66 research outputs found

    Plasmodium Infections in Natural Populations of Anolis sagrei Reflect Tolerance Rather Than Susceptibility

    Get PDF
    This is the author accepted manuscript. The final version is available from OUP via the DOI in this record.Parasites can represent formidable selection pressures for hosts, but the cost of infection is sometimes difficult to demonstrate in natural populations. While parasite exploitation strategies may, in some instances, actually inflict low costs on their hosts, the response of hosts to infection is also likely to determine whether or not these costs can be detected. Indeed, costs of infection may be obscured if infected individuals in the wild are those that are the most tolerant, rather than the most susceptible, to infection. Here we test this hypothesis in two natural populations of Anolis sagrei, one of the most common anole lizard of the Bahamas. Plasmodium parasites were detected in > 7% of individuals and belonged to two distinct clades: P. mexicanum and P. floriensis. Infected individuals displayed greater body condition than non-infected ones and we found no association between infection status, stamina, and survival to the end of the breeding season. Furthermore, we found no significant difference in the immuno-competence (measured as a response to phytohemagglutinin challenge) of infected versus non-infected individuals. Taken together, our results suggest that the infected individuals that are caught in the wild are those most able to withstand the cost of the infection and that susceptible, infected individuals have been removed from the population (i.e., through disease-induced mortality). This study highlights the need for caution when interpreting estimates of infection costs in natural populations, as costs may appear low either when parasites exploitation strategies truly inflict low costs on their hosts or when those costs are so high that susceptible hosts are removed from the population.This work was supported by a National Geographic Society [grant #8002-06 to R.C.]; a Natural Environment Research Council [research grant NE/M00256X to C.B.]; The symposium was supported by National Science Foundation [grant # IOS-1637160]; Company of Biologists [grant EA1233] both Simon Lailvaux and Jerry Husak; and bySociety for Integrative and Comparative Biology divisions DAB, DCB, DEC, DEDE, DEE, DNB, and DVM

    Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster

    No full text
    Sperm competition favors large, costly ejaculates, and theory predicts the evolution of allocation strategies that enable males to plastically tailor ejaculate expenditure to sperm competition threat. While greater sperm transfer in response to a perceived increase in the risk of sperm competition is well-supported, we have a poor understanding of whether males (i) respond to changes in perceived intensity of sperm competition, (ii) use the same allocation rules for sperm and seminal fluid, and (iii) experience changes in current and future reproductive performance as a result of ejaculate compositional changes. Combining quantitative proteomics with fluorescent sperm labeling, we show that Drosophila melanogaster males exercise independent control over the transfer of sperm and seminal fluid proteins (SFPs) under different levels of male–male competition. While sperm transfer peaks at low competition, consistent with some theoretical predictions based on sperm competition intensity, the abundance of transferred SFPs generally increases at high competition levels. However, we find that clusters of SFPs vary in the directionality and sensitivity of their response to competition, promoting compositional change in seminal fluid. By tracking the degree of decline in male mating probability and offspring production across successive matings, we provide evidence that ejaculate compositional change represents an adaptive response to current sperm competition, but one that comes at a cost to future mating performance. Our work reveals a previously unknown divergence in ejaculate component allocation rules, exposes downstream costs of elevated ejaculate investment, and ultimately suggests a central role for ejaculate compositional plasticity in sexual selection

    Sex peptide receptor-regulated polyandry mediates the balance of pre- and post-copulatory sexual selection in Drosophila

    Get PDF
    Polyandry prolongs sexual selection on males by forcing ejaculates to compete for fertilisation. Recent theory predicts that increasing polyandry may weaken pre-copulatory sexual selection on males and increase the relative importance of post-copulatory sexual selection, but experimental tests of this prediction are lacking. Here, we manipulate the polyandry levels in groups of Drosophila melanogaster by deletion of the female sex peptide receptor. We show that groups in which the sex-peptide-receptor is absent in females (SPR-) have higher polyandry, and – as a result – weaker pre-copulatory sexual selection on male mating success, compared to controls. Post-copulatory selection on male paternity share is relatively more important in SPR- groups, where males gain additional paternity by mating repeatedly with the same females. These results provide experimental evidence that elevated polyandry weakens pre-copulatory sexual selection on males, shifts selection to post-copulatory events, and that the sex peptide pathway can play a key role in modulating this process in Drosophil

    Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen

    Get PDF
    Red Queen host-parasite co-evolution can drive adaptations of immune-genes by positive selection that erodes genetic variation (Red Queen Arms Race), or result in a balanced polymorphism (Red Queen Dynamics) and the long-term preservation of genetic variation (trans-species polymorphism). These two Red Queen processes are opposite extremes of the co-evolutionary spectrum. Here we show that both Red Queen processes can operate simultaneously, analyzing the Major Histocompatibility Complex (MHC) in guppies (Poecilia reticulata and P. obscura), and swamp guppies (Micropoecilia picta). Sub-functionalization of MHC alleles into “supertypes” explains how polymorphisms persist during rapid host-parasite co-evolution. Simulations show the maintenance of supertypes as balanced polymorphisms, consistent with Red Queen Dynamics, whereas alleles within supertypes are subject to positive selection in a Red Queen Arms Race. Building on the Divergent Allele Advantage hypothesis, we show that functional aspects of allelic diversity help to elucidate the evolution of polymorphic genes involved in Red Queen co-evolution

    Divergence in transcriptional and regulatory responses to mating in male and female fruitflies

    Get PDF
    Mating induces extensive physiological, biochemical and behavioural changes in female animals of many taxa. In contrast, the overall phenotypic and transcriptomic consequences of mating for males, hence how they might differ from those of females, are poorly described. Post mating responses in each sex are rapidly initiated, predicting the existence of regulatory mechanisms in addition to transcriptional responses involving de novo gene expression. That post mating responses appear different for each sex also predicts that the genome-wide signatures of mating should show evidence of sex-specific specialisation. In this study, we used high resolution RNA sequencing to provide the first direct comparisons of the transcriptomic responses of male and female Drosophila to mating, and the first comparison of mating-responsive miRNAs in both sexes in any species. As predicted, the results revealed the existence of sex- and body part-specific mRNA and miRNA expression profiles. More genes were differentially expressed in the female head-thorax than the abdomen following mating, whereas the opposite was true in males. Indeed, the transcriptional profile of male head-thorax tissue was largely unaffected by mating, and no differentially expressed genes were detected at the most stringent significance threshold. A subset of ribosomal genes in females were differentially expressed in both body parts, but in opposite directions, consistent with the existence of body part-specific resource allocation switching. Novel, mating-responsive miRNAs in each sex were also identified, and a miRNA-mRNA interactions analysis revealed putative targets among mating-responsive genes. We show that the structure of genome-wide responses by each sex to mating is strongly divergent, and provide new insights into how shared genomes can achieve characteristic distinctiveness

    Rapid identification of bovine MHCI haplotypes in genetically divergent cattle populations Using Next-Generation Sequencing

    Get PDF
    The major histocompatibility complex (MHC) region contains many genes that are key regulators of both innate and adaptive immunity including the polymorphic MHCI and MHCII genes. Consequently, the characterisation of the repertoire of MHC genes is critical to understanding the variation that determines the nature of immune responses. Our current knowledge of the bovine MHCI repertoire is limited with only the Holstein-Friesian breed having been studied in any depth. Traditional methods of MHCI genotyping are of low resolution and laborious and this has been a major impediment to a more comprehensive analysis of the MHCI repertoire of other cattle breeds. Next-generation sequencing (NGS) technologies have been used to enable high throughput and much higher resolution MHCI typing in a number of species. In this study we have developed a MiSeq platform approach and requisite bioinformatics pipeline to facilitate typing of bovine MHCI repertoires. The method was validated initially on a cohort of Holstein-Friesian animals and then demonstrated to enable characterisation of MHCI repertoires in African cattle breeds, for which there was limited or no available data. During the course of these studies we identified >140 novel classical MHCI genes and defined 62 novel MHCI haplotypes, dramatically expanding the known bovine MHCI repertoire

    Molecular characterization of MHC class IIB genes of sympatric Neotropical cichlids

    Get PDF
    Ministerio de Economía y Competitividad del Gobierno de España, Programa de Formación de Personal Investigador FPI BES-2011-047645 to MJH, Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia Proyecto CGL 2010-16103 to MB. This project was further enabled through two German Science Foundation grants to CE (DFG, EI841/4-1 and EI841/6-1) both part of the SPP 1399 priority programme on “host-parasite interactions”
    corecore