6 research outputs found

    Correction: Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe

    Get PDF
    The following information was missing from the funding section: BBSRC, DEFRA, NERC, the Scottish Government and the Wellcome Trust, under the Insect Pollinators Initiative crops project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe

    Get PDF
    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue

    A real-time PCR assay to differentiate the B and Q biotypes of the Bemisia tabaci

    No full text
    A real-time PCR assay based on TaqManĀ® technology was developed and evaluated for the rapid detection of the B and Q biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). A survey was conducted during 2005-2007 in order to identify the distribution and prevalence of B. tabaci biotypes in Cyprus using the real-time PCR assay. More than 700 adult whiteflies collected from 35 cultivated and weed plant species were individually haplotyped using TaqManĀ® PCR, and the results of the assay were validated by restriction fragment length polymorphism analysis and DNA sequencing of the mitochondrial cytochrome oxidase I (mtCOI) gene. Two biotypes, B and Q, were identified in the collected plant species on the island. The real-time PCR and RFLP assay consistently yielded the same results, although the real-time assay was more sensitive and less time consuming. Phylogenetic analysis of the mtCOI DNA sequences corroborated the identity of the B and Q biotypes 100% of the time and by phylogenetic analysis the haplotypes grouped, as expected, in the major North African-Mediterranean-Middle Eastern clade of the B. tabaci complex

    A small deletion in the olive fly acetylcholinesterase gene associated with high levels of organophosphate resistance

    No full text
    Organophosphate resistance in the olive fly was previously shown to associate with two point mutations in the ace gene. The frequency of these mutations was monitored in Bactrocera oleae individuals of increasing resistance. In spite of the difference in resistance among the individuals, there was no correlation between mutation frequencies and resistance level, indicating that other factors may contribute to this variation. The search for additional mutations in the ace gene of highly resistant insects revealed a small deletion at the carboxyl terminal of the protein (termed Delta 3Q). Significant correlation was shown between the mutation frequency and resistance level in natural populations. In addition, remaining activity of acety1cholinesterase enzyme (AChE) after dimethoate inhibition was higher in genotypes carrying the mutation. These results strongly suggest a role of Delta 3Q in high levels of organophosphate (OP) resistance. Interestingly, the carboxyl terminal of AChE is normally cleaved and substituted by a glycosylphosphatidylinositol (GPI) anchor. We hypothesize that Delta 3Q may improve GPI anchoring, thus increasing the amount of AChE that reaches the synaptic cleft. In this way, despite the presence of insecticide, enough enzyme would remain in the cleft for its normal role of acetylcholine hydrolysis, allowing the insect to survive. This provides a previously un-described mechanism of resistance. (c) 2008 Elsevier Ltd. All rights reserved
    corecore