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number of genes encompassed by the region and gene 
expression in embryonic mouse palate. Our analyses of 
these overlapping CNVs identified two genes known to 
be causative for human OFCs, SATB2 and MEIS2, and 12 
genes (DGCR6, FGF2, FRZB, LETM1, MAPK3, SPRY1, 
THBS1, TSHZ1, TTC28, TULP4, WHSC1, WHSC2) that are 
associated with OFC or orofacial development. Addition-
ally, we report 34 deleted and 24 duplicated genes that have 
not previously been associated with OFCs but are associ-
ated with the BMP, MAPK and RAC1 pathways. Statistical 
analyses show that the high number of overlapping CNVs 
is not due to random occurrence. The identified genes are 
not located in highly variable genomic regions in healthy 
populations and are significantly enriched for genes that are 
involved in orofacial development. In summary, we report 
a CNV analysis pipeline of a large cohort of OFC patients 
and identify novel candidate OFC genes.

Introduction

Orofacial clefts (OFCs) are characterized by orofacial 
dysmorphism that may extend from the oral cavity to the 
whole face, involving also the eyes and ears in the most 
severe cases. OFCs represent the most common crani-
ofacial malformations and a large fraction of all human 
birth defects. Collectively, the prevalence of OFCs varies 
between 1.5 and 25 per 10,000 births worldwide (Mos-
sey and Castilla 2003) depending on geographical loca-
tion, ethnicity and even socioeconomic status (Murthy and 
Bhaskar 2009). Although OFCs are repairable surgically 
with only rare exceptions, such as oblique facial cleft, these 
defects lead to a wide spectrum of lifelong complications, 
including feeding difficulties, velopharyngeal insufficiency, 
speech and acoustic impairment, orthodontic problems, 
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psychosocial issues and economic burden due to medical 
and behavioral interventions, which greatly affect the qual-
ity of life (Mossey et  al. 2009; Strauss and Cassell 2009; 
Wehby and Cassell 2010; Shkoukani et  al. 2013). Due to 
the complex multidisciplinary interventions required to 
treat the lifelong morbidity associated with OFCs, the costs 
for these disorders have been estimated to be greater than 
$100,000 per individual (http://www.cdc.gov). Both the 
frequency and significant healthcare burdens imposed by 
OFCs emphasize the need to identify the genetic causes and 
the molecular and cellular mechanisms of these disorders, 
which will enable the ultimate aim of improving diagnosis, 
counseling, care and treatment for affected individuals.

Traditionally, OFCs are classified by phenotypes, based 
on the severity and the anatomical regions involved. The 
most common OFC phenotypes are cleft palate (CP), cleft 
lip (CL) and cleft lip and palate (CLP). However, rare OFCs 
have also been observed in humans, which may affect other 
oral structures, such as mandible or lower lip, or even the 
whole face, including nose, cheeks, eyes and forehead into 
the hairline. OFCs are generally considered to emerge from 
disruptions of distinct morphogenic processes which occur 
at different stages of embryological development (Shkouk-
ani et al. 2013). OFCs are defined as complex multifacto-
rial polygenic traits arising from many etiologies, including 
single-gene mutations, chromosome aberrations, intrau-
terine environment anomalies, improper maternal nutrient 
intake (deficiency of folic acid or zinc, excess of retinoic 
acid), exposure to teratogens (maternal smoking, alcohol or 
drug consumption, chemical pollutants), stress, infections, 
and even parental age and weight during pregnancy seem to 
contribute to the pathology (Dravet et al. 1992; Abrisham-
chian et al. 1994; Derijcke et al. 1996; Munger et al. 1996; 
Abel 1998; Hernández-Diaz et al. 2000; Little et al. 2004; 
Canfield et  al. 2005; Jugessur and Murray 2005; Tamura 
et al. 2005; Villamor et al. 2008; Mossey et al. 2009; Mur-
thy et  al. 2009). The genetic component of OFC etiology 
is relevant, as demonstrated by the tenfold increased risk 
that has been observed in monozygotic (40 %) vs dizygotic 
twins (4.2 %) (Wyszynski et al. 1996).

OFCs can be categorized into syndromic and non-
syndromic forms, according to the presence or absence 
of other cognitive or structural anomalies occurring out-
side the cleft area in the affected individuals (Cobourne 
2004). At least 275 syndromes, whose primary features 
include OFCs, have been identified but the genetic causes 
are known only for 75  % of them (Leslie and Marazita 
2013). Classical genetic studies of syndromic forms of 
OFCs have identified causative mutations in genes includ-
ing IRF6 [Van der Woude syndrome (OMIM #119300), 
popliteal pterygium syndrome (OMIM #119500)], MSX1 
[cleft-associated tooth agenesis (OMIM #106600)] and 
TP63 [ankyloblepharon-ectodermal dysplasia-clefting 

(OMIM #106260), ectrodactyly-ectodermal dysplasia-
clefting (OMIM #225060)], through linkage analysis, can-
didate gene approaches and confirmation in studies using 
animal models (Celli et al. 1999; van den Boogaard et al. 
2000; McGrath et al. 2001; Kondo et al. 2002; Dixon et al. 
2011; Leslie and Marazita 2013). With the fast develop-
ment of Next-Generation Sequencing technology, whole 
exome-sequencing studies have identified several causative 
genes in syndromic forms of OFCs such as MLL2 [Kabuki 
syndrome (OMIM #147920)], DHODH [Miller syndrome 
(OMIM #263750)] and RIPK4 [Bartsocas-Papas syndrome 
(OMIM #263650)] (Ng et al. 2010a, b; Kalay et al. 2012; 
Mitchell et al. 2012; Setó-Salvia and Stanier 2014).

The identification of causative sequence variants and the 
associated genes for non-syndromic OFCs remains chal-
lenging, as such cases are often sporadic. Several genes 
involved in syndromic forms of OFCs have been implicated 
in non-syndromic OFCs, such as IRF6 and MSX1 (Lidral 
et al. 1998; Van den Boogaard et al. 2000; Jezewski et al. 
2003; Suzuki et  al. 2004; Vieira et  al. 2004; Zucchero 
et  al. 2004; Rahimov et  al. 2008; Birnbaum et  al. 2009). 
Genome-wide association studies (GWAS) are often per-
formed to investigate genes and loci contributing to the risk 
of OFC by statistical analyses. Among genes within ORF 
loci identified by GWAS, IRF6 has been demonstrated by 
various models as the causative gene, whereas the role of 
other genes, such as ABCA4 and MAFB, remains to be 
assessed (Beaty et al. 2010).

