge/discharge conditions. This provides a fundamental insight into the improvement of rate capability. Furthermore, this work provides guidance for identifying high-energy-density materials with complex structural properties

    Unveiling Nickel Chemistry in Stabilizing High-Voltage Cobalt-Rich Cathodes for Lithium-Ion Batteries

    No full text
    A practical solution is presented to increase the stability of 4.45 V LiCoO2 via high-temperature Ni doping, without adding any extra synthesis step or cost. How a putative uniform bulk doping with highly soluble elements can profoundly modify the surface chemistry and structural stability is identified from systematic chemical and microstructural analyses. This modification has an electronic origin, where surface-oxygen-loss induced Co reduction that favors the tetrahedral site and causes damaging spinel phase formation is replaced by Ni reduction that favors octahedral site and creates a better cation-mixed structure. The findings of this study point to previously unspecified surface effects on the electrochemical performance of battery electrode materials hidden behind an extensively practiced bulk doping strategy. The new understanding of complex surface chemistry is expected to help develop higher-energy-density cathode materials for rechargeable batteries

    Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes

    No full text
    We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude. © 2016 IOP Publishing Ltd1111sciescopu

    Soluble Telluride-Based Molecular Precursor for Solution-Processed High-Performance Thermoelectrics

    No full text
    The recent interest in wearable electronics suggests flexible thermoelectrics as candidates for the power supply. Herein, we report a solution process to fabricate flexible Sb2Te3 thermoelectric thin films using molecular Sb2Te3 precursors, synthesized by the reduction of Sb2Te3 powder in ethylenediamine and ethanedithiol with superhydride. The fabricated flexible Sb2Te3 thin films exhibit a power factor of ???8.5 ??W cm???1 K???2 at 423 K, maintaining the properties during 1000 bending cycles. FePt nanoparticles are homogeneously embedded in the Sb2Te3 thin film, reducing the thermal conductivity. The current study offers considerable potential for manufacturing high-performance flexible thin film devices
    corecore