33 research outputs found

    Application of alkali-activated cements for immobilization of dry low-level radioactive waste containing copper ferrocyanide

    Get PDF
    Summary: The possibility of using alkali-activated slag-Portland cement for immobilization of dry radioactive waste containing copper ferrocyanide they been confirmed. Because of optimization, the areas of existence of compositions that provide the criterion requirements for strength have been established. Introduction of magnetite additives in the amount of 14...15 wt. % (factor X1), zeolite in the amount of 6.5...7.5 wt. % (factor X2) and dry radioactive waste on the basis of copper ferrocyanide in the amount of 10...12 wt. % (factor X3) provides criterion requirements for compressive strength. The maximum value of strength – 13.2 MPa on the 28th day of hardening is characteristic for the above-mentioned quantities of additives, and it is 1.32 times higher than the standard level of strength. Introduction of zeolite for 6.5...7.5 wt. % allows to reduce the mass and density (1.07 times), radioactivity (1.09 times) of composites. Because of modelling of compound compositions, especially in the expected reactions, the factor X3 shows a weakening factor contributing to the reduction of values of output parameters. Therefore, the introduction of dry radioactive waste into the alkaline slag-Portland cement matrix containing copper ferrocyanide is limited to no more than 12 wt. %. The processes occurring in the volume of the material explain the reduction of mass, density and radioactivity of the compounds. The energy released during radioactive decay of cesium, strontium and other radionuclides is absorbed by magnetite and converted into heat. Heat promotes the removal of physically bound and partially chemically bound water from the structure of tobermorite-like low-basic calcium hydrosilicates, hydrogranates, alkaline-alkaline-earth zeolite-type hydroaluminosilicates, and copper ferrocyanide hydrate shell. However, the passage of radiolysis does not affect the kinetics of strength gain of the compounds, but contributes to the increase of their compressive strength by 1.87 times compared to the strength of the compounds on 7 days of curin

    Дослідження впливу органомінеральних добавок на колоїдно-хімічні властивості геоцементних дисперсій

    Get PDF
    The object of research is the geocement dispersion of the heulandite-clinoptilolite composition of the structural formula Na2O×Al2O3×6SiO2×20H2O, modified with an organomineral additive The results of the effect of an organomineral additive on the colloidal-chemical properties of geocement dispersion are presented. Mathematical models that characterize the effect of the concentrations of constituent organomineral additives on changes in its basic physical and colloidal chemical properties are obtained:– conventional viscosity;– density;– wetting angle;– surface tension;– works of adhesion, cohesion and wetting of geocement dispersions,factors X1 ... X3 have an influence that are significant. Also, the joint effect of factors, respectively, x1x2x3, x1x2, x1x2 and x1x3 has a significant effect.The coefficients of wetting and spreading of geocement dispersions are significantly influenced only by the joint action of the factors x1x2x3.Relationship is established between the conditional viscosity and the wetting coefficient, between the wetting angle, adhesion, wetting and spreading work and between the density, surface tension and work of cohesion. The composition of the organomineral additive is optimized and the areas of permissible concentrations of its constituents are determined:– along the X1 axis, 2–2.3 % of polymer RI-551Z;– along the X2 axis, 2.1–2.5 % of microcalcite;– along the X3 axis, 4.5–6.5 % of aluminate cement, which, when introduced into a geocement dispersion, allows Na2O×Al2O3×6SiO2×20H2O to stabilize its colloidal-chemical properties. It is determined that the changes in the values of the other output parameters are tied to the change:– the conditional viscosity and their values are in the following limits: r=1.571–1.766 g/cm3, cosQ=0.50–0.67;– surface tension s=114–128 mN/m;– works of adhesion, wetting and cohesion, respectively, 184–204 mN/m;– coefficients of wetting and spreading -0.77–(-)0.84, -37–(-)55 mN/m.Приведены результаты влияния органоминеральной добавки на коллоидно-химические свойства геоцементной дисперсии. Оптимизирован состав органоминеральной добавки и определены области допустимых концентраций, ее составляющих. Установлено, что изменения величин остальных выходных параметров привязаны к изменению условной вязкости. Количественное выражение выходных параметров находится в пределах: r=1,571–1,766 г/см3, cosQ=0,50–0,67, поверхностное натяжение s=114–128 мН/м, работы адгезии, смачивания и когезии, соответственно, 184–204 мН/м, коэффициенты смачивания и растекаемости -0,77–(-)0,84, -37–(-)55 мН/м. Наведено результати впливу органомінеральної добавки на колоїдно-хімічні властивості геоцементної дисперсії. Оптимізовано склад органомінеральної добавки і визначено області допустимих концентрацій її складових. Встановлено, що зміни величин інших вихідних параметрів прив'язані до зміни умовної в'язкості. Кількісне вираження вихідних параметрів знаходиться в межах: r=1,571–1,766 г/см3, cosQ=0,50–0,67, поверхневий натяг s=114–128 мН/м, роботи адгезії, змочування і когезії, відповідно, 184–204 мН/м, коефіцієнти змочування і розтічності -0,77–(-)0,84, -37–(-)55 мН/м

    STUDY OF THE INFLUENCE OF COMPOUNDS OF THE ANO3 and ANO3 nH2O TYPES ON RHEOKINETIC AND COLLOID-CHEMICAL PROPERTIES OF ALUMINOSILICATE ADHESIVES FOR WOOD

    Get PDF
    In the technology of gluing solid wood, various adhesives are used, which, in addition to ensuring the strength of the gluing, must also be characterized by a number of rheological and colloidal-chemical properties, namely: have acceptable viscosity, low contact angles, have good spreading and enveloping ability, penetrate deep into the wood , providing reliable cohesive-adhesive contact and much more. Today, adhesives based on PVA dispersions and urea formaldehydes are used, the properties of which have been sufficiently studied and tested in practice. An alternative to organic-based adhesives is mineral adhesives, in particular aluminosilicate adhesives, which are non-flammable and have high mechanical strength. Object of research: rheokinetic patterns and processes of formation of colloidal-chemical structures of aluminosilicate adhesives modified with compounds of the ANO3 and ANO3×nH2O type. Investigated problem: Considering that aluminosilicate adhesives are multiphase reactive suspensions, the viscosity of which changes over time and affects their viability, the issue of viscosity stabilization due to the introduction of electrolyte salts into their composition is relevant, and will also contribute to improving the wettability and spreading of the adhesive during applying them to substrates and gluing samples from various types of wood. Main scientific results: The effect of the concentrations of compounds of the ANO3 and ANO3×nH2O type on the rheokinetic and chemical-colloidal properties of the aluminosilicate adhesive has been established, which will make it possible to use aluminosilicate adhesives in practice for gluing wood of various species, as well as to work out possible technological methods of their application, taking into account the obtained data on the viscosity, wetting and spreadability of the modified adhesive on the surface of the wood substrate. Area of practical use of the research results: woodworking enterprises for the production of glued solid wood products. Innovative technological product: aluminosilicate adhesives modified with ANO3 and ANO3×nH2O nitrate additives for gluing wood of various species. Scope of application of an innovative technological product: the application of these approaches will make it possible to obtain glued materials from wood from different species with improved technological and physical and mechanical properties of the glue seam and, accordingly, to increase the quality and reliability of products

