300 research outputs found

    Optimal Time-Series Selection of Quasars

    Full text link
    We present a novel method for the optimal selection of quasars using time-series observations in a single photometric bandpass. Utilizing the damped random walk model of Kelly et al. (2009), we parameterize the ensemble quasar structure function in Sloan Stripe 82 as a function of observed brightness. The ensemble model fit can then be evaluated rigorously for and calibrated with individual light curves with no parameter fitting. This yields a classification in two statistics --- one describing the fit confidence and one describing the probability of a false alarm --- which can be tuned, a priori, to achieve high quasar detection fractions (99% completeness with default cuts), given an acceptable rate of false alarms. We establish the typical rate of false alarms due to known variable stars as <3% (high purity). Applying the classification, we increase the sample of potential quasars relative to those known in Stripe 82 by as much as 29%, and by nearly a factor of two in the redshift range 2.5<z<3, where selection by color is extremeley inefficient. This represents 1875 new quasars in a 290 deg^2 field. The observed rates of both quasars and stars agree well with the model predictions, with >99% of quasars exhibiting the expected variability profile. We discus the utility of the method at high-redshift and in the regime of noisy and sparse data. Our time series selection complements well independent selection based on quasar colors and has strong potential for identifying high redshift quasars for BAO and other cosmology studies in the LSST era.Comment: 28 pages, 8 figures, 3 tables; Accepted to A

    Quasar Selection Based on Photometric Variability

    Full text link
    We develop a method for separating quasars from other variable point sources using SDSS Stripe 82 light curve data for ~10,000 variable objects. To statistically describe quasar variability, we use a damped random walk model parametrized by a damping time scale, tau, and an asymptotic amplitude (structure function), SF_inf. With the aid of an SDSS spectroscopically confirmed quasar sample, we demonstrate that variability selection in typical extragalactic fields with low stellar density can deliver complete samples with reasonable purity (or efficiency, E). Compared to a selection method based solely on the slope of the structure function, the inclusion of the tau information boosts E from 60% to 75% while maintaining a highly complete sample (98%) even in the absence of color information. For a completeness of C=90%, E is boosted from 80% to 85%. Conversely, C improves from 90% to 97% while maintaining E=80% when imposing a lower limit on tau. With the aid of color selection, the purity can be further boosted to 96%, with C= 93%. Hence, selection methods based on variability will play an important role in the selection of quasars with data provided by upcoming large sky surveys, such as Pan-STARRS and the Large Synoptic Survey Telescope (LSST). For a typical (simulated) LSST cadence over 10 years and a photometric accuracy of 0.03 mag (achieved at i~22), C is expected to be 88% for a simple sample selection criterion of tau>100 days. In summary, given an adequate survey cadence, photometric variability provides an even better method than color selection for separating quasars from stars.Comment: (v2) 50 pages, accepted to Ap

    Metode Urutan Parsial Untuk Menyelesaikan Masalah Program Linier Fuzzy Tidak Penuh

    Full text link
    Not fully fuzzylinear programming problem have two shapes of objecyive function. that is triangular fuzzy number and trapezoidal fuzzy number. The decision variables and constants right segment only has a triangular fuzzy number. Partial order method can be used to solve not fully fuzzy linear programming problem with decision variables and constants right segment are triangular fuzzy number. The crisp optimal objective function value generated from the partial order method

    Pengaruh Pemberian Iba dan Komposisi Media terhadap Pertumbuhan Stek Sansevieria Cylindrica Var. Patula

    Get PDF
    Sansevieria is an ornamental plant commonly known as mother-in-law's tongue, devil's tongue, and snake tongue. It has many functions e.g. uses as medicine, its fiber for the textile industry, and as indoor air pollutants absorber. However, the growth of Sansevieria is slow. Therefore the supply of it seeds in large quantities in the short time was difficult. The use of Plant Growth Regulator (PGR) was one solution to accelerate the propagation of Sansevieria leaf cuttings. This study aimed to determine the concentration of IBA and the composition of media to increase the leaf cuttings propagation of Sansevieria cylindrica var. patula. The method was randomized block design with factorials. Factor I was the IBA concentrations comprised of K0 at 0 ppm, K1 at 50 ppm, K2 at 100 ppm, K3 at 150 ppm, and K4 at 200 ppm. Factor II was the ratio of manure:sand:rice-husk-ash as the growth media, comprised of M1 with 1:1:1 ratio, M2 with 1:2:1 ratio, and M3 with 1:1:2 ratio respectively. Each with three replicates overall was 45 experimental units. The parameters observed were a percentage of propagated cuttings, the number of roots, the longest length of roots, the number of shoots. The results showed the IBA could not increase the growth of cuttings in all media composition; however media compositions could enhance the number of shoots. The effective media composition propagated the cuttings was the M1 a 1:1:1 ratio of manure:sand:rice-husk-ash