Large structural alterations of the genome, including dele-
tions and duplications of genomic regions termed copy num-
ber variations (CNVs), have been studied in OFC patients 
using classical genetic analyses such as FISH, CGH arrays 
or, more recently, SNP arrays (FitzPatrick et al. 2003; Mulat-
inho et al. 2008; Barber et al. 2013; Izzo et al. 2013). Some 
of the identified genes including SUMO1, CLPTM1L and 
BMP2 have also been validated in animal models (Shi et al. 
2009; Sahoo et  al. 2011; Williams et  al. 2012). However, 
due to the relatively low number of OFC patients exhibiting 
CNVs that are available in individual research centers, a sys-
tematic CNV study of a large number of OFC patients has 
not yet been performed to investigate the etiology of OFCs. 
Recently, new consortia have been organized to create com-
prehensive databases of clinical case data by combining the 
resources from different medical centers worldwide. One of 
these databases is DECIPHER (Database of Genomic Vari-
ation and Phenotype in Humans using Ensembl Resources, 
https://decipher.sanger.ac.uk/), a database of chromosomal 
imbalance and phenotype in human with information of 
more than 25,000 patients, contributed by a consortium of 
clinical genetic centers and diagnostic laboratories from 
thirty different countries (Bragin et  al. 2014). Similarly, 
ECARUCA (European Cytogeneticists Association Regis-
ter of Unbalanced Chromosome Aberrations, http://www.

http://www.cdc.gov
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ecaruca.net) is another database that provides both clinical 
and molecular details on unbalanced chromosomal aberra-
tions, recording over 4800 clinical cases so far (Vulto-van 
Silfhout et  al. 2013). These publicly accessible databases 
provide rich resources to systematically study genetic mech-
anisms in a large number of CNV patients with OFCs.

Here, we report a comprehensive bioinformatics and 
statistical analysis to identify candidate causative genes 
involved in OFCs by analyzing common CNV regions 
shared by OFC patients retrieved from DECIPHER and 
ECARUCA databases. The analysis pipeline includes 
retrieving patient and CNV data from databases, the iden-
tification of overlapping genomic regions and the prioriti-
zation of candidate genes in the genomic regions followed 
by statistical analyses. This study identifies two previously 
known OFC genes and several novel candidate OFC genes.

Materials and methods

Data collection

The patients included in our study were retrieved from two 
publicly accessible web-based databases of genomic vari-
ants and chromosomal aberrations in humans, DECIPHER 
and ECARUCA, reported till July 2014. Two main criteria 
were used to select patients: the presence of OFCs, alone 
or in combination with other phenotypes, and the avail-
ability of the CNV location coordinates. Firstly, the terms 
‘cleft’ and ‘bifid uvula’ were used to perform the search in 
the databases, and subsequently, for each identified patient 
the phenotypes were checked to exclude cases of cleft that 
do not involve the oral region (e.g., eyelid cleft). To be able 
to obtain a large number of cases, we decided to include 
patients with syndromic and non-syndromic OFCs. After 
selecting the relevant patients, further patient details (ID 
number, OFCs and other phenotypes, presence of overlap-
ping syndromes) and CNV information (CNV type, size, 
genomic location in GRCh37/hg19) from ECARUCA and 
DECIPHER were collected (Supplementary Table 1).

Identification of overlapping CNV regions

Several Linux BEDtools were used sequentially to identify 
the deleted or duplicated  genomic regions shared among 
OFC patients (Quinlan and Hall 2010). After sorting based 
on the genomic locations of CNVs, genomeCoverageBed 
was run to define the common genomic regions shared by 
patients’ CNVs, named overlapping regions. For each over-
lapping region the common genomic sequence (chr:start–
end) and the total number of overlaps were analyzed. Sub-
sequently, the BEDtools intersectBed and groupbyBed with 
the option ‘collapse’ were used in combination to join the 

BED files of common CNV regions with a list containing 
patients’ IDs for retrieving the patients who shared deleted 
or duplicated regions.

For randomization, the shuffleBed command was run 
repeatedly on the same total number of regions with the same 
sizes as the corresponding actual deletion and duplication 
lists to obtain 1000 random permutations. For the random 
permutations, assembly gaps (telomeres and short arm of 
chr13, 14, 15, 21, 22), alternative haplotype sequences (e.g., 
chr6_ssto_hap7) and random contigs (e.g. chr4_gl000193_
random) as reported in the UCSC Genome Browser archive 
(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/) 
were excluded. The same pipeline that was used to identify 
common deletions and duplications of patients was applied 
to identify the overlapping regions in each randomized CNV 
list for the two sets of 1000 randomized lists, termed as ran-
domized overlapping region lists. In each randomized over-
lapping region list, the mean of the number of the overlaps 
was calculated, obtaining 1000 means per set, and subse-
quently the overall mean of the set was calculated based on 
the 1000 means. To visualize the data, the overall mean and 
the overall standard deviation were computed with R statisti-
cal program (http://www.r-project.org/), and then used to cal-
culate the z score of each randomized list given by:

where μi represents the mean of overlaps of a specific rand-
omized list (i), µ indicates the overall mean (average of all 
list means) while σ states the overall standard deviation. For-
mula (1) refers to a specific randomized list (i), but it was 
applied to all 1000 elements of the randomization set (R). 
Deletions and duplications were processed separately.

The Shapiro–Wilk test showed that the obtained distri-
bution of the z score was not a normal distribution in both 
deletion and duplication sets, and therefore exact p values 
could not be computed. Instead, empirical p values based on 
counting the number of randomization scores that matched 
or exceeded the real scores were used. The z scores based on 
the list of overlapping deletions and of overlapping duplica-
tions derived from patients’ CNVs were calculated, using the 
same formula (1) that was applied to the randomized lists.

Gene retrieval, prioritization and OFC gene 
enrichment analysis

The UCSC Table Browser (https://genome.ucsc.edu/cgi-
bin/hgTables) was used to generate a list of encompassed 
RefSeq genes for each overlapping region, including not 
only protein-coding genes but also pseudogenes, miRNAs 
and long non-coding RNAs (lncRNAs). Gene prioritiza-
tion was performed based on three criteria: the number of 
overlapping CNVs (≥2), the number of genes in the over-
lapping regions (≤5, Supplementary Figure  1) and gene 

(1)zi = (µi − µ)/σ | i ∈ R

http://www.ecaruca.net
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
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expression levels in mouse embryonic palate detected in 
an RNA-Seq analysis (nRPK  ≥  59.00, Supplementary 
Figure 2).

To test whether the prioritized gene list is enriched for 
known OFC genes, a panel of 126 OFC genes that have 
been shown to be involved in OFCs or craniofacial devel-
opment was assembled based on the existing literature, 
hereafter referred to as OFC-associated genes (OFC-AGs) 
(Supplementary Table  2). Subsequently, the fold enrich-
ment of the proportion of these OFC-AGs in the prioritized 
gene list was calculated relative to the proportion of OFC-
AGs in all genes retrieved from the deleted or duplicated 
CNVs. The hypergeometric test was used to evaluate the 
significance of the enrichment.