    Research of the biostability of organic bases of paints for wood

    Get PDF
    The biostability of organic film-formers of paints and varnishes intended for staining wood to the action of the fungus Aspergillus niger was studied. It was found that in Sabouraud's environment on days 7, 14 and 21 from the beginning of infection, the epoxy hardener is characterized by the minimum level of damage, respectively, 1, 1.6 and 2.4 points; alkyd film former has 2 points, and in subsequent time intervals 3.7 points; epoxy resin on day 7 is characterized by a lesion level of 1.7 points, on the following days of exposure – 4 points; pentaphthalic film former, respectively, 2.7, 3.7 and 4 points. According to the degree of resistance in the Sabouraud environment, organic film-formers of wood paints can be ranked as follows: epoxy (hardener)>alkyd>epoxy resin>pentaphthalic>organosilicon. It is shown that in the environment of Czapek on 7, 14 and 21 days from the beginning of infection, the minimum level of damage is characterized by an epoxy hardener, respectively, 2, 2.3 and 3 points; pentaphthalic film former, respectively, 2 and 3 points; alkyd film former, respectively, 2.4, 3.7 and 4 points; epoxy resin on day 7 is characterized by a lesion level of 3 points, on the following days of exposure – 4 points. According to the degree of resistance in the environment of Czapek, organic film-forming agents for wood paints can be ranked as follows: epoxy (hardener)>pentaphthalic>alkyd>epoxy resin>organosilicon. Organosilicon film-formers were most intensively affected by the fungus both 7 days after exposure and at a later time, reaching the maximum values of the lesions – 4 points. During the test period, no zones of mycelium growth inhibition were observed in the studied organic base

    Визначення впливу складу алюмосилікатного зв’язуючого на реотехнологічні властивості адгезивів для деревини

    Get PDF
    Main rheotechnological properties of aluminosilicate adhesives for gluing wood arrays have been investigated. It was established that for adhesives based on the alkaline aluminosilicate binding agent with a composition of Na2O×Al2O3×4.5SiO2×17.5H2O dynamic viscosity in the range of speeds from 0 to 200 RPM varies from 6.933 sP to 368.4 Sp, and the mean plastic viscosity takes the magnitude of 86.27 sP. At the same value of surface tension and cohesive work, the smallest angle of wetting (cosQ=0.7973) and the largest coefficients of wetting (s=0.8986) and spreadability (f=–6.5 mN/m), as well as the work of adhesion forces (Wa=58.23 mN/m), wetting (Wa=58.23 mN/m), are demonstrated by beech backing, followed by alder, ash, pine, birch, and oak.For adhesives based on the alkaline aluminosilicate binding agent with a composition of Na2O×Al2O3×6SiO2×20H2O dynamic viscosity in the speed range from 0 to 200 RPM varies from 5.340 sP to 374.4 sP, and the mean plastic viscosity takes the magnitude of 85.72 sP. At the same value of surface tension and cohesive work, the smallest angle of wetting (cosQ=0.5876) and the largest coefficients of wetting (s=0.7938) and spreadability (f=–19.34 mN/m), as well as the work of adhesion forces (Wa=74.46 mN/m), wetting (Ww=27.56 mN/m), are demonstrated by alder backing, followed by pine, oak, birch, beech, and ash.For the adhesive with a composition of Na2O×Al2O3×4.5SiO2×17.5H2O, at low values of shear rate, from 0.0378 to 1.05 1/sec, the shear force increases from 26.21 dyne/cm2 to 48.64 dyne/cm2. The data obtained significantly exceed the same indicators for a liquid glass at high shear rates, from 14 to 39 1/sec. For the adhesive with a composition of Na2O×Al2O3×6SiO2×20H2O, at low shear speeds there is a sharp increase in the shear effort, from 40 to 110 dyne cm2. This is due to the dispersion processes in the silica component. At an increase in the shear speed values from 5 to 42 1/sec, the shear effort increases from 110 to 158 dyne/cm2. This relates to the stabilization of viscosity values with the formation of a homogeneous adhesive structureИсследованы основные реотехнологические свойства алюмосиликатных адгезивов для склеивания массивов древесины. Отмечено, что для адгезивов на основе щелочного алюмосиликатного связующего вида Na2O×Al2O3×4,5SiO2×17,5H2O динамическая вязкость в диапазоне скоростей от 0 до 200 RPM меняется от 6933 сП до 368,4 сП, а средняя пластическая составляет величину 86,27 сП. При одинаковом значении поверхностного натяжения и работы когезии, наименьшим углом смачивания (cosq=0,7973) и наибольшими коэффициентами смачивания (s=0,8986) и растекаемости (f=-6,5 мН/м), а также работами сил адгезии (Wa=58,23 мН/м), смачивания (Ww=25,83 мН/м) характеризуется подложка бука, далее – ольхи, ясеня, сосны, березы и дуба.Для адгезивов на основе щелочного алюмосиликатного связующего вида Na2O×Al2O3×6SiO2×20H2O динамическая вязкость в диапазоне скоростей от 0 до 200 RPM меняется от 5340 сП до 374,4 сП, а средняя пластическая составляет величину 85,72 сП. При одинаковом значении поверхностного натяжения и работы когезии, наименьшим углом смачивания (cosQ=0,5876) и наибольшими коэффициентами смачивания (s=0,7938) и растекаемости (f=-19,34 мН/м), а также работами сил адгезии (Wa=74,46 мН/м), смачивания (Ww=27,56 мН/м) характеризуется подложка ольхи, далее – сосны, дуба, березы, бука и ясеня.Для адгезива состава Na2O×Al2O3×4,5SiO2×17,5H2O при малых значениях скорости сдвига от 0, 0378 до 1,05 1/сек усилия сдвига увеличивается от 26,21 dyne/cm2 до 48,64 dyne/cm2. Полученные данные значительно превышают эти же показатели жидкого стекла при больших скоростях сдвига от 14 до 39 1/сек. Для адгезива состава Na2O×Al2O3×6SiO2×20H2O на малых скоростях сдвига наблюдается резкий всплеск усилия сдвига от 40 до 110 dyne/cm2. Это связано с процессами диспергации кремнеземистой составляющей. При увеличении значений скорости сдвига от 5 до 42 1/сек усилия сдвига увеличивается от 110 до 158 dyne/cm2. Это связано со стабилизацией значений вязкости с образованием однородной структуры адгезиваДосліджено основні реотехнологічні властивості алюмосилікатних адгезивів для склеювання масивів деревини. Відзначено, що для адгезивів на основі лужного алюмосилікатного зв’язуючого складу Na2O×Al2O3×4,5SiO2×17,5H2O динамічна в’язкість в діапазоні швидкостей від 0 до 200 RPM змінюється від 6933 сП до 368,4 сП, а середня пластична в’язкість становить величину 86,27 сП. При однаковому значенні поверхневого натягу і роботи когезії, найменшим кутом змочування (cosQ=0,7973) і найбільшими коефіцієнтами змочування (s=0,8986) і млинності (f=-6,5 мН/м), а також роботами сил адгезії (Wa=58,23 мН/м), змочування (Ww=25,83 мН/м) характеризується підкладка бука, надалі - вільхи, ясеню, сосни, берези і дубу.Для адгезивів на основі лужного алюмосилікатного зв’язуючого складу Na2O×Al2O3×6SiO2×20H2O динамічна в’язкість в діапазоні швидкостей від 0 до 200 RPM змінюється від 5340 сП до 374,4 сП, а середня пластична в’язкість становить величину 85,72 сП. При однаковому значенні поверхневого натягу і роботи когезії, найменшим кутом змочування (cosQ=0,5876) і найбільшими коефіцієнтами змочування (s=0,7938) і млинності (f=-19,34 мН/м), а також роботами сил адгезії (Wa=74,46 мН/м), змочування (Ww=27,56 мН/м) характеризується підкладка вільхи, надалі - сосни, дубу, берези, бука і ясеню.Для адгезиву складу Na2O×Al2O3×4,5SiO2×17,5H2O при малих значеннях швидкості зсуву від 0,0378 до 1,05 1/сек зусилля зсуву збільшується від 26,21 dyne/cm2 до 48,64 dyne/cm2. Отримані дані значно перевищують ці ж показники рідинного скла при великих швидкостях зсуву від 14 до 39 1/сек.Для адгезиву складу Na2O×Al2O3×6SiO2×20H2O на малих швидкостях зсуву спостерігається різкий сплеск зусилля зсуву від 40 до 110 dyne cm2. Це пов'язано з процесами диспергації кремнеземистої складової. При збільшенні значень швидкості зсуву від 5 до 42 1/сек зусилля зсуву збільшується від 110 до 158 dyne/cm2. Це пов'язано зі стабілізацією значень в'язкості з утворенням однорідної структури адгезив

