256 research outputs found
Scaling and universality in the human voice
Speech is a distinctive complex feature of human capabilities. In order to understand the physics underlying speech production, in this work, we empirically
analyse the statistics of large human speech datasets ranging several languages. We first show that during speech, the energy is unevenly released and powerlaw
distributed, reporting a universal robust Gutenberg–Richter-like law in speech. We further show that such ‘earthquakes in speech’ show temporal correlations, as the interevent statistics are again power-law distributed. As this
feature takes place in the intraphoneme range, we conjecture that the process responsible for this complex phenomenon is not cognitive, but it resides in
the physiological (mechanical) mechanisms of speech production. Moreover, we show that these waiting time distributions are scale invariant under a renormalization
group transformation, suggesting that the process of speech
generation is indeed operating close to a critical point. These results are put in contrast with current paradigms in speech processing, which point towards low dimensional deterministic chaos as the origin of nonlinear traits in speech fluctuations. As these latter fluctuations are indeed the aspects that humanize synthetic speech, these findings may have an impact in future speech synthesis
technologies. Results are robust and independent of the communication language or the number of speakers, pointing towards a universal pattern and yet another hint of complexity in human speech
Efecto de la proteína presentadora de antígenos Tap en la infección IN VIVO del virus Herpes Simplex tipo 1 y generación de modelos transgénicos para su estudio
Tesis doctoral inédita de la Universidad Autónoma de Madrid. Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura : 21-06-200
Real Business Applications and Investments in Blockchain Technology
This paper provides an empirical study to identify the objective of companies that are currently investing in adopting blockchain technologies to improve their processes and services. Unlike other studies based on the theoretical potential application of blockchain technology in different sectors, the main objective of this paper is to analyze real projects and investment of companies in blockchain technology. More than 100 blockchain projects from different sectors were examined with the aim of extracting the perceived applicability and business value of blockchain technology by managers, customers, and partners. We identified the most demanded business value and functional properties in each sector and company size, as well as the relationship between the properties that are demanded together. This article assesses the main functional values attributed to blockchain, highlighting those really appreciated by companies that invest in them and identifying new applications of blockchain technology in different sectors, and generating organizational change. The article reveals that, as expected, significant deviations are already occurring between theoretical applications identified in the literature and those finally adopted by the industry.This research was funded by Spanish Ministry of Science and Innovation, grant number PID2019-105291GB-I00; and by The Basque Country University, grant number GIU20/019
Phase transitions in number theory: from the birthday problem to Sidon sets
In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discusse
DMRT Transcription Factors in the Control of Nervous System Sexual Differentiation
Sexual phenotypic differences in the nervous system are one of the most prevalent features across the animal kingdom. The molecular mechanisms responsible for sexual dimorphism throughout metazoan nervous systems are extremely diverse, ranging from intrinsic cell autonomous mechanisms to gonad-dependent endocrine control of sexual traits, or even extrinsic environmental cues. In recent years, the DMRT ancient family of transcription factors has emerged as being central in the development of sex-specific differentiation in all animals in which they have been studied. In this review, we provide an overview of the function of Dmrt genes in nervous system sexual regulation from an evolutionary perspective
From 12 to 1 ECG lead: multiple cardiac condition detection mixing a hybrid machine learning approach with a one-versus-rest classification strategy
Objective. Detecting different cardiac diseases using a single or reduced number of leads is still challenging. This work aims to provide and validate an automated method able to classify ECG recordings. Performance using complete 12-lead systems, reduced lead sets, and single-lead ECGs is evaluated and compared.Approach. Seven different databases with 12-lead ECGs were provided during thePhysioNet/Computing in Cardiology Challenge2021, where 88 253 annotated samples associated with none, one, or several cardiac conditions among 26 different classes were released for training, whereas 42 896 hidden samples were used for testing. After signal preprocessing, 81 features per ECG-lead were extracted, mainly based on heart rate variability, QRST patterns and spectral domain. Next, a One-versus-Rest classification approach made of independent binary classifiers for each cardiac condition was trained. This strategy allowed each ECG to be classified as belonging to