3,379 research outputs found

    On Redundancy Elimination Tolerant Scheduling Rules

    Full text link
    In (Ferrucci, Pacini and Sessa, 1995) an extended form of resolution, called Reduced SLD resolution (RSLD), is introduced. In essence, an RSLD derivation is an SLD derivation such that redundancy elimination from resolvents is performed after each rewriting step. It is intuitive that redundancy elimination may have positive effects on derivation process. However, undesiderable effects are also possible. In particular, as shown in this paper, program termination as well as completeness of loop checking mechanisms via a given selection rule may be lost. The study of such effects has led us to an analysis of selection rule basic concepts, so that we have found convenient to move the attention from rules of atom selection to rules of atom scheduling. A priority mechanism for atom scheduling is built, where a priority is assigned to each atom in a resolvent, and primary importance is given to the event of arrival of new atoms from the body of the applied clause at rewriting time. This new computational model proves able to address the study of redundancy elimination effects, giving at the same time interesting insights into general properties of selection rules. As a matter of fact, a class of scheduling rules, namely the specialisation independent ones, is defined in the paper by using not trivial semantic arguments. As a quite surprising result, specialisation independent scheduling rules turn out to coincide with a class of rules which have an immediate structural characterisation (named stack-queue rules). Then we prove that such scheduling rules are tolerant to redundancy elimination, in the sense that neither program termination nor completeness of equality loop check is lost passing from SLD to RSLD.Comment: 53 pages, to appear on TPL

    One-step growth and shaping by a dual plasma reactor of diamond nanocones arrays for the assembling of stable cold cathodes

    Get PDF
    Arrays of conical-shaped nanodiamond structures are formed on silicon substrate by a single-step CVD process from CH4/H-2 mixtures. The formation of these nanocones has been found to depend on interplay between growing and etching during the CVD process carried out in a dual-mode MW/RF plasma reactor. Morphology and structure of the conical-like systems can be controlled by varying the process parameters, and have been investigated by scanning electron microscopy (SEM), reflection high energy electron diffraction (RHEED) and micro-Raman spectroscopy. The Field Emission (FE) properties of different diamond nanocones arrays have been investigated and compared with those of analogous systems in order to assess the feasibility of the present nano-materials as electron emitters for cold cathodes. The FE behavior is discussed taking into account the structure of the different diamond nanocones

    Chlamydia pneumoniae in asymptomatic carotid atherosclerosis.

    Get PDF
    We evaluated, in 415 patients with asymptomatic carotid atherosclerosis: (i) the prevalence of C. pneumoniae DNA in atherosclerotic carotid plaques and peripheral blood mononuclear cells (PBMC); (i..

    ESMO management and treatment adapted recommendations in the COVID-19 era: gynaecological malignancies

    Get PDF
    The rapid spread of severe acute respiratory syndrome coronavirus 2 infection and its related disease (COVID-19) has required an immediate and coordinate healthcare response to face the worldwide emergency and define strategies to maintain the continuum of care for the non-COVID-19 diseases while protecting patients and healthcare providers. The dimension of the COVID-19 pandemic poses an unprecedented risk especially for the more vulnerable populations. To manage patients with cancer adequately, maintaining the highest quality of care, a definition of value-based priorities is necessary to define which interventions can be safely postponed without affecting patients' outcome. The European Society for Medical Oncology (ESMO) has endorsed a tiered approach across three different levels of priority (high, medium, low) incorporating information on the value-based prioritisation and clinical cogency of the interventions that can be applied for different disease sites. Patients with gynaecological cancer are at particular risk of COVID-19 complications because of their age and prevalence of comorbidities. The definition of priority level should be based on tumour stage and histology, cancer-related symptoms or complications, aim (curative vs palliative) and magnitude of benefit of the oncological intervention, patients' general condition and preferences. The decision-making process always needs to consider the disease-specific national and international guidelines and the local healthcare system and social resources, and a changing situation in relation to COVID-19 infection. These recommendations aim to provide guidance for the definition of deferrable and undeferrable interventions during the COVID-19 pandemic for ovarian, endometrial and cervical cancers within the context of the ESMO Clinical Practice Guidelines

    Association between hepatic steatosis and obstructive sleep apnea in children and adolescents with obesity