Phenotype mapping

In addition to OFCs, other phenotypes of patients who have 
deletions or duplications encompassing one or more can-
didate genes were classified based on the phenotypic fea-
ture hierarchy of the Human Phenotype Ontology (HPO) 
(http://www.human-phenotype-ontology.org/) (Robinson 
and Mundlos 2010). HPO terms (phenotypic features) 
annotated to the patients were mapped to the top level of 
the term hierarchy, which consists of 23 broad phenotypic 
categories (e.g., abnormality of the nervous system) (Sup-
plementary Table 3). This allows a coarse-grained charac-
terization and comparison of patient phenotypes.

Generation of RNA‑Seq data

All animal experiments were approved by the University of 
Manchester Ethical Review Committee and performed in 
accordance with the Animals (Scientific Procedures) Act, 
1986, United Kingdom. Matings were established between 
male and female CD1 mice, the morning of the vaginal plug 
being counted as E0.5. Microdissected facial processes from 
E10 and E11 and palatal shelves from E12, E13 and E14 
embryos were collected and pooled according to their stages 
to obtain sufficient amount, and RNA was isolated using the 
Qiagen RNeasy kit. RNA-Seq libraries were generated using 
the SOLiDTM Total RNA-Seq Kit. Samples were run on 
SOLiDTM v4 for single-end 50  bp reads. Poor reads were 
filtered from the data with SOLiD Preprocess Filter. Reads 
were mapped to the mouse genome (mm9, NCBI Build 37) 
using Bowtie 0.12.7 (http://bowtie.cbcb.umd.edu) (Langmead 
et  al. 2009) and assigned to RefSeq transcripts with Partek 
Genomics Solution (version 6.5, Copyright 2009, Partek 
Inc., St. Charles, MO, USA). Transcript reads were normal-
ized and differential expression analyzed with DESeq2 (Love 
et  al. 2014). The normalized counts from DESeq2 analysis 
were then converted to normalized expression value nRPK, 
by dividing normalized counts by the size (kilobases) of the 

specific isoform transcript length. A mean of 59.00 nRPK 
was obtained from expression of all genes and an expression 
level of ≥59.00 nRPK was set as the cutoff for the candidate 
gene prioritization (Supplementary Figure 2). The RNA-Seq 
data are available from ArrayExpress: E-MTAB-3157.

Analysis of genomic variability score

The DGV (Database of Genomic Variants, http://dgv.tcag.
ca/) (MacDonald et  al. 2014) dataset was retrieved using 
the UCSC Table Browser. The human genome (GRCh37/
hg19) was divided into windows of fixed size, 1 Mb, using 
the tool windowBed (Quinlan and Hall 2010), and the num-
bers of CNVs (observed gains and losses) were summed 
to obtain the total number of variants in each region. Next, 
the overall number of structural variants per window was 
determined using the intersectBed and groupbyBed com-
mands in combination. The windows encompassing assem-
bly gaps (telomeres and short arm of chr13, 14, 15, 21, 22), 
alternative haplotype sequences (e.g., chr6_ssto_hap7) and 
random contigs (e.g., chr4_gl000193_random) reported in 
the UCSC Genome Browser archive (http://hgdownload.
soe.ucsc.edu/goldenPath/hg19/database/) were removed to 
avoid bias. To approximate a normal-like distribution, the 
logarithmic conversion was applied to the variant counts of 
the resulting genomic windows. The overall mean (μ) of all 
the count logarithms was computed as well as the overall 
standard deviation (σ) with R statistical program, and sub-
sequently used to calculate the z score as follows:

where log10(ci) represents the base-10 log of the count value 
of structural variants (c) in a specific window (i) according to 
DGV, n indicates the total number of windows generated from 
the whole genome (GRCh37/hg19), μ is the overall mean 
(average of the base-10 count logs of all windows) while σ is 
the overall standard deviation. Formula (4) was applied to all 
the elements of the window set (W). In this case, the z score 
was considered as a measure of genome variability.

The genomic windows were intersected with deleted and 
duplicated regions shared by at least two OFC patients. In case 
a deleted or duplicated region overlapped multiple windows, the 
mean of the counts was calculated and then used to determine a 
single z score per region. The variability of known OFC genes 
and potential candidate OFC genes identified in this work and 

(2)µ =

∑

n

i=1 log10 (ci)

n

(3)σ =

√

∑

n

i=1 (log10(ci)− µ)2

n− 1

(4)zi =
log10(ci)− µ

σ
| i ∈ W

http://www.human-phenotype-ontology.org/
http://bowtie.cbcb.umd.edu
http://dgv.tcag.ca/
http://dgv.tcag.ca/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
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the variability of OFC-AGs from the literature (Supplementary 
Table 2) were also evaluated by intersecting their genomic loca-
tions with the list of windows. The gene locations were retrieved 
from the Ensembl database (http://www.ensembl.org/index.
html) setting the consistent assembly GRCh37/hg19.

Results

Patient cohort

A total of 312 unrelated patients presenting different forms 
of OFCs (including both syndromic and non-syndromic 

forms) were analyzed in this study, including 295 retrieved 
from DECIPHER and 17 from ECARUCA in July 2014 
(Table  1). All 312 patients appear to be unique, as the 
genomic locations of CNVs in these patients are all dif-
ferent (Supplementary Table  1). The most common OFC 
phenotype in this cohort is CP with 197 patients affected. 
In addition, there are 41 CLP patients, 30 CL patients, 30 
bifid uvula patients and a small number of patients exhibit-
ing minor cleft phenotypes, such as mandible cleft, alveolar 
ridge cleft and facial cleft (Table 1). In case a minor cleft 
type was present in combination with main OFC pheno-
types, the patient was ascribed to the main OFC group.

Identification of overlapping CNV regions in OFC 
patients

To identify the genomic regions that likely contain 
OFC genes, we identified the genomic CNV regions 
that are shared by multiple patients. From the cohort 
of 312 OFC patients with CNVs, 249 genomic dele-
tions and 226 genomic duplications (Supplementary 
Table  1) were retrieved and analyzed to determine the 
overlap. Altogether, 146 deletions and 109 duplications 
that are shared by two or more patients were identified, 
and these regions are referred as overlapping CNVs 
hereafter (Table  2). One region of 0.48  Mb located on 
chr2 is shared among eight OFC patients with dele-
tions, and two regions of 1.8  Kb and 0.5  Kb both on 
chr22 are shared among eight duplications (Fig.  1). To 
assess whether the degree of OFC CNV overlap occurs 
by chance, we performed a randomization analysis 
(Quinlan and Hall 2010). For the 1000 randomizations 
based on the deletion list, the maximum overlap number 
found in the set of randomized regions was 6, and the 
distribution was uniformly shifted towards lower over-
lap numbers than that of the OFC deletion list (Fig. 2a). 
To verify whether this shift is statistically significant, we 

