6 research outputs found

    Entry Into Afferent Lymphatics and Maturation In Situ of Migrating Murine Cutaneous Dendritic Cells

    Get PDF
    An important property of dendritic cells (DC), which contributes crucially to their strong immunogenic function, is their capacity to migrate from sites of antigen capture to the draining lymphoid organs. Here we studied in detail the migratory pathway and the differentiation of DC during migration in a skin organ culture model and, for comparison, in the conventional contact hypersensitivity system. We report several observations on the capacity of cutaneous DC to migrate in mouse ear skin. (i) Upon application of contact allergens in vivo the density of Langerhans cells in epidermal sheets decreased, as determined by immunostaining for major histocompatibility complex class II, ADPase, F4/80, CD11b, CD32, NLDC-145/DEC-205, and the cytoskeleton protein vimentin. Evaluation was performed by computer assisted morphometry. (ii) Chemically related nonsensitizing or tolerizing compounds left the density of Langerhans cells unchanged. (iii) Immunohistochemical double-staining of dermal sheets from skin organ cultures for major histocompatibility complex class II and CD54 excluded blood vessels as a cutaneous pathway of DC migration. (iv) Electron microscopy of organ cultures revealed dermal accumulations of DC (including Birbeck granule containing Langerhans cells) within typical lymphatic vessels. (v) Populations of migrating DC in organ cultures upregulated markers of maturity (the antigen recognized by monoclonal antibody 2A1, CD86), but retained indicators of immaturity (invariant chain, residual antigen processing function). These data provide additional evidence that during both the induction of contact hypersensitivity and in skin organ culture, Langerhans cells physically leave the epidermis. Both Langerhans cells and dermal DC enter lymphatic vessels. DC mature while they migrate through the skin

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore