319 research outputs found

    A study of the Markov game approach to tactical maneuvering problems

    Get PDF
    Application of Markov game approach to planar air combat problem

    Software requirements definition Shipping Cask Analysis System (SCANS)

    Get PDF
    The US Nuclear Regulatory Commission (NRC) staff reviews the technical adequacy of applications for certification of designs of shipping casks for spent nuclear fuel. In order to confirm an acceptable design, the NRC staff may perform independent calculations. The current NRC procedure for confirming cask design analyses is laborious and tedious. Most of the work is currently done by hand or through the use of a remote computer network. The time required to certify a cask can be long. The review process may vary somewhat with the engineer doing the reviewing. Similarly, the documentation on the results of the review can also vary with the reviewer. To increase the efficiency of this certification process, LLNL was requested to design and write an integrated set of user-oriented, interactive computer programs for a personal microcomputer. The system is known as the NRC Shipping Cask Analysis System (SCANS). The computer codes and the software system supporting these codes are being developed and maintained for the NRC by LLNL. The objective of this system is generally to lessen the time and effort needed to review an application. Additionally, an objective of the system is to assure standardized methods and documentation of the confirmatory analyses used in the review of these cask designs. A software system should be designed based on NRC-defined requirements contained in a requirements document. The requirements document is a statement of a project's wants and needs as the users and implementers jointly understand them. The requirements document states the desired end products (i.e. WHAT's) of the project, not HOW the project provides them. This document describes the wants and needs for the SCANS system. 1 fig., 3 tabs

    Towards mapping biodiversity from above: Can fusing lidar and hyperspectral remote sensing predict taxonomic, functional, and phylogenetic tree diversity in temperate forests?

    Get PDF
    Aim: Rapid global change is impacting the diversity of tree species and essential ecosystem functions and services of forests. It is therefore critical to understand and predict how the diversity of tree species is spatially distributed within and among forest biomes. Satellite remote sensing platforms have been used for decades to map forest structure and function but are limited in their capacity to monitor change by their relatively coarse spatial resolution and the complexity of scales at which different dimensions of biodiversity are observed in the field. Recently, airborne remote sensing platforms making use of passive high spectral resolution (i.e., hyperspectral) and active lidar data have been operationalized, providing an opportunity to disentangle how biodiversity patterns vary across space and time from field observations to larger scales. Most studies to date have focused on single sites and/or one sensor type; here we ask how multiple sensor types from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) perform across multiple sites in a single biome at the NEON field plot scale (i.e., 40 m × 40 m).Location: Eastern USA.Time period: 2017– 2018.Taxa studied: Trees.Methods: With a fusion of hyperspectral and lidar data from the NEON AOP, we as-sess the ability of high resolution remotely sensed metrics to measure biodiversity variation across eastern US temperate forests. We examine how taxonomic, functional, and phylogenetic measures of alpha diversity vary spatially and assess to what degree remotely sensed metrics correlate with in situ biodiversity metrics.Results: Models using estimates of forest function, canopy structure, and topographic diversity performed better than models containing each category alone. Our results show that canopy structural diversity, and not just spectral reflectance, is critical to predicting biodiversity.Main conclusions: We found that an approach that jointly leverages spectral properties related to leaf and canopy functional traits and forest health, lidar derived estimates of forest structure, fine-resolution topographic diversity, and careful consideration of biogeographical differences within and among biomes is needed to accurately map biodiversity variation from above

    Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient

    Get PDF
    Intensified droughts are affecting tropical forests across the globe. However, the underlying mechanisms of tree drought response and mortality are poorly understood. Hydraulic traits and especially hydraulic safety margins (HSMs), that is, the extent to which plants buffer themselves from thresholds of water stress, provide insights into species-specific drought vulnerability. We investigated hydraulic traits during an intense drought triggered by the 2015–2016 El Niño on 27 canopy tree species across three tropical forest sites with differing precipitation. We capitalized on the drought event as a time when plant water status might approach or exceed thresholds of water stress. We investigated the degree to which these traits varied across the rainfall gradient, as well as relationships among hydraulic traits and species-specific optimal moisture and mortality rates. There were no differences among sites for any measured trait. There was strong coordination among traits, with a network analysis revealing two major groups of coordinated traits. In one group, there were water potentials, turgor loss point, sapwood capacitance and density, HSMs, and mortality rate. In the second group, there was leaf mass per area, leaf dry matter content, hydraulic architecture (leaf area to sapwood area ratio), and species-specific optimal moisture. These results demonstrated that while species with greater safety from turgor loss had lower mortality rates, hydraulic architecture was the only trait that explained species’ moisture dependency. Species with a greater leaf area to sapwood area ratio were associated with drier sites and reduced their transpirational demand during the dry season via deciduousness

    The pharmacognosy investigation of associated coumarins Lupinus luteus L.

    Get PDF
    The genus Lupinus (Lupinus L.) is attributed to the legumes family (Fabaceae L.). About 1000 herbaceous, semi-bush and shrub, annual, winter and perennial lupines are described. In this paper we focuses on the issue of pharmacognostical study of plants is widely used in animal breeding, is the active substance in the manufacture of dietary supplements - the yellow lupine (Fabaceae). Harvested grass were analyzed after acid hydrolysis. Gas-liquid chromatography was first performed with mass spectrometric detection of hydrolysed raw material of Lupinus luteus L., where 56 compounds were found, of which 35 components were identified. After hydrolysis, the raw material of L. luteus L. contained a number of biologically active substances – fatty acids, alcohols, ketones etc. Two components from the class of true coumarins were identified: coumarin (16.4 mg%) and 6–methylcoumarin (2.7 mg%)

    Are Thiel-embalmed Cadavers Effective Tools in Educating Medical Students to Perform Knee Arthrocentesis?

    Get PDF
    INTRODUCTION: The purposes of this study are to determine whether Thiel-embalmed cadavers are an effective educational tool in teaching medical students to perform knee arthrocentesis, to compare the use of Thiel-embalmed cadavers to formalin-embalmed cadavers in arthrocentesis education, and to determine whether the use of Thiel-embalmed cadavers is potentially generalizable to the instruction of other orthopedic procedures. METHODS: Sixty-eight third-year medical students participated in the study. The participants first completed a pre-survey to assess their prior experience with arthrocentesis procedures and Thiel-embalmed cadavers. Participants then attended an instructional session where the knee arthrocentesis procedure was demonstrated on a Thiel-embalmed cadaver. Participants then individually performed the simulated knee arthrocentesis procedure twice: once on a Thiel-embalmed cadaver and once on a formalin-embalmed cadaver. Success of each attempt was determined through the visualization of aspirated joint fluid. Following the laboratory session, each participant completed a post-survey to determine whether the session improved their perceived confidence in performing knee arthrocentesis, if they preferred the use of Thiel-embalmed cadavers or formalin-embalmed cadavers as a teaching tool, and if they believed simulated practice using Thiel-embalmed cadavers would be effective for learning other orthopedic procedural skills. RESULTS: Sixty-eight students participated in the laboratory session and successfully completed both pre- and post-course surveys. 96% of participants reported that they felt confident performing knee arthrocentesis under physician supervision following their participation in the laboratory session (versus 15% of participants in the pre-survey). 96% of participants reported that the Thiel-embalmed cadavers provided a more realistic teaching model than formalin-embalmed cadavers for learning knee arthrocentesis. 100% of participants believed the incorporation of simulated practice using Thiel-embalmed cadavers is an effective method in teaching students to perform knee arthrocentesis. 100% of participants reported that they would participate in future sessions using Thiel-embalmed cadavers to learn and practice other orthopedic procedural techniques. DISCUSSION: This study used a moderate sample size of third-year medical students to provide data regarding the suitability of using Thiel cadavers in arthrocentesis education. Results indicate that Thiel cadavers are effective tools in teaching medical students to perform knee arthrocentesis, that students preferred the Thiel cadavers to the formalin cadavers, and that the use of Thiel cadavers is a safe, engaging, and high-quality teaching modality for demonstrating proper arthrocentesis procedural technique to medical students. Since this study looked specifically at teaching knee arthrocentesis to medical students, it is uncertain whether the benefits of Thiel cadavers are generalizable to the education of other orthopedic procedures and subject groups such as residents, fellows, and practicing physicians. Further studies should be performed to assess whether Thiel cadavers are beneficial in teaching other orthopaedic procedures and if these benefits extend to other subject groups

    Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES)

    Get PDF
    Vegetation plays an important role in regulating global carbon cycles and is a key component of the Earth system models (ESMs) that aim to project Earth's future climate. In the last decade, the vegetation component within ESMs has witnessed great progress from simple "big-leaf" approaches to demographically structured approaches, which have a better representation of plant size, canopy structure, and disturbances. These demographically structured vegetation models typically have a large number of input parameters, and sensitivity analysis is needed to quantify the impact of each parameter on the model outputs for a better understanding of model behavior. In this study, we conducted a comprehensive sensitivity analysis to diagnose the Community Land Model coupled to the Functionally Assembled Terrestrial Simulator, or CLM4.5(FATES). Specifically, we quantified the first- and second-order sensitivities of the model parameters to outputs that represent simulated growth and mortality as well as carbon fluxes and stocks for a tropical site with an extent of 1×1°. While the photosynthetic capacity parameter (Vc;max25) is found to be important for simulated carbon stocks and fluxes, we also show the importance of carbon storage and allometry parameters, which determine survival and growth strategies within the model. The parameter sensitivity changes with different sizes of trees and climate conditions. The results of this study highlight the importance of understanding the dynamics of the next generation of demographically enabled vegetation models within ESMs to improve model parameterization and structure for better model fidelity

    A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with children with autism

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article describes a pilot study in which a novel experimental setup, involving an autonomous humanoid robot, KASPAR, participating in a collaborative, dyadic video game, was implemented and tested with children with autism, all of whom had impairments in playing socially and communicating with others. The children alternated between playing the collaborative video game with a neurotypical adult and playing the same game with the humanoid robot, being exposed to each condition twice. The equipment and experimental setup were designed to observe whether the children would engage in more collaborative behaviours while playing the video game and interacting with the adult than performing the same activities with the humanoid robot. The article describes the development of the experimental setup and its first evaluation in a small-scale exploratory pilot study. The purpose of the study was to gain experience with the operational limits of the robot as well as the dyadic video game, to determine what changes should be made to the systems, and to gain experience with analyzing the data from this study in order to conduct a more extensive evaluation in the future. Based on our observations of the childrens’ experiences in playing the cooperative game, we determined that while the children enjoyed both playing the game and interacting with the robot, the game should be made simpler to play as well as more explicitly collaborative in its mechanics. Also, the robot should be more explicit in its speech as well as more structured in its interactions. Results show that the children found the activity to be more entertaining, appeared more engaged in playing, and displayed better collaborative behaviours with their partners (For the purposes of this article, ‘partner’ refers to the human/robotic agent which interacts with the children with autism. We are not using the term’s other meanings that refer to specific relationships or emotional involvement between two individuals.) in the second sessions of playing with human adults than during their first sessions. One way of explaining these findings is that the children’s intermediary play session with the humanoid robot impacted their subsequent play session with the human adult. However, another longer and more thorough study would have to be conducted in order to better re-interpret these findings. Furthermore, although the children with autism were more interested in and entertained by the robotic partner, the children showed more examples of collaborative play and cooperation while playing with the human adult.Peer reviewe
    corecore