59 research outputs found

    Elevated 4R-tau in astrocytes from asymptomatic carriers of the MAPT 10+16 intronic mutation

    Get PDF
    The microtubule-associated protein tau gene (MAPT) 10+16 intronic mutation causes frontotemporal lobar degeneration (FTLD) by increasing expression of four-repeat (4R)-tau isoforms. We investigated the potential role for astrocytes in the pathogenesis of FTLD by studying the expression of 4R-tau. We derived astrocytes and neurons from induced pluripotent stem cells from two asymptomatic 10+16 carriers which, compared to controls, showed persistently increased 4R:3R-tau transcript and protein ratios in both cell types. However, beyond 300 days culture, 10+16 neurons showed less marked increase of this 4R:3R-tau transcript ratio compared to astrocytes. Interestingly, throughout maturation, both 10+16 carriers consistently displayed different 4R:3R-tau transcript and protein ratios. These elevated levels of 4R-tau in astrocytes implicate glial cells in the pathogenic process and also suggests a cell-type-specific regulation and may inform and help on treatment of pre-clinical tauopathies

    Mutations in HYAL2, Encoding Hyaluronidase 2, Cause a Syndrome of Orofacial Clefting and Cor Triatriatum Sinister in Humans and Mice.

    Get PDF
    Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development

    Systematic analysis of copy number variants of a large cohort of orofacial cleft patients identifies candidate genes for orofacial clefts

    Get PDF

    A clinical, molecular genetics and pathological study of a FTDP-17 family with a heterozygous splicing variant c.823-10G>T at the intron 9/exon 10 of the MAPT gene

    Get PDF
    We report the first clinical-radiological-genetic-molecular-pathological study of a kindred with c.823-10G>T MAPT intronic variant (rs63749974) associated with frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We describe the clinical spectrum within this family and emphasize the association between MAPT gene variants and motor neuron disease. This report of a second family with FTDP-17 associated with c.823-10G>T MAPT variant strongly supports pathogenicity of the variant and confirms it is a 4-repeat (4R) tauopathy. This intronic point mutation, probably strengthens the polypyrimidine tract and alters the splicing of exon 10 (10 nucleotides into intron 9) close to the 3’ splice site

    GBA

    No full text
    BACKGROUND: Loss-of-function mutations in the GBA gene are associated with more severe cognitive impairment in PD, but the nature of these deficits is not well understood and whether common GBA polymorphisms influence cognitive performance in PD is not yet known. OBJECTIVES/METHODS: We screened the GBA coding region for mutations and the E326K polymorphism in 1,369 PD patients enrolled at 8 sites from the PD Cognitive Genetics Consortium. Participants underwent assessments of learning and memory (Hopkins Verbal Learning Test–Revised), working memory/executive function (Letter-Number Sequencing and Trail Making A and B), language processing (semantic and phonemic verbal fluency), visuospatial abilities (Benton Judgment of Line Orientation), and global cognitive function (Montreal Cognitive Assessment). We used linear regression to test for association between genotype and cognitive performance with adjustment for important covariates and accounted for multiple testing using Bonferroni corrections. RESULTS: Mutation carriers (n=60; 4.4%) and E326K carriers (n=65; 4.7%) had a higher prevalence of dementia (mutations, odds ratio =5.1; p=9.7 × 10(−6); E326K, odds ratio =6.4; p=5.7 × 10(−7)) and lower performance on Letter-Number Sequencing (mutations, corrected p[p(c)]=9.0 × 10(−4); E326K, p(c)=0.036), Trail Making B-A (mutations, p(c)=0.018; E326K, p(c)=0.018), and Benton Judgment of Line Orientation (mutations, p(c)=0.0045; E326K, p(c)=0.0013). CONCLUSIONS: Both GBA mutations and E326K are associated with a distinct cognitive profile characterized by greater impairment in working memory/executive function and visuospatial abilities in PD patients. The discovery that E326K negatively impacts cognitive performance approximately doubles the proportion of PD patients we now recognize are at risk for more severe GBA-related cognitive deficits
    • …
    corecore