Table 1   Phenotypes in selected OFC patients from DECIPHER and 
ECARUCA

Phenotypes Number of patients

Cleft lip (CL) 24 CL patients in total
30CL + Alveolar ridge cleft 3

CL + Cleft mandible 2

CL + Cleft lower lip 1

Cleft lip and palate (CLP) 38 CLP patients in total
41CLP + Bifid uvula 1

CLP + Cleft mandible 2

Cleft palate (CP) 186 CP patients in total
197CP + Bifid uvula 8

CP + Facial cleft 1

CP + Alveolar ridge cleft 1

CP + Cleft lower lip 1

Bifid uvula 30

Oral cleft (unspecified) 10

Alveolar ridge cleft 2

Cleft lower lip 1

Facial cleft 1

Total 312

Table 2   Overview of identified 
overlapping deletions and 
duplications

a  Regions with one overlap represent CNVs that are present in only one patient and are excluded in further 
analyses

Num. of overlaps Deletions Duplications

Num. of regions Length average (bp) Num. of regions Length average (bp)

1a 198 2242419.58 198 2078953.58

2 73 1808210.63 71 1747913.48

3 37 974799.30 23 471465.30

4 20 1076381.95 6 663154.00

5 8 1186606.63 2 330141.50

6 4 514565.50 2 515747.00

7 3 2487712.67 3 283718.67

8 1 484236.00 2 1177.50

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
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calculated the z scores of the overlap numbers from the 
deletion list and those from the randomizations. The z 
score of the deletion list is 13.91, markedly higher than 
those of the randomizations, which are all included in 
the range −2.55 ≤ z ≤ +4.11 (Fig. 2c). As the z scores 
of randomized overlaps do not follow a normal distribu-
tion (p = 1.38 × 10−6, Shapiro–Wilk normality test), we 
used the conservative empirical p value of p ≤  0.001. 
Similarly, the distribution of randomized overlapping 
regions based on the duplication list also appeared 
shifted toward lower numbers, with a maximum overlap 
number of 6 and a z score range of −2.69 ≤ z ≤ +4.36 
(Fig. 2b). In comparison, the z score of the mean over-
lap number characterizing the OFC duplication list was 
11.58, higher than those of the randomizations, with a 
significant empirical p value of p ≤ 0.001, as the rand-
omization overlap numbers are not normally distributed 
(p = 1.98 × 10−8, Shapiro–Wilk normality test).

Candidate gene identification in overlapping CNVs 
among OFC patients

To identify candidate OFC genes in the CNVs, we searched 
for genes that are shared by multiple patients and applied 
a prioritization pipeline. In total, 5809 and 5941 RefSeq 
genes were retrieved from 249 genomic deletions and 
226 genomic duplications, respectively, including protein-
coding genes, pseudogenes, miRNAs and long non-coding 
RNAs. After the gene retrieval, several prioritization crite-
ria were used to identify potential causative genes. Firstly, 
we excluded genes that are deleted or duplicated in only 
one patient, resulting in 1651 deleted genes and 1887 dupli-
cated genes. Secondly, the number of genes in the over-
lapping regions was assessed (Supplementary Figure  1). 
Among these CNVs, one deleted region covers more than 
84 genes and 19 deleted regions contain only one gene. For 
duplications, one region covers more than 200 genes and 
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Fig. 1   Genomic regions overlapped by eight genomic deletions and 
by eight genomic duplications in OFC patients. The coordinates of 
the start and the end of the CNVs are indicated inside the red/blue 
bars, if the length of the CNVs are longer than what are shown in 
the screenshot. The encompassed RefSeq genes and the chromosome 
ideogram are indicated under the bars. a. UCSC Genome Browser 

screenshot (assembly GRCh37/hg19) of the genomic region on chr2 
(0.48  Mb, dashed box) overlapped by eight genomic deletions (red 
bars) in OFC patients. b. UCSC Genome Browser screenshot (assem-
bly GRCh37/hg19) of the two genomic regions located on chr22 
(1.8  Kb and 1.5  Kb, dashed boxes) overlapped by eight genomic 
duplications (blue bars) in eight OFC patients
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in 23 regions only one gene was duplicated. In general, the 
number of deletions or duplications decreases when the 
number of their encompassing genes increases. For dele-
tions, there is no clear inflection point at which this number 
shows a sharp change. Both three and six genes are associ-
ated with rather major changes (Supplementary Figure 1a), 
and deletions with more than six genes fluctuate in fre-
quency at low levels. For duplications on the other hand, 
there is a clear inflection point at five genes (Supplementary 
Figure 1b). As the contribution to causality of each gene in 
regions with a large number of deleted or duplicated genes 
is difficult to assess, we decided to take a cutoff of the 
number of genes in the region (≤5 genes, Supplementary 
Figure  1), and therefore the genes present in regions that 
contained five genes or fewer were selected. We chose this 
threshold as it corresponds to a clear inflection point for 
the duplications and lies between two changing points for 
the deletions (Supplementary Figure 1). This prioritization 
step gave rise to 117 deleted and 88 duplicated genes pre-
sent in the common CNV regions shared by OFC patients 
(Supplementary Table 4). Subsequently, gene expression in 
mouse embryonic palatal shelves detected by an RNA-Seq 
analysis was used as the last prioritization step. To select 
genes with relatively high expression in developing mouse 
palates, the distribution of expressed genes (nRPK, normal-
ized reads per kilobase, >0) detected at all analyzed stages 
(E10-14) was plotted to identify the mean expression level 
of all genes, which lies at nRPK = 59.00 (Supplementary 
Figure  2). Finally, the candidate genes with an expres-
sion level higher than 59.00 nRPK at any of the five stages 
(Supplementary Table 4) were selected as potential candi-
date OFC genes, resulting in 45 genes in deleted CNVs and 
27 in duplicated CNVs (Supplementary Table 5).

Among genes in deleted CNVs, two of the genes, 
SATB2 and MEIS2, which are deleted in eight and five 
OFC patients (Table  3; Supplementary Tables  2, 5, 6), 
respectively, have been reported as causative for CP 
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and CLP in several human and animal studies (FitzPat-
rick et al. 2003; Beaty et al. 2006; Britanova et al. 2006; 
Dobreva et al. 2006; Erdogan et al. 2007; Leoyklang et al. 
2007; Crowley et al. 2010; Johansson et al. 2014; Rainger 
et  al. 2014; Louw et  al. 2015). Six additional genes 
(THBS1, TSHZ1, TTC28, WHSC1, WHSC2 and LETM1) 
encompassed by deleted CNVs have been proposed as the 
potentially causative genes in critical genomic regions 
for OFC syndromes (Table 3; Supplementary Tables 2, 5) 
(Wright et al. 1997, 1999; Stec et al. 1998; Zollino et al. 
2000, 2003; Schlickum et al. 2004; Nishiwaki et al. 2006; 
Coré et  al. 2007; Maas et  al. 2008; Dostal et  al. 2009; 
Heinonen and Maki 2009; Davidson et al. 2012; Shimizu 
et al. 2014; Liu et al. 2015). Furthermore, three candidates 
in deleted CNVs, FGF2, FRZB and SPRY1, have been 
shown to contribute to orofacial development in animal 
models and to be involved with signaling pathways whose 
disruption leads to OFCs in human (Table  3, Supple-
mentary Tables 2, 5) (Hoang et al. 1996; Lin et al. 1997; 
Hoang et al. 1998; Mansukhani et al. 2000; Moore et al. 
2002; Ignelzi et al. 2003; Sasaki et al. 2006; Szabo-Roger 
et al. 2008; Dickinson et al. 2009; Porntaveetu et al. 2010; 
Yang et  al. 2010; Kamel et  al. 2013). We further identi-
fied 34 novel candidates which have not previously been 
associated with OFCs (Supplementary Table  5). Among 
27 genes in duplicated CNVs, three of them, DGCR6, 
MAPK3 and TULP4 (Table  3; Supplementary Tables  2, 
5), have been previously associated with orofacial devel-
opment or proposed as causative for OFC syndromes 
(Demczuk et al. 1996; Lindsay and Baldini 1997; Yama-
moto et al. 2003; Singh et al. 2007; Nakamura et al. 2009; 
Das Chakraborty et al. 2012; Vieira et al. 2015), while the 
remaining 24 genes are novel candidates (Supplementary 
Table 5).

To further test whether the genes identified within CNVs 
have an enrichment of known OFC genes, we selected 
a panel of 126 genes, which we termed OFC-associated 
genes (OFC-AGs), based on the following criteria: (i) 
genes harboring mutations causing syndromic and non-
syndromic OFCs, or (ii) genes located near or within OFC 
GWAS loci  and CNVs, or (iii) genes expressed in lip or 
palate primordia during development in animal mod-
els (Supplementary Table  2). In this panel, 50 genes are 
shown to be associated with non-syndromic OFCs, 58 are 
involved in the pathogenesis of syndromes whose features 
include OFCs, and 18 genes are implicated in both cases. 
Eleven OFC-AGs are present among the 45 deleted candi-
dates and three among 27 duplicated candidates. This rep-
resent a statistically significant 29-fold enrichment (hyper-
geometric test, p =  7.2 ×  10−16) of OFC-AGs in deleted 
CNV genes and a 22-fold enrichment (hypergeometric test, 
p = 8.6 × 10−6) in duplicated CNV genes (Table 4). There-
fore, our data show that the prioritized gene list identified 

from overlapping CNVs contains a significant number of 
known OFC-AGs (Table 3).

One interesting question is whether the identified can-
didate genes are located in highly polymorphic genomic 
regions, named hypervariable regions (HVRs), in indi-
viduals without OFCs. To address this question, we first 
examined the variability in the whole human genome based 
on 2,135,523 structural variants from healthy individu-
als reported in the DGV database (January 2015) (Mac-
Donald et  al. 2014) by partitioning the genome to fixed 
windows and calculating the z score of the CNV counts 
within each window. A total of 2876 1 Mb windows with 
DGV variant counts were generated and the z scores in 
the healthy population resulted in a range from −5.80 to 
+3.65 (not normally distributed, Shapiro–Wilk normality 
test, p < 2.2 × 10−16) (Fig. 3a). In addition, we assessed the 
variability of the 126 OFC-AGs from the literature (Sup-
plementary Table 2), and found that they are located within 
the variability range of the normal population, between 
−2.84 and +2.30. Next, the z scores of the genomic win-
dows encompassing CNVs shared by OFC patients were 
calculated. The variability distributions of windows encom-
passing deletions and duplications are in both cases slightly 
shifted towards increased variability. Nevertheless, they are 
located within the variability range of the healthy popu-
lation, from −2.92 to +3.02 for deleted CNVs and from 
−2.30 to +3.05 for duplicated CNVs but not in HVRs 
(Fig.  3a). These data show that the OFC CNVs are not 
located in HVRs in healthy individuals. Next, we focused 
on the windows containing the identified candidates, 45 
deleted genes and 27 duplicated genes, to evaluate the 
location of those windows in the z score distribution. For 
two deleted (USP14 and ZMYND11) and four duplicated 
(RIC8A, PSMD13, SIRT3 and YES1) novel candidates, 
the variability score was not assessable due to the exclu-
sion of the windows encompassing telomeric sequences. 
Importantly, the z scores of the other potential OFC candi-
dates lie within the variability range of the normal popula-
tion, varying between −2.05 (FAT4) and +2.21 (FRG1) for 
deleted CNV genes, and between −0.67 (FIRRE) to +1.72 
(DGRC6) (Fig.  3) for duplicated CNV genes, similar to 
those of the range of the OFC-AGs.

Finally, we assessed the total number of genomic and 
exonic CNVs in healthy individuals affecting the two 
known cleft genes in our analysis, SATB2 and MEIS2, and 
the 12 proposed OFC genes (Fig. 3b). SATB2 and MEIS2 
appear to be partially deleted in a large number of DGV 
individuals, 149 and 599, respectively (Fig.  3b; Supple-
mentary Figure  3). Interestingly, all the deletions within 
SATB2 in healthy individuals are not located in the exonic 
regions but map to intronic regions (Fig. 3b; Supplemen-
tary Figure  3b), whereas deletions within MEIS2 disrupt 
the promoter regions (Fig. 3b; Supplementary Figure 3a). 
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Except for DGCR6 that is affected by a large number of 
exonic deletions and duplications, the other eleven genes 
are not frequently affected by CNVs in healthy popula-
tion (Fig. 3b). These data suggest that most of the identi-
fied candidate genes in OFC CNV patients are not often 
disrupted in healthy individuals, and therefore the dele-
tion or duplication of these genes likely contributes to the 
etiology.

Taken together, our data suggest that our systematic 
large-scale CNV analysis of OFC patients and prioritiza-
tion of genes in these CNV regions can identify potential 
candidate OFC genes.

Discussion

Craniofacial abnormalities including OFCs are among 
the most significant phenotypes where large CNVs are 
involved in the etiology (Cooper et al. 2011). However, due 
to the limited number of OFC patients with CNVs in indi-
vidual centers, analyses of CNVs from a large number of 
OFC patients are difficult to perform. In the present study, 
we analyzed a set of CNVs from a large cohort of OFC 
patients collected from publicly available CNV databases 
to identify common genomic deleted or duplicated regions 
and potential causative genes. Specifically, 312 OFC 

Table 4   Enrichment of OFC-associated genes (OFC-AGs) in candidate OFC genes identified by CNV analysis

a  OFC-AGs: OFC-associated genes. Genes that have been associated with OFC or orofacial development based on extensive literature search 
(Supplementary Table 2)

Deletions Duplications

No. of total genes No. of OFC-AGsa No. of total genes No. of OFC-AGs

All genes without prioritization 5809 49 5941 30

Prioritized genes 45 11 27 3

Fold enrichment 28.98 22.00

P value (Hypergeometric test) 7.2 × 10−16 8.6 × 10−6
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Fig. 3   Genomic variability of overlapping deletions and duplica-
tions shared by OFC patients and identified candidate genes. a 
Kernel density plot shows variability z scores of genomic regions 
with 1  MB windows in healthy individuals reported in DGV 
(−5.80 ≤ z ≤ + 3.65, dotted curve) and of the windows encompass-
ing overlapping deletions (−2.92 ≤ z ≤ + 3.02, red solid curve) or 
duplications (−2.30 ≤ z ≤ + 3.05, blue solid curve) shared by OFC 
patients. The dots on the X-axis represent the variability z scores of 
genomic windows encompassing deleted (red dots) and duplicated 
(blue dots) candidate genes in CNVs (Supplementary Table  5). The 
variability z scores of windows encompassing 18 OFC-associated 
genes (OFC-AGs) from the literature are indicated by dashed lines. 