    FIRE PROTECTION OF WOODEN STORAGE CONTAINERS FOR EXPLOSIVE AND PYROTECHNIC PRODUCTS

    Get PDF
    Analysis of the emergency storage facilities for explosive and pyrotechnic products is conducted. It is established that one of the greatest risks is their flammability. Since the explosive and pyrotechnic products are stored in wooden containers, there is a need for their fire protection. To determine the efficiency of fire resistant containers for packaging explosive products it is designed operating range of testing method. This method is necessary to establish mass loss, measuring the growth temperature and response time of the squibs. The results of the efficiency of the fire retardant treatment of wood and organic coated coating showed that when exposed to high–temperature destruction of the construction detonation of the squibs didn’t happen. Tests to determine the quality of the fire retardant treatment of wood coatings showed that the temperature on the inner surfaces of the untreated sample was more than 760 ºC, samples with fire retardant coatings – no more than 128 °C. The conclusion of the feasibility of using fire–retardants is not based on inorganic and organic binders for the treatment of wooden structures. Method of determining the fire protection is used to assess the efficiency of the fire protection of wooden structures. Method comprises determining the ratio of the sample rate of burnout, the temperature increment and the ignition time of untreated and treated samples. As a result of the firing testing it is established a speed burnout reduction of samples of the container with treated coatings compared with untreated coatings is decreased by 2,4-4,4 times and respectively fire protection efficiency factor of treated samples of the container compared to untreated is increased by1.8-4.1 times

    Fire Protection Of Wooden Storage Containers For Explosive And Pyrotechnic Products

    Get PDF
    Analysis of the emergency storage facilities for explosive and pyrotechnic products is conducted. It is established that one of the greatest risks is their flammability. Since the explosive and pyrotechnic products are stored in wooden containers, there is a need for their fire protection. To determine the efficiency of fire resistant containers for packaging explosive products it is designed operating range of testing method. This method is necessary to establish mass loss, measuring the growth temperature and response time of the squibs. The results of the efficiency of the fire retardant treatment of wood and organic coated coating showed that when exposed to high–temperature destruction of the construction detonation of the squibs didn\u27t happen.Tests to determine the quality of the fire retardant treatment of wood coatings showed that the temperature on the inner surfaces of the untreated sample was more than 760 ºC, samples with fire retardant coatings – no more than 128 °C. The conclusion of the feasibility of using fire–retardants is not based on inorganic and organic binders for the treatment of wooden structures.Method of determining the fire protection is used to assess the efficiency of the fire protection of wooden structures. Method comprises determining the ratio of the sample rate of burnout, the temperature increment and the ignition time of untreated and treated samples. As a result of the firing testing it is established a speed burnout reduction of samples of the container with treated coatings compared with untreated coatings is decreased by 2,4-4,4 times and respectively fire protection efficiency factor of treated samples of the container compared to untreated is increased by1.8-4.1 times