none, one or several classes. For each class, a classification model among two binary supervised classifiers and one hybrid unsupervised-supervised classification system was selected. Finally, we performed a 3-fold cross-validation to assess the system's performance.Main results. Our classifiers received scores of 0.39, 0.38, 0.39, 0.38, and 0.37 for the 12, 6, 4, 3 and 2-lead versions of the hidden test set with the Challenge evaluation metric (CM). Also, we obtained a meanG-score of 0.80, 0.78, 0.79, 0.79, 0.77 and 0.74 for the 12, 6, 4, 3, 2 and 1-lead subsets with the public training set during our 3-fold cross-validation.Significance. We proposed and tested a machine learning approach focused on flexibility for identifying multiple cardiac conditions using one or more ECG leads. Our minimal-lead approach may be beneficial for novel portable or wearable ECG devices used as screening tools, as it can also detect multiple and concurrent cardiac conditions
From 12 to 1 ECG lead: multiple cardiac condition detection mixing a hybrid machine learning approach with a one-vs-rest classification strategy
[EN] Objective: Detecting different cardiac diseases using a single or reduced number of leads is still challenging. This work aims to provide and validate an automated method able to classify ECG recordings. Performance using complete 12-lead systems, reduced lead sets, and single-lead ECGs is evaluated and compared. Approach: Seven different databases with 12-lead ECGs were provided during the PhysioNet/Computing in Cardiology Challenge 2021, where 88,253 annotated samples associated with none, one, or several cardiac conditions among 26 different classes were released for training, whereas 42,896 hidden samples were used for testing. After signal preprocessing, 81 features per ECG-lead were extracted, mainly based on heart rate variability, QRST patterns and spectral domain. Next, a One-vs-Rest classification approach made of independent binary classifiers for each cardiac condition was trained. This strategy allowed each ECG to be classified as belonging to none, one or several classes. For each class, a classification model among two binary Supervised Classifiers and one Hybrid Unsupervised-Supervised classification system was selected. Finally, we performed a 3-fold cross-validation to assess the system's performance. Main results: Our classifiers received scores of 0.39, 0.38, 0.39, 0.38, and 0.37 for the 12, 6, 4, 3 and 2-lead versions of the hidden test set with the Challenge evaluation metric (CM). Also, we obtained a mean G-score of 0.80, 0.78, 0.79, 0.79, 0.77 and 0.74 for the 12, 6, 4, 3, 2 and 1-lead subsets with the public training set during our 3-fold cross-validation. Significance: We proposed and tested a machine learning approach focused on flexibility for identifying multiple cardiac conditions using one or more ECG leads. Our minimal-lead approach may be beneficial for novel portable or wearable ECG devices used as screening tools, as it can also detect multiple and concurrent cardiac conditions.This work was supported by PID2019-109547RB-I00 (National Research Program, Ministerio de Ciencia e Innovación, Spanish Government) and CIBERCV CB16/11/00486 (Instituto de Salud Carlos III).Jiménez-Serrano, S.; Rodrigo, M.; Calvo Saiz, CJ.; Millet Roig, J.; Castells, F. (2022). From 12 to 1 ECG lead: multiple cardiac condition detection mixing a hybrid machine learning approach with a one-vs-rest classification strategy. Physiological Measurement. 43(6):1-17. https://doi.org/10.1088/1361-6579/ac72f511743
PHQ-8 scores and estimation of depression prevalence - Author's reply
We thank Brooke Levis and colleaguesfor their interest in our work and for suggesting that we might have overestimated the prevalence of depression by using the eight-item Patient Health Questionnaire (PHQ-8) in our study. Although we acknowledged the limitations associated with the use of the PHQ-8, we believe that further discussion is required.It should be noted that a study of this size, with a representative sample of 27 countries and 258 888 participants, would not be feasible using clinical interviews, and the use of an instrument such as the PHQ-8 is considered more appropriate
Multiple Cardiac Disease Detection from Minimal-Lead ECG Combining Feedforward Neural Networks with a One-vs-Rest Approach
[EN] Although standard 12-lead ECG is the primary
technique in cardiac diagnostic, detecting different
cardiac diseases using single or reduced number of leads
is still challenging. The purpose of our team, itaca-UPV,
is to provide a method able to classify ECG records using
minimal lead information in the context of the 2021
PhysioNet/Computing in Cardiology Challenge, also using
only a single-lead.
We resampled and filtered the ECG signals, and
extracted 109 features mostly based on Hearth Rhythm
Variability (HRV). Then, we used selected features to train
one feed-forward neural network (FFNN) with one hidden
layer for each class using a One-vs-Rest approach, thus
allowing each ECG to be classified as belonging to none
or more than one class. Finally, we performed a 3-fold
cross validation to assess the model performance.
Our classifiers received scores of 0.34, 0.34, 0.27, 0.30,
and 0.34 (ranked 26th, 21th, 29th, 25th, and 22th out of 39
teams) for the 12, 6, 4, 3 and 2-lead versions of the hidden
test set with the Challenge evaluation metric.