Among these, two genes (MEIS2, SATB2) highlighted in bold are 
identified from the overlapping deletions in this study (Table 3; Sup-
plementary Table  2). Y-axis: density; X-axis: z score (variability). b 
The histogram of duplications and deletions at the genomic regions 
of the 14 known and potential OFC genes identified in healthy indi-
viduals, based on DGV dataset (Database of Genomic Variants, http://
dgv.tcag.ca/). Duplications in the genic regions of the genes are indi-
cated in dark blue, and those affecting exonic regions are indicated 
in light blue. Deletions in genic regions of the genes are indicated in 
dark red, and those affecting exonic regions are indicated in light red. 
Y-axis number of CNVs, X-axis genes

http://dgv.tcag.ca/
http://dgv.tcag.ca/
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patients were collected from DECIPHER and ECARUCA 
databases with a total of 249 genomic deletions and 226 
duplications. Overlapping genomic regions shared by 
patients were analyzed, and RefSeq genes in these regions 
were prioritized to identify candidate causative genes for 
OFCs, resulting in 45 potential candidate genes for dele-
tions and 27 for duplications. Furthermore, statistical anal-
yses showed that the overlapping CNV regions in OFC 
patients are not randomly located, and that the identified 
candidate genes do not lie within hypervariable genomic 
regions of the human genome.

Several considerations need to be taken into account 
with regards to our analysis pipeline for the identification 
of candidate OFC genes. Firstly, we collected unique OFC 
patients from DECIPHER and ECARUCA databases, to 
ensure a single registration of patients and to avoid over-
representation due to repeated data. Unique registration 
is required for the submission of CNV patients to the 
ECARUCA database (personal communication) (de Leeuw 
et al. 2012). The uniqueness of the collected patients is fur-
ther confirmed by their different genomic locations (Sup-
plementary Table  1). We note that not all CNVs in these 
databases may be validated. Secondly, different types of 
OFC patients including CP, CL and CLP were collected 
to have a large cohort of patients for statistical analyses, 
and the analysis pipeline is likely to identify the common 
mechanisms involved in different OFCs. It should be noted 
that distinct mechanisms have been proposed for CP, CL 
and CLP, which likely cannot be distinguished using this 
approach. Thirdly, we used a cutoff of fewer than five genes 
in CNV regions to prioritize candidate genes, because it is 
difficult to evaluate the contribution of each gene when a 
large number of genes are deleted or duplicated. Given that 
there are not many CNVs containing more than 5 genes, 
as compared to smaller CNVs (with ≤5 genes) (Supple-
mentary Figure 1), it is not likely that we miss many OFC 
relevant genes using this criteria. However, this approach 
cannot identify genes that have a minor contribution indi-
vidually but act synergistically when located in the same 
CNV regions. It is known that one of the intrinsic problems 
of CNV studies is to identify the dosage-sensitive genes 
that underlie the phenotypes because CNVs usually encom-
pass many genes (Cooper et al. 2011). Fourthly, one of the 
strengths in our analysis pipeline is that our study focuses 
on genes located in overlapping CNVs shared by several 
patients whose common phenotype is OFC. This strategy 
allows to identify common genetic mechanisms of OFCs, 
rather than those of individual patients. Finally, we used 
gene expression levels in mouse embryonic palatal shelves 
(Supplementary Figure  2) to prioritize OFC candidate 
genes. This is based on the hypothesis that genes expressed 
in embryonic palate are likely involved in the pathogenesis 
of OFCs. However, some known OFC genes such as TBX1 

that do not have high expression levels in mouse embry-
onic palates were not selected as the candidate genes using 
our systematic approach (Supplementary Table  4). TBX1 
is located in the 22q11.2 region that is highly susceptible 
to rearrangements including microdeletions and microdu-
plications. Patients with 22q11.2 microdeletion syndrome, 
also known as DiGeorge syndrome [OMIM #188400] or 
Velocardiofacial syndrome [OMIM #192430], and with 
22q11.2 microduplication syndrome often have orofacial 
abnormalities together with many other phenotypes (Yagi 
et  al. 2003; Torres-Juan et  al. 2007; Wentzel et  al. 2008). 
TBX1 plays a role in early progenitor cells relevant for pal-
ate development and is generally considered to be the caus-
ative gene in this region (Torres-Juan et  al. 2007; Funato 
et al., 2012; Herman et al. 2012). In our analysis, TBX1 is 
present in our duplicated gene list before the prioritization 
using RNA-seq data (Supplementary Table  4) but is fil-
tered out by this step. This shows that our selection criteria 
are rather stringent, increasing the probability that identi-
fied candidate genes are involved in OFCs. However, OFC 
genes that are not expressed in embryonic palates might be 
missed.

Our analysis pipeline identified two known OFC genes, 
MEIS2 that is deleted in five CP patients in our analysis and 
SATB2 that is deleted in eight CP patients (Table 3; Sup-
plementary Tables  3, 5, 6). Many studies have confirmed 
the contribution of SATB2 to CP both in non-syndromic 
and syndromic forms, causing Glass syndrome (OMIM 
#612313), Pierre-Robin sequence with or without ankylo-
glossia and cleft-associated intellectual disability (Supple-
mentary Table 2) (FitzPatrick et al. 2003; Beaty et al. 2006; 
Britanova et al. 2006; Dobreva et al. 2006; Leoyklang et al. 
2007; Rainger et  al. 2014). MEIS2 is one of the recently 
identified OFC genes, which has been proposed as the main 
contributor to the pathogenesis of chromosome 15q14 dele-
tion syndrome (Supplementary Table  2) (Erdogan et  al. 
2007; Crowley et  al. 2010; Johansson et  al. 2014; Louw 
et  al. 2015). Intriguingly, although these two genes have 
been classified as OFC causative genes, they appear to be 
frequently affected by small deletions in healthy individu-
als (144 deletions in MEIS2 and 599 deletions in SATB2) 
(Fig.  3b; Supplementary Figure  3). The deletions affect-
ing SATB2 are all located in intronic regions, suggesting 
they are not pathogenic in those individuals (Supplemen-
tary Figure  3b). In contrast, the majority of the deletions 
at MEIS2 (139 out of 144) affect not only introns but also 
exons and promoters (Supplementary Figure  3a). This 
raises the question about how ‘healthy’ the normal individ-
uals in the DVG database are. It is known that some of the 
OFC phenotypes are not directly evident (e.g., submucous 
CP) and hence difficult to diagnose (Souza et al. 2013). In 
addition, genetic defects of OFCs are not 100 % penetrant. 
Therefore, even if small CNVs are found in the gene body 
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regions of potential candidate genes (Table 3; Fig. 3b; Sup-
plementary Figure  3) in ‘healthy’ individual, these genes 
may still be relevant to OFCs.

