24 research outputs found
El acuífero de Doñana como un sistema ecológico: estructura y función de sus comunidades microbianas
Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento Interuniversitario de Ecología; Fecha de lectura: 29/07/201
Intensification of livestock farming in times of climate change: The challenges of domestic grazing in the drylands of the Argentine Patagonia
Livestock grazing modifies and even degrades arid ecosystems, which threatens the sustainability of livestock farming itself. It is essential to learn more about the effects of grazing on vegetation and soil to design strategies to avoid desertification, perhaps the most serious problem faced by drylands. In this paper, we evaluate the changes in the functional traits of the plant community and the biological soil crust induced by the intensification of grazing in Patagonian ecosystems. This description, together with changes in diversity, plant composition, and ecosystem functioning, can help us to understand the mechanisms by which the intensification of sheep grazing could degrade arid ecosystems.; El pastoreo con ganado modifica los ecosistemas áridos y llega incluso a degradarlos, lo que atenta contra la sustentabilidad de la propia actividad ganadera. Resulta clave conocer los efectos del pastoreo sobre la vegetación y el suelo para poder diseñar estrategias que eviten la desertificación, quizá el problema más grave que encaran los ecosistemas áridos. En este artículo, evaluamos los cambios en los rasgos funcionales de la comunidad vegetal y la costra biológica del suelo inducidos por la intensificación del pastoreo en ecosistemas patagónicos. Esta descripción, junto con los cambios en la diversidad, composición y funcionamiento ecosistémico, ayuda a comprender los mecanismos por los que la intensificación del pastoreo ovino podría degradar los ecosistemas áridos.; El pasturatge amb bestiar modifica els ecosistemes àrids i fins i tot arriba a degradar-los, cosa que atempta contra la sostenibilitat de la mateixa activitat ramadera. Resulta clau conèixer els efectes del pasturatge sobre la vegetació i el sòl per a poder dissenyar estratègies que eviten la desertificació, potser el problema més greu que encaren els ecosistemes àrids. En aquest article, avaluem els canvis en els trets funcionals de la comunitat vegetal i la crosta biològica del sòl induïts per la intensificació del pasturatge en ecosistemes patagònics. Aquesta descripció, juntament amb els canvis en la diversitat, composició i funcionament ecosistèmic, ajuda a comprendre els mecanismes pels quals la intensificació del pasturatge oví podria degradar els ecosistemes àrids
Grazing pressure interacts with aridity to determine the development and diversity of biological soil crusts in Patagonian rangelands
Grazing is directly related to land degradation and desertification in global drylands. Grazing impacts on vascular plants, reasonably well‐known, depend on its intensity and are modulated by local aridity conditions. However, we do not know how the interplay of grazing intensity and aridity affect biocrusts, topsoil assemblages dominated by cyanobacteria, lichens, and mosses that provide key ecosystem services in drylands. Here, we determined how grazing affects biomass, total cover, and richness of biocrust structural types across a regional aridity gradient in the Patagonian steppe. On average, grazing by sheep reduced biocrust biomass, total cover and richness of structural types by 55, 90, and 59%, respectively. In general, high grazing pressures had a larger impact on biocrusts than moderate or light grazing pressures. For example, biocrust cover was reduced by 85, 89, and 98% by light, moderate, and high grazing pressures, respectively. Although a slightly different response to grazing was observed under low aridity conditions, these more benign climatic conditions did not compensate for the negative effects of trampling by domestic animals on biocrusts. Nonetheless, estimated biocrust recovery rates under medium aridity conditions were faster than previously thought: it took 24, 18, and 58 years to double biocrust biomass, total cover, and richness of structural types. Sheep cannot be just removed in Patagonian rangelands because the production of meat and wool represents the main local economic activity. But landowners must consider our results to protect the ecosystem functions and services provided by biocrusts for future generations to come.This study was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2014-3026), Universidad de Buenos Aires (20020160100139BA), and Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2015-0709). F. T. M. is supported by the European Research Council (ERC Grant Agreement nº 647038 [BIODESERT])
Commissioning and First Observations with Wide FastCam at the Telescopio Carlos S\'anchez
The FastCam instrument platform, jointly developed by the IAC and the UPCT,
allows, in real-time, acquisition, selection and storage of images with a
resolution that reaches the diffraction limit of medium-sized telescopes.
FastCam incorporates a specially designed software package to analyse series of
tens of thousands of images in parallel with the data acquisition at the
telescope. Wide FastCam is a new instrument that, using the same software for
data acquisition, does not look for lucky imaging but fast observations in a
much larger field of view. Here we describe the commissioning process and first
observations with Wide FastCam at the Telescopio Carlos S\'anchez (TCS) in the
Observatorio del Teide.Comment: 7 pages, 8 figures, Proc. SPIE. 9908, Ground-based and Airborne
Instrumentation for Astronomy VI, 99082O. (August 09, 2016
The compositionally distinct cyanobacterial biocrusts from brazilian savanna and their environmental drivers of community diversity
Machado de Lima, Náthali Maria. São Paulo State University (UNESP). Microbiology Graduation Program. Department of Zoology and Botany. São Paulo, Brazil.Cámara Fernandes, Vanessa Moreira. Arizona State University. Center for Fundamental and Applied Microbiomics. Biodesign Institute. Tempe, Arizona, United States.Roush, Daniel. Arizona State University. Center for Fundamental and Applied Microbiomics. Biodesign Institute. Tempe, Arizona, United States.Velasco Ayuso, Sergio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Rigonato, Janaina. University of São Paulo (USP). Center for Nuclear Energy in Agriculture (CENA). Piracicaba, Brazil.Garcia Pichel, Ferran. Arizona State University. Center for Fundamental and Applied Microbiomics. Biodesign Institute. Tempe, Arizona, United States.Zanini Branco, Luis Henrique. São Paulo State University (UNESP). Microbiology Graduation Program. Department of Zoology and Botany. São Paulo, Brazil.10The last decade was marked by efforts to define and identify the main cyanobacterial players in biological crusts around the world. However, not much is known about biocrusts in Brazil’s tropical savanna (cerrado), despite the existence of environments favorable to their development and ecological relevance. We examined the community composition of cyanobacteria in biocrusts from six sites distributed in the Southeast of the country using high throughput sequencing of 16S rRNA and phylogenetic placement in the wider context of biocrusts from deserts. Sequences ascribable to 22 genera of cyanobacteria were identified. Although a significant proportion of sequences did not match those of known cyanobacteria, several clades of Leptolyngbya and Porphyrosiphon were found to be the most abundant. We identified significant differences in dominance and overall composition among the cerrado sites, much larger than within-site variability. The composition of cerrado cyanobacterial communities was distinct from those known in biocrusts from North American deserts. Among several environmental drivers considered, the opposing trend of annual precipitation and mean annual temperature best explained the variability in community composition within Brazilian biocrusts. Their compositional uniqueness speaks of the need for dedicated efforts to study the ecophysiology of tropical savanna biocrust and their roles in ecosystem function for management and preservation
Novel genes and sex differences in COVID-19 severity
[EN] Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.S
Neddylation orchestrates the complex transcriptional and posttranscriptional program that drives Schwann cell myelination
Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation
Neddylation orchestrates the complex transcriptional and posttranscriptional program that drives Schwann cell myelination
Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation
Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality