38 research outputs found

    Effects of sardine-enriched diet on metabolic control, inflammation and gut microbiota in drug-naïve patients with type 2 diabetes: a pilot randomized trial

    Get PDF
    Nutrition therapy is the cornerstone of treating diabetes mellitus. The inclusion of fish (particularly oily fish) at least two times per week is recommended by current international dietary guidelines for type 2 diabetes. In contrast to a large number of human studies examining the effects of oily fish on different cardiovascular risk factors, little research on this topic is available in patients with type 2 diabetes. The aims of this pilot study were to investigate the effects of a sardine-enriched diet on metabolic control, adiponectin, inflammatory markers, erythrocyte membrane fatty acid (EMFA) composition, and gut microbiota in drug-naïve patients with type 2 diabetes. METHODS: 35 drug-naïve patients with type 2 diabetes were randomized to follow either a type 2 diabetes standard diet (control group: CG), or a standard diet enriched with 100 g of sardines 5 days a week (sardine group: SG) for 6 months. Anthropometric, dietary information, fasting glycated hemoglobin, glucose, insulin, adiponectin, inflammatory markers, EMFA and specific bacterial strains were determined before and after intervention. RESULTS: There were no significant differences in glycemic control between groups at the end of the study. Both groups decreased plasma insulin (SG: -35.3%, P = 0.01, CG: -22.6%, P = 0.02) and homeostasis model of assessment--insulin resistance (HOMA-IR) (SG: -39.2%, P = 0.007, CG: -21.8%, P = 0.04) at 6-months from baseline. However only SG increased adiponectin in plasma compared to baseline level (+40.7%, P = 0.04). The omega-3 index increased 2.6% in the SG compared to 0.6% in the CG (P = 0.001). Both dietary interventions decreased phylum Firmicutes (SG and CG: P = 0.04) and increased E. coli concentrations (SG: P = 0.01, CG: P = 0.03) at the end of the study from baseline, whereas SG decreased Firmicutes/Bacteroidetes ratio (P = 0.04) and increased Bacteroides-Prevotella (P = 0.004) compared to baseline. CONCLUSIONS: Although enriching diet with 100 g of sardines 5 days a week during 6 months to a type 2 diabetes standard diet seems to have neutral effects on glycemic control in drug-naïve patients with type 2 diabetes, this nutritional intervention could have beneficial effects on cardiovascular risk. Furthermore, both dietary interventions decreased HOMA-IR and altered gut microbiota composition of drug-naïve patients with type 2 diabetes

    Phosphofructo-1-Kinase Deficiency Leads to a Severe Cardiac and Hematological Disorder in Addition to Skeletal Muscle Glycogenosis

    Get PDF
    Mutations in the gene for muscle phosphofructo-1-kinase (PFKM), a key regulatory enzyme of glycolysis, cause Type VII glycogen storage disease (GSDVII). Clinical manifestations of the disease span from the severe infantile form, leading to death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM (Pfkm−/−). Here, we show that Pfkm−/− mice had high lethality around weaning and reduced lifespan, because of the metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm−/− mice preserved 50% of PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of reduced PFK activity in the heart, Pfkm−/− mice developed cardiac hypertrophy with age. Taken together, these alterations resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm−/− mice constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies

    Dynamics of the Multiplicity of Cellular Infection in a Plant Virus

    Get PDF
    Recombination, complementation and competition profoundly influence virus evolution and epidemiology. Since viruses are intracellular parasites, the basic parameter determining the potential for such interactions is the multiplicity of cellular infection (cellular MOI), i.e. the number of viral genome units that effectively infect a cell. The cellular MOI values that prevail in host organisms have rarely been investigated, and whether they remain constant or change widely during host invasion is totally unknown. Here, we fill this experimental gap by presenting the first detailed analysis of the dynamics of the cellular MOI during colonization of a host plant by a virus. Our results reveal ample variations between different leaf levels during the course of infection, with values starting close to 2 and increasing up to 13 before decreasing to initial levels in the latest infection stages. By revealing wide dynamic changes throughout a single infection, we here illustrate the existence of complex scenarios where the opportunity for recombination, complementation and competition among viral genomes changes greatly at different infection phases and at different locations within a multi-cellular host

    Cultured bovine embryo biopsy conserves methylation marks from original embryo

    No full text
    A major limitation of embryo epigenotyping by chromatin immunoprecipitation analysis is the reduced amount of sample available from an embryo biopsy. We developed an in vitro system to expand trophectoderm cells from an embryo biopsy to overcome this limitation. Thiswork analyzes whether expanded trophectoderm (EX) is representative of the trophectoderm (TE) methylation or adaptation to culture has altered its epigenome. We took a small biopsy from the trophectoderm (30-40 cells) of in vitro produced bovine-hatched blastocysts and cultured it on fibronectin-treated plates until we obtained ~4 × 104 cells. The rest of the embryo was allowed to recover its spherical shape and, subsequently, TE and inner cellmass were separated.We examined whether there were DNA methylation differences between TE and EX of three bovine embryos using whole-genome bisulfite sequencing. As a consequence of adaptation to culture, global methylation, including transposable elements, was higher in EX, with 5.3% of quantified regions showing significant methylation differences between TE and EX. Analysis of individual embryos indicated that TE methylation ismore similar to its EX counterpart than to TE from other embryos. Interestingly, these similarly methylated regions are enriched in CpG islands, promoters and transcription units near genes involved in biological processes important for embryo development. Our results indicate that EX is representative of the embryo in terms of DNA methylation, thus providing an informative proxy for embryo epigenotyping. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved

    Graphene quantum dots-functionalized multi-walled carbon nanotubes as nanocarriers in electrochemical immunosensing. Determination of IL-13 receptor Α2 in colorectal cells and tumor tissues with different metastatic potential

    No full text
    In this work, the development of the first integrated electrochemical immunosensor for the determination of the IL-13Rα2 is reported. The strategy involves the immobilization of a biotinylated capture antibody onto streptavidin-modified screen-printed electrodes through grafting with p-aminobezoic acid (p-ABA) and further activation using EDC/Sulfo-NHS chemistry. A hybrid nanomaterial composed of multiwalled carbon nanotubes (MWCNTs) and Graphene Quantum Dots (GQDs) was used as nanocarrier of multiple detector antibody and HRP molecules. Amperometric detection with the system H 2 O 2 /hydroquinone (HQ) achieved a linear calibration plot ranging from 2.7 to 100 ng mL −1 IL-13sRα2, with a LOD value of 0.8 ng mL −1 . The immunosensor showed an excellent selectivity and was successfully applied to the determination of the target receptor directly in small amounts of raw cellular lysates and extracts of paraffin-embedded tissues from patients diagnosed with colorectal cancer at different stages.Fil: Serafín, V.. Universidad Complutense de Madrid; EspañaFil: Valverde, A.. Universidad Complutense de Madrid; EspañaFil: Martínez García, G.. Universidad Autónoma de Madrid; EspañaFil: Martínez Periñán, E.. Universidad Autónoma de Madrid; EspañaFil: Comba, Fausto Nahuel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Garranzo Asensio, M.. Instituto de Salud Carlos III; EspañaFil: Barderas, R.. Instituto de Salud Carlos III; EspañaFil: Yáñez Sedeño, P.. Universidad Complutense de Madrid; EspañaFil: Campuzano, S.. Universidad Complutense de Madrid; EspañaFil: Pingarrón, J. M.. Universidad Complutense de Madrid; España. IMDEA Nanoscience; Españ
    corecore