    Disk Heating, Galactoseismology, and the Formation of Stellar Halos

    Get PDF
    Deep photometric surveys of the Milky Way have revealed diffuse structures encircling our Galaxy far beyond the "classical" limits of the stellar disk. This paper reviews results from our own and other observational programs, which together suggest that, despite their extreme positions, the stars in these structures were formed in our Galactic disk. Mounting evidence from recent observations and simulations implies kinematic connections between several of these distinct structures. This suggests the existence of collective disk oscillations that can plausibly be traced all the way to asymmetries seen in the stellar velocity distribution around the Sun. There are multiple interesting implications of these findings: they promise new perspectives on the process of disk heating, they provide direct evidence for a stellar halo formation mechanism in addition to the accretion and disruption of satellite galaxies, and, they motivate searches of current and near-future surveys to trace these oscillations across the Galaxy. Such maps could be used as dynamical diagnostics in the emerging field of "Galactoseismology", which promises to model the history of interactions between the Milky Way and its entourage of satellites, as well examine the density of our dark matter halo. As sensitivity to very low surface brightness features around external galaxies increases, many more examples of such disk oscillations will likely be identified. Statistical samples of such features not only encode detailed information about interaction rates and mergers, but also about long sought-after dark matter halo densities and shapes. Models for the Milky Way's own Galactoseismic history will therefore serve as a critical foundation for studying the weak dynamical interactions of galaxies across the universe.Comment: 20 pages, 5 figures, accepted in for publication in a special edition of the journal "Galaxies", reporting the proceedings of the conference "On the Origin (and Evolution) of Baryonic Galaxy Halos", Puerto Ayora, Ecuador, March 13-17 2017, Eds. Duncan A. Forbes and Ericson D. Lope

    Mid-infrared Period-Luminosity Relations of RR Lyrae Stars Derived from the WISE Preliminary Data Release

    Full text link
    Interstellar dust presents a significant challenge to extending parallax-determined distances of optically observed pulsational variables to larger volumes. Distance ladder work at mid-infrared wavebands, where dust effects are negligible and metallicity correlations are minimized, have been largely focused on few-epoch Cepheid studies. Here we present the first determination of mid-infrared period-luminosity (PL) relations of RR Lyrae stars from phase-resolved imaging using the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE). We present a novel statistical framework to predict posterior distances of 76 well-observed RR Lyrae that uses the optically constructed prior distance moduli while simultaneously imposing a power-law PL relation to WISE-determined mean magnitudes. We find that the absolute magnitude in the bluest WISE filter is M_W1 = (-0.421+-0.014) - (1.681+-0.147)*log(P/0.50118 day), with no evidence for a correlation with metallicity. Combining the results from the three bluest WISE filters, we find that a typical star in our sample has a distance measurement uncertainty of 0.97% (statistical) plus 1.17% (systematic). We do not fundamentalize the periods of RRc stars to improve their fit to the relations. Taking the Hipparcos-derived mean V-band magnitudes, we use the distance posteriors to determine a new optical metallicity-luminosity relation which we present in Section 5. The results of this analysis will soon be tested by HST parallax measurements and, eventually, with the Gaia astrometric mission.Comment: 33 pages, 12 figures, 2 tables. Accepted for publication in ApJ, June 27th, 201

    The fastest unbound star in our Galaxy ejected by a thermonuclear supernova

    Get PDF
    Hypervelocity stars (HVS) travel with velocities so high, that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US\,708. Travelling with a velocity of ∼1200 km s−1\sim1200\,{\rm km\,s^{-1}}, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVS. Furthermore, we discovered US\,708 to be a fast rotator. According to our binary evolution model it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova.Comment: 16 pages report, 20 pages supplementary material

    The investigation of absolute proper motions of the XPM Catalogue

    Full text link
    The XPM-1.0 is the regular version of the XPM catalogue. In comparison with XPM the astrometric catalogue of about 280 millions stars covering entire sky from -90 to +90 degrees in declination and in the magnitude range 10^m<B<22^m is something improved. The general procedure steps were followed as for XPM, but some of them are now performed on a more sophisticated level. The XPM-1.0 catalogue contains star positions, proper motions, 2MASS and USNO photometry of about 280 millions of the sources. We present some investigations of the absolute proper motions of XPM-1.0 catalogue and also the important information for the users of the catalogue. Unlike previous version, the XPM-1.0 contains the proper motions over the whole sky without gaps. In the fields, which cover the zone of avoidance or which contain less than of 25 galaxies a quasi absolute calibration was performed. The proper motion errors are varying from 3 to 10 mas/yr, depending on a specific field. The zero-point of the absolute proper motion frame (the absolute calibration) was specified with more than 1 million galaxies from 2MASS and USNO-A2.0. The mean formal error of absolute calibration is less than 1 mas/yr.Comment: 11 pages, 9 figures, accepte

    Exploring Halo Substructure with Giant Stars. XV. Discovery of a Connection between the Monoceros Ring and the Triangulum-Andromeda Overdensity?

    Full text link
    Thanks to modern sky surveys, over twenty stellar streams and overdensity structures have been discovered in the halo of the Milky Way. In this paper, we present an analysis of spectroscopic observations of individual stars from one such structure, "A13", first identified as an overdensity using the M giant catalog from the Two Micron All-Sky Survey. Our spectroscopic observations show that stars identified with A13 have a velocity dispersion of ≲\lesssim 40 km s−1\mathrm{km~s^{-1}}, implying that it is a genuine coherent structure rather than a chance super-position of random halo stars. From its position on the sky, distance (∼\sim15~kpc heliocentric), and kinematical properties, A13 is likely to be an extension of another low Galactic latitude substructure -- the Galactic Anticenter Stellar Structure (also known as the Monoceros Ring) -- towards smaller Galactic longitude and farther distance. Furthermore, the kinematics of A13 also connect it with another structure in the southern Galactic hemisphere -- the Triangulum-Andromeda overdensity. We discuss these three connected structures within the context of a previously proposed scenario that one or all of these features originate from the disk of the Milky Way.Comment: 12 pages, 9 figures. Accepted for publication in Ap
    • …
    corecore