148 research outputs found

    Pengaruh Interaksi Sosial dan Efikasi Diri terhadap Kecerdasan Emosi (Survey pada Mahasiswa Pendidikan Akuntansi Upi)

    Full text link
    Penelitian ini dilatarbelakangi oleh rendahnya sebagian mahasiswa Pendidikan Akuntansi berkaitan dengan kecerdasan emosi mahasiswa Pendidikan Akuntansi. Pentingnya mengkaji kecerdasan emosi mahasiswa, berkaitan dengan tujuan program studi Pendidikan Akuntansi yaitu mempersiapkan calon guru akuntansi menjelang PPL, dimana bukan hanya aspek kecerdasan intelgensi, namun kecerdasan emosi juga sangat penting dalam mempersiapkan mahasiswa terutama. Teori untuk membahas penelitian ini adalah kecerdasan Emosi dari Goleman, efikasi diri dari Bandura dan Interaksi sosial Tujuan penelitian ini adalah untuk mengkaji pengaruh interaksi sosial dan efikasi diri terhadap kecerdasan emosi. Metode penelitian menggunakan verifikatif dengan desain survey ekspalanatory. Populasi seluruh mahasiswa Pendidikan Akuntansi sebanyak dengan sampel 120 responden. Pengumpulan data dengan angket dan analisis data menggunakan analisis jalur (path analysis). Hasil penelitian menunjukkan bahwa interaksi sosial dan efikasi diri baik secara parsial maupun secara simultan berpengaruh positif terhadap kecerdasan emosi. Dengan Interaksi sosial sebagai faktor yang paling berpengaruh terhadap kecerdasan emosi. Berdasarkan analisis data, maka diperlukan peningkatan indikator yang masih rendah yaitu indikator kerjasama dalam variabel interaksi sosial dan perencanaan pengaturan diri dalam variabel efikasi diri

    Evidence for a Time-Invariant Phase Variable in Human Ankle Control

    Get PDF
    Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms). In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control.United States Army Medical Research Acquisition Activity (USAMRAA grant W81XWH-09-2-0020)National Institute of Neurological Disorders and Stroke (U.S.) (NIH award number F31NS074687)Burroughs Wellcome Fund (Career Award at the Scientific Interface

    Crossmodal congruency effect scores decrease with repeat test exposure

    Get PDF
    The incorporation of feedback into a person’s body schema is well established. The crossmodal congruency task (CCT) is used to objectively quantify incorporation without being susceptible to experimenter biases. This visual-tactile interference task is used to calculate the crossmodal congruency effect (CCE) score as a difference in response time between incongruent and congruent trials. Here we show that this metric is susceptible to a learning effect that causes attenuation of the CCE score due to repeated task exposure sessions. We demonstrate that this learning effect is persistent, even after a 6 month hiatus in testing. Two mitigation strategies are proposed: 1. Only use CCE scores that are taken after learning has stabilized, or 2. Use a modified CCT protocol that decreases the task exposure time. We show that the modified and shortened CCT protocol, which may be required to meet time or logistical constraints in laboratory or clinical settings, reduced the impact of the learning effect on CCT results. Importantly, the CCE scores from the modified protocol were not significantly more variable than results obtained with the original protocol. This study highlights the importance of considering exposure time to the CCT when designing experiments and suggests two mitigation strategies to improve the utility of this psychophysical assessment

    MicroRNAs in lung cancer

    Get PDF
    Lung cancer (LC) is a serious public health problem responsible for the majority of cancer deaths and comorbidities in developed countries. Tobacco smoking is considered the main risk factor for LC; however, only a few smokers will be affected by this cancer. Current screening methods are focused on identifying the early stages of this malignancy. Thus, new data concerning the roles of microRNA alterations in inflammation, epithelial-mesenchymal transition and lung disease have increased hope about LC pathogenesis, diagnosis, treatment and prognosis. MicroRNA mechanisms include angiogenesis promotion, cell cycle regulation by modulating cellular proliferation and apoptosis, and migration and invasion inhibition. In this context, this manuscript reviews the current information about many important microRNAs as they relate to the initiation and progression of LC.info:eu-repo/semantics/publishedVersio

    Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg

    Get PDF
    Abstract-This brief presents a novel control strategy for a powered prosthetic ankle based on a biomimetic virtual constraint. We first derive a kinematic constraint for the "effective shape" of the human ankle-foot complex during locomotion. This shape characterizes ankle motion as a function of the Center of Pressure (COP)-the point on the foot sole where the resultant ground reaction force is imparted. Since the COP moves monotonically from heel to toe during steady walking, we adopt the COP as a mechanical representation of the gait cycle phase in an autonomous feedback controller. We show that our kinematic constraint can be enforced as a virtual constraint by an output linearizing controller that uses only feedback available to sensors onboard a prosthetic leg. Using simulations of a passive walking model with feet, we show that this novel controller exactly enforces the desired effective shape whereas a standard impedance (i.e., proportional-derivative) controller cannot. This work provides a single, biomimetic control law for the entire single-support period during robot-assisted locomotion

    Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies

    Get PDF
    BACKGROUND: Recent studies indicate that microRNAs (miRNAs) are mechanistically involved in the development of various human malignancies, suggesting that they represent a promising new class of cancer biomarkers. However, previously reported methods for measuring miRNA expression consume large amounts of tissue, prohibiting high-throughput miRNA profiling from typically small clinical samples such as excision or core needle biopsies of breast or prostate cancer. Here we describe a novel combination of linear amplification and labeling of miRNA for highly sensitive expression microarray profiling requiring only picogram quantities of purified microRNA. RESULTS: Comparison of microarray and qRT-PCR measured miRNA levels from two different prostate cancer cell lines showed concordance between the two platforms (Pearson correlation R(2 )= 0.81); and extension of the amplification, labeling and microarray platform was successfully demonstrated using clinical core and excision biopsy samples from breast and prostate cancer patients. Unsupervised clustering analysis of the prostate biopsy microarrays separated advanced and metastatic prostate cancers from pooled normal prostatic samples and from a non-malignant precursor lesion. Unsupervised clustering of the breast cancer microarrays significantly distinguished ErbB2-positive/ER-negative, ErbB2-positive/ER-positive, and ErbB2-negative/ER-positive breast cancer phenotypes (Fisher exact test, p = 0.03); as well, supervised analysis of these microarray profiles identified distinct miRNA subsets distinguishing ErbB2-positive from ErbB2-negative and ER-positive from ER-negative breast cancers, independent of other clinically important parameters (patient age; tumor size, node status and proliferation index). CONCLUSION: In sum, these findings demonstrate that optimized high-throughput microRNA expression profiling offers novel biomarker identification from typically small clinical samples such as breast and prostate cancer biopsies

    Virtual prototyping of a semi-active transfemoral prosthetic leg

    Get PDF
    This article presents a virtual prototyping study of a semi-active lower limb prosthesis to improve the functionality of an amputee during prosthesis–environment interaction for level ground walking. Articulated ankle–foot prosthesis and a single-axis semi-active prosthetic knee with active and passive operating modes were considered. Data for level ground walking were collected using a photogrammetric method in order to develop a base-line simulation model and with the hip kinematics input to verify the proposed design. The simulated results show that the semi-active lower limb prosthesis is able to move efficiently in passive mode, and the activation time of the knee actuator can be reduced by approximately 50%. Therefore, this semi-active system has the potential to reduce the energy consumption of the actuators required during level ground walking and requires less compensation from the amputee due to lower deviation of the vertical excursion of body centre of mass
    • …
    corecore