As OFCs are often not fully penetrant, we briefly 
assessed the OFC penetrance in CNVs containing the OFC 
candidate genes. Indeed, in DECIPHER and ECARUCA 
databases, many individuals with deleted or duplicated 
OFC candidate genes show other disease phenotypes 
but lack an OFC (non-OFC individuals) (Supplementary 
Table  6). For several deleted genes including ACBD3, 
FAM98B, H3F3A, RNPS1, SPRED1, and THBS1, the num-
ber of non-OFC individuals with deletions of these genes 
is lower than that of the OFC patients, suggesting that the 
deletion of these genes might be more penetrant. Further-
more, patients with deletions and duplications of the OFC 
candidate genes exhibit heterogeneous phenotypes with 
many other disease features such as defects in the car-
diovascular, nervous and skeletal systems (Supplementary 
Tables 3, 6). A systematic analysis of these additional fea-
tures may provide insights into novel OFC syndromes.

In addition to the two known OFC causative genes 
SATB2 and MEIS2, we identified other 12 genes, nine in 
deletions (FGF2, FRZB, LETM1, SPRY1, THBS1, TSHZ1, 
TTC28, WHSC1, WHSC2) and three in duplications 
(DGCR6, TULP4 and MAPK3), that have been previously 
proposed as orofacial development regulators or as poten-
tial causative genes for OFCs (Table  3; Supplementary 
Table 5). WHSC1, WHSC2 (aka NELFA) and LETM1 have 
been proposed to be primarily involved in Wolf–Hirschhorn 
syndrome (OMIM #194190), whose features include OFC 
in almost half of the cases (Wright et al. 1997, 1999; Stec 
et al. 1998; Zollino et al. 2000, 2003; Schlickum et al. 2004; 
Maas et  al. 2008; Shimizu et  al. 2014; Liu et  al. 2015). 
Among the OFC patients we collected, all three genes were 
deleted simultaneously in the same patients, two affected 
by CP and one by CL (Supplementary Tables 3, 6), consist-
ent with the hypothesis that the deletion of all these three 
genes is required to cause more severe craniofacial features 
including OFCs. In a case report describing a patient with 
a 22q12.2 microdeletion, TTC28 has been suggested as the 
likely gene responsible for Pierre-Robin sequence includ-
ing CP (Davidson et al. 2012). Interestingly, our data show 
the deletion of TTC28 in three CP patients (Supplementary 
Tables  3, 6), which is in agreement with this hypothesis. 
In human, TSHZ1 is considered as one of the candidate 
causative genes for chromosome 18q deletion syndrome 
(OMIM#601808), which present OFC in 25 % of the cases 
(Dostal et al. 2009). In addition, knock-out of this gene in 
mice gives rise to abnormal skeletal morphogenesis and 
craniofacial defects (Coré et  al. 2007). In our cohort, this 
gene is deleted in two CLP and four CP patients (Sup-
plementary Tables 3, 6). THBS1 which has been shown to 
play a role in the etiology of Peters-plus syndrome (OMIM 

#261540) with OFC as one of the clinical features is deleted 
in two CP patients (Supplementary Tables 3, 6) (Nishiwaki 
et al. 2006; Heinonen et al. 2009). Other two genes, FRZB 
and SPRY1, found deleted in two and three patients (Sup-
plementary Tables 3, 6), respectively, have been studied in 
animal models. Specifically, FRZB is locally expressed in 
primary mouth tissues and involved in primary ossification 
of craniofacial regions by interacting with the WNT path-
way (Hoang et al. 1996, 1998; Lin et al. 1997; Dickinson 
et  al. 2009; Kamel et  al. 2013). SPRY1, characterized by 
structural and functional similarity with the proposed OFC 
gene SPRY2, has been shown to cause cardiac defects as 
well as facial cleft and CP in transgenic mice (Supple-
mentary Table  2) (Yang et  al. 2010). The Sprouty family 
proteins inhibit the FGF pathway where several causative 
OFC genes such as FGFR1 and FGFR2 are involved (Sup-
plementary Table 2). Interestingly, one of the main ligands 
of FGFR1/2, FGF2, was detected as one of the top deleted 
candidate genes in our analysis (Supplementary Tables  2, 
5). Indeed, the role of FGF signaling and FGF2 in craniofa-
cial development, specifically in osteogenesis and cranial 
suture homeostasis, has been demonstrated by a number of 
studies (Mansukhani et al. 2000; Britto et al. 2002; Moore 
et al. 2002; Ignelzi et al. 2003; Sasaki et al., 2006; Szabo-
Rogers et al. 2008; Li et al. 2010; Porntaveetus et al. 2010). 
In addition, a statistically significant association between 
FGF2 markers and OFCs has also been reported (Wang 
et al. 2013; Nikopensius et al. 2010).

Three genes involved in duplications, DGRC6, TULP4 
and MAPK3, have also been previously proposed to asso-
ciate with OFC or orofacial development (Supplementary 
Table  2). DGCR6, duplicated in five patients affected by 
CL, CLP and CP (Supplementary Tables  3, 6), has been 
proposed in literature to be involved in the developmental 
defects associated with 22q11.2 deletions syndrome (aka 
DiGeorge syndrome) (OMIM*601279) (Demczuk et  al. 
1996; Das Chakraborty et al. 2012). In mouse, it is highly 
expressed during embryogenesis, probably contributing to 
neural crest cell migration (Lindsay et al. 1997). A statisti-
cally significant association of TULP4 with OFC has been 
reported in a recent study based on 6q23.1 fine mapping in 
a cohort of five hundred OFC patients (Vieira et al. 2015). 
In our analysis, this gene has been found duplicated in two 
patients (Supplementary Tables  3, 6). The MAPK/ERK 
pathway has been shown to be involved in craniofacial 
development and related diseases (Yamamoto et  al. 2003; 
Singh et  al. 2007; Newbern et  al. 2008; Nakamura et  al. 
2009; Parada et al. 2015). Although orofacial defects have 
been observed in the Mapk1 (aka Erk2) knockout but not in 
the Mapk3 (aka Erk1) knockout mice (Newbern et al. 2008; 
Parada et al. 2015), the cooperation of these two genes has 
been shown in many cell types and tissues (Srivastava et al. 
2011; O’Brien et  al. 2015), suggesting a modulating role 
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of MAPK3 in craniofacial development. In our analysis, 
MAPK3 duplication is present in two patients, one affected 
by CP and the other by CL (Supplementary Tables 3, 6).