    Дослідження адгезійних властивостей геоцементних покриттів бар'єрного типу

    Get PDF
    The results of the adhesive test of the research object – barrier-type geocement-based coating applied to metal polymer film, formed as a result of redox reaction of «Contrrust» rust converter and metal corrosion products are shown in the article. Despite the diametrically opposite pH of the two substrates, traces of rejection coating on the film, detachment and blistering, peeling and other defects aren’t observed. The adhesive characteristics of the compositions included in the developed system of protective coating ««Contrrust» rust converter + barrier-type geocement-based coating» are determined: adhesive characteristics of the compositions included in the developed system of protective coatings: ««Contrrust» rust converter + barrier-type geocement-based coating»: adhesion for incision method of metal polymer film 117 microns thick to metal substrate is 1 point, and geocement coating to metal polymer film 550 and 168 microns thick is 3-4 and 1 point; adhesion for normal force separation method of metal polymer film 117 microns thick to the metal substrate is 1,8-6,1 MPa and barrier-type geocement-based coating applied to metal polymer film 550 microns thick is 1,7 MPa, which respectively in 3-10,2 and 2,83 times higher than regulations.Adhesive bond of geocement coatings to the metal polymer film consisting of water-resistance chelate complexes is so large that facilitates the joint separation of the two protective compositions from the surface of the metal substrate. The combined use of the above mentioned compositions contributes to a significant reduction in costs both in preparation and in terms of the painting works for metal structures.Приведены результаты адгезионных испытаний геоцементного покрытия барьерного типа, нанесенного на металл полимерную пленку хелатного типа, образованную в результате прохождения окислительно-восстановительных реакций составляющих преобразователя ржавчины «Contrrust» и продуктами коррозии металла. Несмотря на диаметрально противоположный рН двух основ, не отмечено следов отторжения покрытия от пленки, отставания и вздутий, шелушения и прочих дефектов.Наведено результати адгезійних випробувань геоцементного покриття бар'єрного типу, нанесеного на метал полімерну плівку хелатного типу, що утворилась в результаті проходження окислювально-відновних реакцій складових перетворювача іржі «Contrrust» і продуктами корозії металу. Незважаючи на діаметрально протилежний рН двох основ, не відзначено слідів відторгнення покриття від плівки, відставання і здуття, лущення та інших дефектів.

    Вплив співвідношення оксидів і температури на структуроутворення лужних гідроалюмосілікатів

    Get PDF
    In the course of optimization of compositions of alkaline hydro-aluminosilicates of general structural formula – (0,7÷1Na2O+0÷0,3K2O)·Al2O3·(2÷7)SiO2·nH2O, it is established that the phase composition of artificial stone depends more on the ratio of basic oxides; the temperature of hardening in the range of 20÷80 °С increases the speed of structure formation of zeolite-like phases.A determining factor of influence on the type of hydrated new formations is the ratio of SiO2/Al2O3; its increase leads to the creation of zeolite-like phases with high content of silica in its composition. At hardening of alkaline hydro-aluminosilicate of the given structural forms under standard conditions of hardening, providing for a high degree of crystallinity of structure, optimal is the ratio SiO2/Al2O3=4÷5.Introduction of potassium ions into the composition of hydro-aluminosilicate contributes to obtaining potassium and sodium–potassium zeolite–like new formations and to increasing the degree of crystallinity of the indicated phases. To accelerate the structure formation of alkaline hydro-aluminosilicate under standard conditions of hardening, it is necessary to introduce potassium oxide at K2O/R2O=0,15÷0,3.With an increase in the temperature of hardening of alkaline hydro-aluminosilicate from 20 to 80 °, the phase composition of artificial stone remains practically unchanged; however, this leads to an increase in the velocity of structure formation and the degree of crystallinity of artificial stone.As a result of optimization, we determined optimum structural formula of hydro-aluminosilicate (0,8Na2O+0,2K2O)·Al2O3·4,5SiO2·nH2O, which makes it possible under standard conditions of hardening to obtain water-resistant artificial stone by the synthesis in the composition of hydrated new formations of zeolite-like minerals of the type of zeolite Na–A; sodium and potassium heulandite, as well as sodium potassium phillipsite.Исследовано влияние соотношения основных оксидов щелочных гидроалюмосиликатов состава (0,7÷1Na2O+0÷0,3K2O)·Al2O3·(2÷7)SiO2·nH2O и температуры твердения 20÷80оС на процессы их структурообразования. При твердении в нормальных условиях оптимальной структурной формулой щелочного гидроалюмосиликата является (0,2K2O+0,8Na2O) 4,5SiO2·Al2O3·nH2O, что позволяет получать водостойкий искусственный камень за счет синтеза гидратных новообразований цеолитоподобных минералов типа: цеолита Na-A; натриевого и калиевого гейландита, а также калий-натриевого филлипсита.Досліджено вплив співвідношення основних оксидів лужних гідроалюмосилікатів складу (0,7÷1Na2O+0÷0,3K2O)·Al2O3·(2÷7)SiO2·nH2O та температури твердіння 20÷80оС на процеси їх структуроутворення. При твердінні за нормальних умов оптимальною структурною формулою лужного гідроалюмосилікату є (0,2K2O+0,8Na2O)·4,5SiO2·Al2O3·nH2O, що дозволяє отримувати водостійкий штучний камінь за рахунок синтезу гідратних новоутворень цеолітоподібних мінералів типу: цеоліту Na-A; натрієвого та калієвого гейландиту, а також калій-натрієвого філліпситу