Our minimal-lead approach may be beneficial for novel
portable or wearable ECG devices used as screening tools,
as it can also detect multiple and concurrent cardiac
conditions. Accuracy in detection can be improved adding
more disease-specific features.Jiménez-Serrano, S.; Rodrigo Bort, M.; Calvo Saiz, CJ.; Castells, F.; Millet Roig, J. (2021). Multiple Cardiac Disease Detection from Minimal-Lead ECG Combining Feedforward Neural Networks with a One-vs-Rest Approach. 1-4. https://doi.org/10.22489/CinC.2021.1091
Character-Based Handwritten Text Recognition of Multilingual Documents
[EN] An effective approach to transcribe handwritten text documents is to follow a sequential interactive approach. During the supervision phase, user corrections are incorporated into the system through an ongoing retraining process. In the case of multilingual documents with a high percentage of out-of-vocabulary (OOV) words, two principal issues arise. On the one hand, a minor yet important matter for this interactive approach is to identify the language of the current text line image to be transcribed, as a language dependent recognisers typically performs better than a monolingual recogniser. On the other hand, word-based language models suffer from data scarcity in the presence of a large number of OOV words, degrading their estimation and affecting the performance of the transcription system. In this paper, we successfully tackle both issues deploying character-based language models combined with language identification techniques on an entire 764-page multilingual document. The results obtained significantly reduce previously reported results in terms of transcription error on the same task, but showed that a language dependent approach is not effective on top of character-based recognition of similar languages.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 287755. Also supported by the Spanish Government (MIPRCV ”Consolider Ingenio 2010”, iTrans2 TIN2009-14511, MITTRAL TIN2009-14633-C03-01 and FPU AP2007-0286) and the Generalitat Valenciana (Prometeo/2009/014).Del Agua Teba, MA.; Serrano Martinez Santos, N.; Civera Saiz, J.; Juan Císcar, A. (2012). Character-Based Handwritten Text Recognition of Multilingual Documents. Communications in Computer and Information Science. 328:187-196. https://doi.org/10.1007/978-3-642-35292-8_20S187196328Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5), 855–868 (2009)Serrano, N., Tarazón, L., Pérez, D., Ramos-Terrades, O., Juan, A.: The GIDOC prototype. In: Proc. of the 10th Int. Workshop on Pattern Recognition in Information Systems (PRIS 2010), Funchal, Portugal, pp. 82–89 (2010)Serrano, N., Pérez, D., Sanchis, A., Juan, A.: Adaptation from Partially Supervised Handwritten Text Transcriptions. In: Proc. of the 11th Int. Conf. on Multimodal Interfaces and the 6th Workshop on Machine Learning for Multimodal Interaction (ICMI-MLMI 2009), Cambridge, MA, USA, pp. 289–292 (2009)Serrano, N., Sanchis, A., Juan, A.: Balancing error and supervision effort in interactive-predictive handwriting recognition. In: Proc. of the Int. Conf. on Intelligent User Interfaces (IUI 2010), Hong Kong, China, pp. 373–376 (2010)Serrano, N., Giménez, A., Sanchis, A., Juan, A.: Active learning strategies in handwritten text recognition. In: Proc. of the 12th Int. Conf. on Multimodal Interfaces and the 7th Workshop on Machine Learning for Multimodal Interaction (ICMI-MLMI 2010), Beijing, China, vol. (86) (November 2010)Pérez, D., Tarazón, L., Serrano, N., Castro, F., Ramos-Terrades, O., Juan, A.: The GERMANA database. In: Proc. of the 10th Int. Conf. on Document Analysis and Recognition (ICDAR 2009), Barcelona, Spain, pp. 301–305 (2009)del Agua, M.A., Serrano, N., Juan, A.: Language Identification for Interactive Handwriting Transcription of Multilingual Documents. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 596–603. Springer, Heidelberg (2011)Ghosh, D., Dube, T., Shivaprasad, P.: Script Recognition: A Review. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 32(12), 2142–2161 (2010)Bisani, M., Ney, H.: Open vocabulary speech recognition with flat hybrid models. In: Proc. of the European Conf. on Speech Communication and Technology, pp. 725–728 (2005)Szoke, I., Burget, L., Cernocky, J., Fapso, M.: Sub-word modeling of out of vocabulary words in spoken term detection. In: IEEE Spoken Language Technology Workshop, SLT 2008, pp. 273–276 (December 2008)Brakensiek, A., Rottl, J., Kosmala, A., Rigoll, G.: Off-Line handwriting recognition using various hybrid modeling techniques and character N-Grams. In: 7th International Workshop on Frontiers in Handwritten Recognition, pp. 343–352 (2000)Zamora, F., Castro, M.J., España, S., Gorbe, J.: Unconstrained offline handwriting recognition using connectionist character n-grams. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (July 2010)Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for off-line handwriting recognition. IJDAR, 39–46 (2002)Schultz, T., Kirchhoff, K.: Multilingual Speech Processing (2006)Stolcke, A.: SRILM – an extensible language modeling toolkit. In: Proc. of ICSLP 2002, pp. 901–904 (September 2002)Rybach, D., Gollan, C., Heigold, G., Hoffmeister, B., Lööf, J., Schlüter, R., Ney, H.: The RWTH aachen university open source speech recognition system. In: Interspeech, Brighton, U.K., pp. 2111–2114 (September 2009)Efron, B., Tibshirani, R.J.: An Introduction to Bootstrap. Chapman & Hall/CRC (1994
- …