    Get PDF
    Background: Owing to the increasing rate of pediatric obesity, its complications such as non-alcoholic fatty liver disease (NAFLD) and obstructive sleep apnea (OSA) have become prevalent already in childhood. We aimed to assess the relationship between these two diseases in a cohort of children with obesity. Methods: We enrolled 153 children with obesity (mean age 10.5 ± 2.66, mean BMI 30.9 ± 5.1) showing OSA. Subjects underwent a laboratory evaluation, a cardio-respiratory polysomnography (PSG), and a liver ultrasound. Results: All subjects had a clinical diagnosis of OSA based on the AHI > 1/h (mean AHI 8.0 ± 5.9; range 2.21–19.0). Of these, 69 showed hepatic steatosis (62.3% as mild, 20.3% as moderate, and 17.4% as severe degree). A strong association between ALT and apnea/hypopnea index (AHI) was observed (p = 0.0003). This association was not confirmed after adjusting for hepatic steatosis (p = 0.53). By subdividing our population according to the presence/absence of steatosis, this association was found only in the steatosis group (p = 0.009). As the severity of steatosis increased, the significance of its association with AHI compared to the absence of steatosis became progressively stronger (all p < 0.0001). Conclusions: Hepatic steatosis seems to drive the association between OSA and ALT levels, suggesting a potential pathogenic role of OSA in NAFLD

    ESMO management and treatment adapted recommendations in the COVID-19 era: gynaecological malignancies

    Get PDF
    The rapid spread of severe acute respiratory syndrome coronavirus 2 infection and its related disease (COVID-19) has required an immediate and coordinate healthcare response to face the worldwide emergency and define strategies to maintain the continuum of care for the non-COVID-19 diseases while protecting patients and healthcare providers. The dimension of the COVID-19 pandemic poses an unprecedented risk especially for the more vulnerable populations. To manage patients with cancer adequately, maintaining the highest quality of care, a definition of value-based priorities is necessary to define which interventions can be safely postponed without affecting patients’ outcome. The European Society for Medical Oncology (ESMO) has endorsed a tiered approach across three different levels of priority (high, medium, low) incorporating information on the value-based prioritisation and clinical cogency of the interventions that can be applied for different disease sites. Patients with gynaecological cancer are at particular risk of COVID-19 complications because of their age and prevalence of comorbidities. The definition of priority level should be based on tumour stage and histology, cancer-related symptoms or complications, aim (curative vs palliative) and magnitude of benefit of the oncological intervention, patients’ general condition and preferences. The decision-making process always needs to consider the disease-specific national and international guidelines and the local healthcare system and social resources, and a changing situation in relation to COVID-19 infection. These recommendations aim to provide guidance for the definition of deferrable and undeferrable interventions during the COVID-19 pandemic for ovarian, endometrial and cervical cancers within the context of the ESMO Clinical Practice Guidelines

    Identification of MGMT Downregulation Induced by miRNA in Glioblastoma and Possible Effect on Temozolomide Sensitivity

    Get PDF
    Glioblastoma multiforme (GBM) remains one of the tumors with the worst prognosis. In recent years, a better overall survival (OS) has been described in cases subjected to Gross Total Resection (GTR) that were presenting hypermethylation of Methylguanine-DNA methyltransferase (MGMT) promoter. Recently, also the expression of specific miRNAs involved in MGMT silencing has been related to survival. In this study, we evaluate MGMT expression by immunohistochemistry (IHC), MGMT promoter methylation and miRNA expression in 112 GBMs and correlate the data to patients' clinical outcomes. Statistical analyses demonstrate a significant association between positive MGMT IHC and the expression of miR-181c, miR-195, miR-648 and miR-767.3p between unmethylated cases and the low expression of miR-181d and miR-648 and between methylated cases and the low expression of miR-196b. Addressing the concerns of clinical associations, a better OS has been described in presence of negative MGMT IHC, in methylated patients and in the cases with miR-21, miR-196b overexpression or miR-767.3 downregulation. In addition, a better progression-free survival (PFS) is associated with MGMT methylation and GTR but not with MGMT IHC and miRNA expression. In conclusion, our data reinforce the clinical relevance of miRNA expression as an additional marker to predict efficacy of chemoradiation in GBM

    TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering

    Get PDF
    Tetraspanins are a class of evolutionarily conserved transmembrane proteins with 33 members identified in mammals that have the ability to organize specific membrane domains, named tetraspanin-enriched microdomains (TEMs). Despite the relative abundance of different tetraspanins in the CNS, few studies have explored their role at synapses. Here, we investigate the function of TSPAN5, a member of the tetraspanin superfamily for which mRNA transcripts are found at high levels in the mouse brain. We demonstrate that TSPAN5 is localized in dendritic spines of pyramidal excitatory neurons and that TSPAN5 knockdown induces a dramatic decrease in spine number because of defects in the spine maturation process. Moreover, we show that TSPAN5 interacts with the postsynaptic adhesion molecule neuroligin-1, promoting its correct surface clustering. We propose that membrane compartmentalization by tetraspanins represents an additional mechanism for regulating excitatory synapses
    corecore