    Вплив CaO-вміщуючих модифікаторів на властивості лужних алюмосилікатних зв’язуючих

    Get PDF
    The basis for ensuring the resistance of artificial stone based on alkaline aluminosilicate binders to variable environmental conditions is the formation of zeolite- and mica-like hydrate neo-formations.It is possible to control the structure forming processes and, as a result, the operational properties of alkaline hydro aluminum silicates using the variation of the ratio of basic oxides of the binder, dispersiveness of particles and hardening conditions. It was noted that in order to obtain high operational characteristics of a stone based on alkali aluminosilicate binders, there is a need for elevated temperature of their hardening.The research shows that it is possible to ensure water resistance of artificial stone at hardening under normal conditions at the expense of the modification of the binder by Ca-containing additives.The influence of CaO-containing modifiers of different phase composition on physical and mechanical properties of artificial stone based on alkali aluminosilicate binders was explored. Ensuring water resistance of artificial stone at its hardening under conditions of normal temperatures was proved by experimental research and its phase composition was studied. The kind and the optimal amount of CaO-containing modifiers to provide for operational properties of artificial stone were determined. The use of CaO-containing modifiers of alkaline aluminosilicate binders ensures the acceleration of their structure formation and contributes to an increase in water resistance and strength under normal conditions.The influence of CaO-containing modifiers of various morphological type on physical and mechanical properties of artificial stone based on alkaline aluminosilicate binders was studied. It was established that on day 28of hardening at ambient temperature of 20±2 °С regardless of the type of introduction of Ca-containing modifiers, artificial stone is characterized by strength at compression from 14.2 to 42.8 MPa with a coefficient of water resistance from 0.81 to 1.05 due to the formation in combustion products of the mixture of high- and low-base calcium hydro silicates and zeolite-like neo-formations of the hybrid type – calcium-sodium hydroaluminosilicates with an insignificant content of Na- and K-heulandite. It was shown that water resistance of artificial stone in the early periods of hardening at ambient temperature of 20±2 °С is ensured due to the formation in hydration products of the binder of high- and low-base calcium hydro silicates, formed due to hydration of Portland cement, ground slag and slaked lime. It is possible to accelerate the kinetics of strength gaining with ensuring the water resistance of artificial stone using liquid glass with silicate module of 2.0–2.6 and lime content in the amount of 2.0–3.0 % percent of the weight of alkaline aluminosilicate binder as an alkaline component. It was noted that hydraulic activity of Ca-containing modifiers decreases in the series Slag>Са(ОН)2>СаСО3>Portland cement>Alumina cementОсновой для обеспечения устойчивости искусственного камня на основе щелочных алюмосиликатных связующих к переменных условиям внешней среды является формирование в его фазовом составе цеолито- и слюдоподобных гидратных новообразований.Управление процессами структурообразования и, как следствие, эксплуатационными свойствами щелочных гидроалюмосиликатов возможно с помощью вариации соотношения основных оксидов связующего, дисперсностью частиц и условий твердения. Отмечено, что для получения высоких эксплуатационных характеристик камня на основе щелочных алюмосиликатных связующих существует необходимость в повышенных температурах их твердения.В работе показано, что обеспечение водостойкости искусственного камня, при его твердении в нормальных условиях, возможно за счет модификации связующего Са-содержащими добавками.Исследовано влияние CaO-содержащих модификаторов различного фазового состава на физико-механические характеристики искусственного камня на основе щелочных алюмосиликатных связующих. Экспериментальными исследованиями доказано обеспечения водостойкости искусственного камня при твердении в условиях нормальных температур и изучены его фазовый состав. Определен вид и оптимальное количество CaO-вмещающих модификаторов для обеспечения эксплуатационных свойств искусственного камня. Использование CaO-содержащих модификаторов щелочных алюмосиликатных связующих? обеспечивает ускорение их структурообразования, способствует повышению водостойкости и прочности в нормальных условиях твердения.Исследовано влияние CaO-содержащих модификаторов различного морфологического типа на физико-механические характеристики искусственного камня на основе щелочных алюмосиликатных связующих. Установлено, что на 28 сутки твердения при температуре окружающей среды 20±2 °С и независимо от типа введения Са-содержащих модификаторов, искусственный камень характеризуется прочностью при сжатии от 14,2 до 42,8 МПа с коэффициентом водостойкости от 0,81 до 1,05 за счет образования в продуктах гидратации смеси высоко- и низкоосновных гидросиликатов кальция и цеолитоподобных новообразований гибридного типа - кальций-натриевых гидроалюмосиликатов с незначительным содержанием Na- и K- гейландита. Показано, что водостойкость искусственного камня в ранние сроки твердения при температуре среды 20±2 °С обеспечивается за счет образования в продуктах гидратации связующего высоко- и низкоосновных гидросиликатов кальция, образующихся вследствие гидратации портландцемента, молотого шлака и гашеной извести. Ускорить кинетику набора прочности, с обеспечением водостойкости искусственного камня, возможно при использовании в качестве щелочного компонента жидкого стекла с силикатным модулем 2,0–2,6 и содержанием извести в количестве 2,0÷3,0 % от массы щелочного алюмосиликатного связующего. Отмечено, что гидравлическая активность Са-содержащих модификаторов уменьшается в ряду Шлак>Са(ОН)2>СаСО3>Портландцемент>Гглиноземистый цементОсновою для забезпечення стійкості штучного каменю на основі лужних алюмосилікатних зв’язуючих до змінних умов зовнішнього середовища є формування в його фазовому складі цеоліто- та слюдоподібних гідратних новоутворень.Управління процесами структуроутворення та, як наслідок, експлуатаційними властивостями лужних гідроалюмосилікатів, можливе за допомогою варіації співвідношення основних оксидів зв’язуючого, дисперсністю частинок та умовами тверднення. Зазначено, що для отримання високих експлуатаційних характеристик каменю на основі лужних алюмосилікатних зв’язуючих існує необхідність у підвищених температурах їх тверднення. В роботі запропоновано забезпечення водостійкості штучного каменю при його твердненні в нормальних умовах за рахунок модифікації зв’язуючого Са-вміщуючими добавками.Досліджено вплив CaO-вміщуючих модифікаторів різного морфологічного типу на фізико-механічні характеристики штучного каменю на основі лужних алюмосилікатних зв’язуючих. Встановлено, що на 28 добу тверднення при температурі зовнішнього середовища 20±2 оС і незалежно від типу введення Са-вміщуючих модифікаторів, штучний камінь характеризується міцністю при стиску від 14,2 до 42,8 МПа з коефіцієнтом водостійкості від 0,81 до 1,05 за рахунок утворення в продуктах гідратації суміші високо- та низькоосновних гідросилікатів кальцію та цеолітоподібних новоутворень гібридного типу - кальцій-натрієвих гідроалюмосилікатів із незначним вмістом Na- і K- гейландитів. Показано, що водостійкість штучного каменю в ранні терміни твердіння при температурі середовища 20±2 °С забезпечується за рахунок утворення в продуктах гідратації зв’язуючих високо- і низькоосновних гідросилікатів кальцію, що утворюються внаслідок гідратації портландцементу, меленого шлаку і гашеного вапна.Прискорити кінетику набору міцності з забезпеченням водостійкості штучного каменю можливо при використанні в якості лужного компоненту рідинного скла з силікатним модулем 2,0–2,6 і вмістом вапна пушонки 2,0÷3,0 % від маси лужного алюмосилікатного зв’язуючого. Відмічено, що гідравлічна активність Са-вміщуючих модифікаторів зменшується в ряді Шлак>Са(ОН)2>СаСО3>Портландцемепнт>Глиноземистий цемен
    corecore