In addition to above potential OFC genes, we identi-
fied 34 deleted and 24 duplicated genes that have not yet 
been associated with OFC. These novel candidates cover a 
broad range of protein types with various functions, such as 
transcription factors, metabolic enzymes, kinases and phos-
phatases, structural proteins, signaling mediators, mem-
brane proteins including receptors, and several uncharac-
terized proteins (Supplementary Table  5). Although each 
of them has not yet been linked to orofacial development 
directly, we found that many of these genes are involved 
in several signaling pathways important for the process, 
such as RAC1, BMP and MAPK. Some of these genes are 
involved in multiple pathways, suggesting the combina-
tory role of these pathways in orofacial development. Spe-
cifically, several identified genes are related to the RAC1 
pathway. Recent mouse studies suggest the causative role 
of RAC1 signaling in CP etiology through fibronectin regu-
lation and cytoskeletal reorganization during neural crest 
cell development and palatal shelf elevation (Thomas et al. 
2010; Tang et al. 2015). RAC1 is a ubiquitously expressed 
Rho small GTPase, inducible by a number of cell-surface 
receptors and transmembrane adhesion molecules to stim-
ulate different cellular responses, mainly based on actin 
cytoskeleton remodeling, ROS production and gene expres-
sion regulation (Didsbury et al. 1989; Polakis et al. 1989; 
Ando et al. 1992; Ménard et al. 1992; Ridley et al. 1992; 
Heyworth et al. 1993; Minden et al. 1995; Westwick et al. 
1997; Ridley 2000; Schmitz et al. 2001). Within this path-
way, some of our candidate genes are involved in regulat-
ing RAC1 activity, such as IGF1R, FGF2, FARP2, THBS1, 
YES1 and SMURF1 (Adams 1995; Adams and Schwartz 
2000; Kubo et al. 2002; Pennisi et al. 2002; Jackson et al. 
2003; Madura et  al. 2003; Wang et  al. 2003, 2006; Fera 
et  al. 2004; Shin et  al. 2004; Asanuma et  al. 2006; Giehl 
et  al. 2008; Kanazawa et  al. 2010; Takahashi et  al. 2010; 
Takahashi and Suzuki 2010; Takegahara et al. 2010; Ding 
et al. 2011; Lee and Kay 2011; He et al. 2013; Deng and 
Huang 2014; Chatterji et  al. 2015). Some of the candi-
date genes are regulated by RAC1, such as NCKAP1 and 
CYFIP1 (Miki et al. 1998; Schenck et al. 2001, 2003; Eden 
et  al. 2002; Billuart and Chelly 2003; Kurisu et  al. 2005; 
Anitei et  al. 2010; De Rubeis et  al. 2013) and some oth-
ers are paralogs of RAC1 interactors such as PARD3B and 
STK38, primary paralogs of PARD3 and CDC42, respec-
tively. In addition, other candidates belong to protein fami-
lies whose members are known to interact with RAC1 path-
way, such as SEPT2 and SPRY1 (Gross et al. 2001; Yigzaw 
et  al. 2001; Lim et  al. 2002; Lee et  al. 2004; Poppleton 
et al. 2004; Nagata and Inagaki 2005; Lito et al. 2009; Bal-
lou et  al. 2013; Ireton et  al. 2014; Assinder et  al. 2015). 

Related to this pathway, FAT4 encodes for a cell–cell 
interaction molecule, a member of the protocadherin fam-
ily, which has been though to regulate planar cell polarity 
(Fukata et al. 1999; Kuroda et al. 1999; Evers et al. 2000; 
Frebourg et al. 2006; Suo et al. 2012; Keeler et al. 2015). 
FAT4 is described in OMIM as causative of two non-OFC 
syndromes, Van Maldergerm syndrome type 2 (OMIM 
#615546) and Hennekam lymphangiectasia-lymphedema 
syndrome type 2 (OMIM # 616006). Nevertheless, a 4q 
deletion syndrome has been characterized in 20 patients, 
among them four affected by CP and two by CL or CLP 
(Strehle et  al. 2012). The deletions of these  six OFC 
patients encompass nine of our deleted candidate genes 
including FAT4 but also ANKRD50, DCTD, FGF2, FRG1, 
NEIL3, SPATA5, SPRY1, WWC2, and one duplicated candi-
date gene, FAM149A (Strehle et al. 2012).

Other candidates are involved in BMP signaling 
include SMURF1 and SPRED1. SMURF1 is a ubiquitin-
protein ligase specific for SMAD proteins in the BMP 
pathway. It interacts as a negative regulator of BMP sign-
aling pathway and regulates cell motility, signaling and 
polarity. This interaction with the BMP signaling may be 
the key point to explain a possible association between 
SMURF1 and OFC etiology, as two members of this path-
way, BMP2 and BMP4, are already known to be associ-
ated with OFCs (Supplementary Table  2) (Zhang et  al. 
2002; Liu et  al. 2005; Marazita 2007; Lin et  al. 2008; 
Suzuki et al. 2009; Suazo et al. 2010; Sahoo et al. 2011; 
Williams et al. 2012). SPRED1, recognized as the causa-
tive gene for Legius syndrome (OMIM #611431), inter-
acts with SPRY2 that has been described as a causative 
OFC gene (Supplementary Table  2) (Vieira et  al. 2005; 
Goodnough et al. 2007; Welsh et al. 2007; Spurlock et al. 
2009; Matsumura et al. 2011; Song et al. 2015). In addi-
tion, SPRED1 and SPRY2 act as negative regulators of 
the FGF and MAPK pathways (Katoh and Katoh 2006; 
Di Bari et al. 2009; Sylvestersen et al. 2011; Zhao et al. 
2015), both shown to affect orofacial development in 
human or in mouse models (Reardorn et al. 1994; Wilkie 
et  al. 1995; Sasaki et  al. 2001; Dodé et  al. 2003; Yama-
moto et  al. 2003; Riley and Murray 2007; Singh et  al. 
2007; Newbern et al. 2008; Nakamura et al. 2009; García-
Domínguez et al. 2011).

Same as for WHSC1, WHSC2 and LETM1, some of 
our novel candidates lie in the same duplicated or deleted 
regions (Supplementary Table  5). The co-localization of 
these genes in the same CNVs together with their high 
expression levels in mouse embryonic palate support the 
hypothesis of a combinatory function. For instance, NIPA1, 
a duplicated novel candidate, whose deletion has been 
recently confirmed to be pathogenic (Cooper et al. 2011), 
maps to a duplicated region that contains two other func-
tionally related candidates, CYFIP1 and TUBGCP5.
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In conclusion, this study developed a systematic analy-
sis pipeline for the CNV analysis of a large cohort of 
OFC patients, and for the identification of potential OFC-
related genes. As the result, we identified 45 genes in large 
genomic deletions and 27 in duplications, including sev-
eral known causative genes for OFC, such as SATB2 and 
MEIS2. Our study enriches the reservoir of potential causa-
tive OFC genes for genetic studies and provides a disease 
link to many of these genes that are known to be involved 
in several signaling pathways. Future human mutation 
analyses and animal model studies are necessary to confirm 
the role of the identified potential causative OFC genes in 
OFC-related diseases and in orofacial development.
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